
SIAM J. DISCRETE MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 20, No. 1, pp. 240–260

COLLECTIVE TREE SPANNERS OF GRAPHS∗

FEODOR F. DRAGAN† , CHENYU YAN† , AND IRINA LOMONOSOV‡

Abstract. In this paper we introduce a new notion of collective tree spanners. We say that a
graph G = (V,E) admits a system of μ collective additive tree r-spanners if there is a system T (G) of
at most μ spanning trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y) + r. Among other results, we show that any chordal graph, chordal
bipartite graph or cocomparability graph admits a system of at most log2 n collective additive tree
2-spanners. These results are complemented by lower bounds, which say that any system of collective
additive tree 1-spanners must have Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning

trees for some chordal bipartite graphs and some cocomparability graphs. Furthermore, we show that
any c-chordal graph admits a system of at most log2 n collective additive tree (2�c/2�)-spanners, any
circular-arc graph admits a system of two collective additive tree 2-spanners. Towards establishing
these results, we present a general property for graphs, called (α, r)-decomposition, and show that any
(α, r)-decomposable graph G with n vertices admits a system of at most log1/α n collective additive
tree 2r-spanners. We discuss also an application of the collective tree spanners to the problem of
designing compact and efficient routing schemes in graphs. For any graph on n vertices admitting a
system of at most μ collective additive tree r-spanners, there is a routing scheme of deviation r with
addresses and routing tables of size O(μ log2 n/ log logn) bits per vertex. This leads, for example, to
a routing scheme of deviation (2�c/2�) with addresses and routing tables of size O(log3 n/ log logn)
bits per vertex on the class of c-chordal graphs.

Key words. sparse spanners, tree spanners, graph distance, balanced separator, graph decom-
position, chordal graphs, c-chordal graphs, message routing, efficient algorithms

AMS subject classifications. 05C05, 05C10, 05C12, 05C78, 05C85, 94C15, 68R10, 68Q25,
68W25

DOI. 10.1137/S089548010444167X

1. Introduction. Many combinatorial and algorithmic problems are concerned
with the distance dG on the vertices of a possibly weighted graph G = (V,E). Approx-
imating dG by a simpler distance (in particular, by tree-distance dT) is useful in many
areas such as communication networks, data analysis, motion planning, image process-
ing, network design, and phylogenetic analysis (see [1, 8, 11, 19, 22, 52, 58, 59, 64, 66]).
An arbitrary metric space (in particular a finite metric defined by a general graph)
might not have enough structure to exploit algorithmically; on trees, since they have
a simpler (acyclic) structure, many hard algorithmic problems have easy solutions.
So, the general goal is, for a given graph G, to find a simpler (well-structured, sparse,
etc.) graph H = (V,E′) with the same vertex-set such that the distance dH(u, v) in
H between two vertices u, v ∈ V is reasonably close to the corresponding distance
dG(u, v) in the original graph G.

There are several ways to measure the quality of this approximation, two of them
leading to the notion of a spanner. For t ≥ 1, a spanning subgraph H of G is called
a multiplicative t-spanner of G [22, 59, 58] if dH(u, v) ≤ t · dG(u, v) for all u, v ∈ V. If
r ≥ 0 and dH(u, v) ≤ dG(u, v)+r for all u, v ∈ V, then H is called an additive r-spanner

∗Received by the editors March 5, 2004; accepted for publication (in revised form) November 1,
2005; published electronically March 15, 2006. Results of this paper were partially presented at the
SWAT ’04 conference [30].

http://www.siam.org/journals/sidma/20-1/44167.html
†Department of Computer Science, Kent State University, Kent, OH 44242 (dragan@cs.kent.edu,

cyan@cs.kent.edu).
‡Department of Computer Science, Hiram College, Hiram, OH 44234 (lomonosovi@hiram.edu).

240

COLLECTIVE TREE SPANNERS OF GRAPHS 241

of G [52]. The parameters t and r are called, respectively, the multiplicative and the
additive stretch factors. Clearly, every additive r-spanner of G is a multiplicative
(r + 1)-spanner of G (but not vice versa). Note that the graphs considered in this
paper are assumed to be unweighted (except in section 7 where we discuss how to
extend our results to weighted graphs).

Graph spanners have applications in various areas, especially in distributed sys-
tems and communication networks. In [59], close relationships were established be-
tween the quality of spanners (in terms of stretch factor and the number of spanner
edges |E′|), and the time and communication complexities of any synchronizer for the
network based on this spanner. Also, sparse spanners are very useful in message rout-
ing in communication networks; in order to maintain succinct routing tables, efficient
routing schemes can use only the edges of a sparse spanner [60]. Unfortunately, the
problem of determining, for a given graph G and two integers t ≥ 2,m ≥ 1, whether
G has a multiplicative t-spanner with m or fewer edges, is NP-complete (see [58]).

The sparsest spanners are tree spanners. Tree spanners occur in biology [5],
and as it was shown in [57], they can be used as models for broadcast operations
in communication networks. Tree spanners are favored also from the algorithmic
point of view—many algorithmic problems are easily solvable on trees. Multiplicative
tree t-spanners were studied in [19]. It was shown that, for a given graph G, the
problem to decide whether G has a multiplicative tree t-spanner (the multiplicative
tree t-spanner problem) is NP-complete for any fixed t ≥ 4 and is linearly solvable for
t = 1, 2. Recently, this NP-completeness result was improved—the multiplicative tree
t-spanner problem is NP-complete for any fixed t ≥ 4 even on some rather restricted
graph classes: planar graphs [12], chordal graphs [14] and chordal bipartite graphs
[15].

Nevertheless, some particular graph classes, such as cographs, complements of
bipartite graphs, split graphs, regular bipartite graphs, interval graphs, permutation
graphs, convex bipartite graphs, distance-hereditary graphs, directed path graphs,
cocomparability graphs, AT-free graphs, strongly chordal graphs, and dually chordal
graphs do admit additive tree r-spanners and/or multiplicative tree t-spanners for
sufficiently small r and t (see [13, 18, 51, 55, 61, 62, 69]). We refer also to [1, 12, 14,
18, 19, 38, 52, 57, 58, 65] for more background information on tree and general sparse
spanners.

Many graph classes (including hypercubes, planar graphs, chordal graphs, chordal
bipartite graphs) do not admit any good tree spanner. For every fixed integer t there
are planar chordal graphs and planar chordal bipartite graphs that do not admit tree
t-spanners (additive as well as multiplicative) [21, 62]. However, as it was shown
in [58], any chordal graph with n vertices admits a multiplicative 5-spanner with at
most 2n−2 edges and a multiplicative 3-spanner with at most O(n log n) edges (both
spanners are constructable in polynomial time). Recently, the results were further
improved. In [21], the authors show that every chordal graph admits an additive 4-
spanner with at most 2n− 2 edges and an additive 3-spanner with at most O(n log n)
edges. An additive 4-spanner can be constructed in linear time while an additive
3-spanner is constructable in O(m log n) time, where m is the number of edges of G.
Even more, the method designed for chordal graph is extended to all c-chordal graphs.
As a result, it was shown that any such graph admits an additive (c+1)-spanner with
at most 2n− 2 edges which is constructable in O(cn + m) time. Recall that a graph
G is chordal if its largest induced (chordless) cycles are of length 3 and c-chordal
if its largest induced cycles are of length c. Note also that [59] gives a method for
constructing a multiplicative 3-spanner of the n-vertex hypercube with fewer than 7n

242 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

edges and this construction was improved in [34] to give a multiplicative 3-spanner of
the n-vertex hypercube with fewer than 4n edges.

1.1. Our results. In this paper we introduce a new notion of collective tree
spanners, a notion slightly weaker than the one of a tree spanner and slightly stronger
than the notion of a sparse spanner. We say that a graph G = (V,E) admits a system
of μ collective additive tree r-spanners if there is a system T (G) of at most μ spanning
trees of G such that for any two vertices x, y of G a spanning tree T ∈ T (G) exists
such that dT (x, y) ≤ dG(x, y)+r (a multiplicative variant of this notion can be defined
analogously). Clearly, if G admits a system of μ collective additive tree r-spanners,
then G admits an additive r-spanner with at most μ×(n−1) edges (take the union of all
those trees), and if μ = 1 then G admits an additive tree r-spanner. Furthermore, any
result on collective additive tree spanners can be translated into a result on collective
multiplicative tree spanners since any graph, admitting a system of μ collective additive
tree r-spanners, admits a system of μ collective multiplicative tree (r + 1)-spanners
(dT (x, y) ≤ dG(x, y) + r implies dT (x, y)/dG(x, y) ≤ 1 + r/dG(x, y) ≤ r + 1 for an
unweighted graph G). Note also that any graph on n vertices admits a system of at
most n − 1 collective additive tree 0-spanners (take n − 1 breadth-first-search–trees
rooted at different vertices of G).

The introduction of this new notion was inspired by the works [6, 7] of Bartal
and subsequent works [20, 37]. For example, motivated by Bartal’s work on prob-
abilistic approximation of general metrics with tree metrics, [20] gives a polynomial
time algorithm that given a finite n point metric G, constructs O(n log n) trees and
a probability distribution ψ on them such that the expected multiplicative stretch of
any edge of G in a tree chosen according to ψ is at most O(log n log log n). These
results led to approximation algorithms for a number of optimization problems in-
cluding the group Steiner tree problem, the metric labeling problem, the buy-at-bulk
network design problem and many others (see [6, 7, 20, 37] for more details).

In section 2 we define a large class of graphs, called (α, r)-decomposable, and show
that any (α, r)-decomposable graph G with n vertices admits a system of at most
log1/α n collective additive tree 2r-spanners. Then, in sections 3 and 4, we show that
chordal graphs, chordal bipartite graphs, and cocomparability graphs are all (1/2, 1)-
decomposable graphs, implying that each graph from those families admits a system
of at most log2 n collective additive tree 2-spanners. These results are complemented
by lower bounds, which say that any system of collective additive tree 1-spanners must
have Ω(

√
n) spanning trees for some chordal graphs and Ω(n) spanning trees for some

chordal bipartite graphs and some cocomparability graphs. Furthermore, we show
that any c-chordal graph is (1/2, �c/2�)-decomposable, implying that each c-chordal
graph admits a system of at most log2 n collective additive tree (2�c/2�)-spanners.

Thus, as a byproduct, we get that chordal graphs, chordal bipartite graphs, and
cocomparability graphs admit additive 2-spanners with at most (n − 1) log2 n edges
and c-chordal graphs admit additive (2�c/2�)-spanners with at most (n − 1) log2 n
edges. Our result for chordal graphs improves the known results from [58] and [21]
on 3-spanners and answers the question posed in [21] whether chordal graphs admit
additive 2-spanners with O(n log n) edges.

In section 5, we show that each circular-arc graph admits a system of two collective
additive tree 2-spanners, and that for any constant r ≥ 0 there is a circular-arc graph
without any (one) additive tree r-spanner.

In section 6 we discuss an application of the collective tree spanners to the prob-
lem of designing compact and efficient routing schemes in graphs. For any graph

COLLECTIVE TREE SPANNERS OF GRAPHS 243

on n vertices admitting a system of at most μ collective additive tree r-spanners,
there is a routing scheme of deviation r with addresses and routing tables of size
O(μ log2 n/ log log n) bits per vertex (for details see section 6). This leads, for exam-
ple, to a routing scheme of deviation (2�c/2�) with addresses and routing tables of
size O(log3 n/ log log n) bits per vertex on the class of c-chordal graphs. The latter
improves the recent result on routing on c-chordal graphs obtained in [33] (see also
[32] for the case of chordal graphs). We conclude the paper with section 7, where we
discuss how to extend our results to weighted graphs, and section 8, where we discuss
some further developments and future directions.

1.2. Basic notions and notations. All graphs occurring in this paper are
connected, finite, undirected, loopless and without multiple edges. In a graph G =
(V,E) the length of a path from a vertex v to a vertex u is the number of edges in the
path. The distance dG(u, v) between the vertices u and v is the length of a shortest
path connecting u and v.

For a subset S ⊆ V , let radG(S) and diamG(S) be the radius and the diameter,
respectively, of S in G, i.e., radG(S) = minv∈V {maxu∈S{dG(u, v)}}, diamG(S) =
maxu,v∈S{dG(u, v)}. A vertex v ∈ V such that dG(u, v) ≤ radG(S) for any u ∈ S
is called a central vertex for S. The value radG(V) is called the radius of G. Let
also N(v) (N [v]) denote the open (closed) neighborhood of a vertex v in G, i.e.,
N(v) = {u ∈ V : uv ∈ E(G)} and N [v] = N(v) ∪ {v}.

2. (α, r)-decomposable graphs and their collective tree spanners. Dif-
ferent balanced separators in graphs were used by many authors in designing efficient
graph algorithms (see [26, 27, 43, 44, 46, 50, 53, 54]). For example, bounded size
balanced separators and bounded diameter balanced separators were recently em-
ployed in [43, 44, 50] for designing compact distance labeling schemes for different
so-called well-separated families of graphs. We extend those ideas and apply them to
our problem.

Let α be a positive real number smaller than 1 and r be a nonnegative integer.
We say that an n-vertex graph G = (V,E) is (α, r)-decomposable if there is a separator
S ⊆ V such that the following three conditions hold:

balanced separator condition—the removal of S leaves no connected component
with more than αn vertices;

bounded separator-radius condition—radG(S) ≤ r, i.e., there exists a vertex c in
G (called a central vertex for S) such that dG(v, c) ≤ r for any v ∈ S;

hereditary family condition—each connected component of the graph, obtained
from G by removing vertices of S, is also an (α, r)-decomposable graph.
Note that, by definition, any graph of radius at most r is (α, r)-decomposable and
that the size of S does not matter.

2.1. Collective tree spanners of (α, r)-decomposable graphs. Using the
first and third conditions of the definition, one can construct for any (α, r)-decompos-
able graph G a (rooted) balanced decomposition tree BT (G) as follows. If G is of radius
at most r, then BT (G) is a one-node tree. Otherwise, find a balanced separator S in
G, which exists according to the balanced separator condition. Let G1, G2, . . . , Gp be
the connected components of the graph G− S obtained from G by removing vertices
of S. For each graph Gi (i = 1, . . . , p), which is (α, r)-decomposable by the hereditary
family condition, construct a balanced decomposition tree BT (Gi) recursively, and
build BT (G) by taking S to be the root and connecting the root of each tree BT (Gi)
as a child of S. See Figure 1 for an illustration. Clearly, the nodes of BT (G) represent
a partition of the vertex set V of G into clusters S1, S2, . . . , Sq of radius at most r

244 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

�
�
�
�

�
�
�
�

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

1

2

56

7 8

9

10 11

12

4 13

3 14 15

16 17

18

19
1, 2, 3, 4

7 9

5, 6, 8

18, 1916, 17

10, 11, 12 13, 14, 15

(a) (b)

X

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��

13

14 15

16 17

18

19

(c)

Fig. 1. (a) A graph G, (b) its balanced decomposition tree BT (G), and (c) an induced subgraph
G(↓X) of G.

each. For a node X of BT (G), denote by G(↓X) the (connected) subgraph of G
induced by vertices

⋃
{Y : Y is a descendent of X in BT (G)} (here we assume that

X is a descendent of itself).
It is easy to see that a balanced decomposition tree BT (G) of a graph G with n

vertices and m edges has depth at most log1/α n, which is O(log2n) if α is a constant.
Moreover, assuming that a balanced and bounded radius separator can be found in
polynomial, say p(n), time (for the special graph classes we consider later, p(n) will
be at most O(n3)), the tree BT (G) can be constructed in O((p(n)+m) log1/α n) total
time. Indeed, in each level of recursion we need to find balanced and bounded radius
separators in current disjoint subgraphs and to construct the corresponding subgraphs
of the next level. Also, since the graph sizes are reduced by a factor α, the recursion
depth is at most log1/α n.

Consider now two arbitrary vertices x and y of an (α, r)-decomposable graph
G and let S(x) and S(y) be the nodes of BT (G) containing x and y, respectively.
Let also NCABT (G)(S(x), S(y)) be the nearest common ancestor of nodes S(x) and
S(y) in BT (G) and (X0, X1, . . . , Xt) be the path of BT (G) connecting the root X0

of BT (G) with NCABT (G)(S(x), S(y)) = Xt (in other words, X0, X1, . . . , Xt are the
common ancestors of S(x) and S(y)). The following lemmata are crucial to all our
subsequent results.

Lemma 2.1. Any path PG
x,y, connecting vertices x and y in G, contains a vertex

from X0 ∪X1 ∪ · · · ∪Xt.
Let SPG

x,y be a shortest path of G connecting vertices x and y, and let Xi be the

node of the path (X0, X1, . . . , Xt) with the smallest index such that SPG
x,y

⋂
Xi �= ∅

in G. Then, the following lemma holds.
Lemma 2.2. We have dG(x, y) = dG′(x, y), where G′ := G(↓Xi).
Proof. It is enough to show that the path SPG

x,y consists of only vertices of

G′. Let us assume, by way of contradiction, that there is a vertex z of SPG
x,y that

does not belong to G′. Let SPG
x,z be a subpath of SPG

x,y between x and z. Clearly,
the node S(z) of BT (G), containing vertex z, is not a descendent of Xi. There-
fore, the nearest common ancestor of S(x) and S(z) in BT (G) is a node Xj from
{X0, X1, . . . , Xt} with j < i. But then, by Lemma 2.1, the path SPG

x,z (and hence

the path SPG
x,y) must have a vertex in X0 ∪X1 ∪ · · · ∪Xj , contradicting the choice of

Xi, i > j.
For the graph G′ = G(↓Xi), consider its arbitrary breadth-first-search–tree (BFS-

tree) T ′ rooted at a central vertex c for Xi, i.e., a vertex c such that dG′(v, c) ≤ r
for any v ∈ Xi. Such a vertex exists in G′ since G′ is an (α, r)-decomposable graph
and Xi is its balanced and bounded radius separator. The tree T ′ has the following
distance property with respect to those vertices x and y.

COLLECTIVE TREE SPANNERS OF GRAPHS 245

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�
�
�
�
��
��
��
��

��
��
��
��

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�
��
��
��
��

(a) (b)

T 1
2

T

T

1
1

1
3

T 1

Fig. 2. (a) Local subtrees T 1
1 , T

1
2 , T

1
3 of graph G from Figure 1 and (b) a corresponding spanning

tree T 1 of G (dark solid edges are edges of local subtrees T 1
1 , T

1
2 , T

1
3 , dashed edges are added to create

one spanning tree T 1 on top of T 1
1 , T

1
2 , T

1
3).

Lemma 2.3. We have dT ′(x, y) ≤ dG(x, y) + 2r.
Proof. We know, by Lemma 2.2, that a shortest path SPG

x,y, intersecting Xi and

not intersecting any Xl (l < i), lies entirely in G′. Let x′ be the vertex of SPG
x,y ∩Xi

closest to x and y′ be the vertex of SPG
x,y ∩Xi closest to y. Since T ′ is a BFS-tree of

G′ rooted at vertex c, we have

dT ′(x, c) = dG′(x, c) ≤ dG′(x, x′) + dG′(x′, c) ≤ dG′(x, x′) + r = dG(x, x′) + r,

dT ′(y, c) = dG′(y, c) ≤ dG′(y, y′) + dG′(y′, c) ≤ dG′(y, y′) + r = dG(y, y′) + r.

That is, dT ′(x, y) ≤ dT ′(x, c) + dT ′(y, c) ≤ dG(x, x′) + dG(y, y′) + 2r. Combin-
ing this with the fact that dG(x, y) ≥ dG(x, x′) + dG(y, y′), we obtain dT ′(x, y) ≤
dG(x, y) + 2r.

Let now Bi
1, . . . , B

i
pi

be the nodes on depth i of the tree BT (G). For each subgraph

Gi
j := G(↓Bi

j) of G (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi), denote by T i
j a BFS-

tree of graph Gi
j rooted at a central vertex cij for Bi

j (see Figure 2 for an illustration).

The trees T i
j (i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi) are called local subtrees of

G, and, given the balanced decomposition tree BT (G), they can be constructed in
O((t(n)+m) log1/α n) total time, where t(n) is the time needed to find a central vertex

cij for Bi
j (a trivial upper bound for t(n) is O(n3)). From Lemma 2.3 the following

general result can be deduced.
Theorem 2.4. Let G be an (α, r)-decomposable graph, BT (G) be its balanced

decomposition tree and LT (G) = {T i
j : i = 0, 1, . . . , depth(BT (G)), j = 1, 2, . . . , pi}

be its local subtrees. Then, for any two vertices x and y of G, there exists a local
subtree T i′

j′ in LT (G) such that

dT i′
j′

(x, y) ≤ dG(x, y) + 2r.

This theorem implies two important results for the class of (α, r)-decomposable
graphs. Let G be an (α, r)-decomposable graph with n vertices and m edges, BT (G)
be its balanced decomposition tree, and LT (G) be the family of its local subtrees
(defined above). Consider a graph H obtained by taking the union of all local subtrees
of G (by putting all of them together), i.e.,

H :=
⋃

{T i
j : T i

j ∈ LT (G)} = (V,∪{E(T i
j) : T i

j ∈ LT (G)}).

Clearly, H is a spanning subgraph of G, constructable in O((p(n)+t(n)+m) log1/α n)
total time, and, for any two vertices x and y of G, dH(x, y) ≤ dG(x, y)+2r holds. Also,

246 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

since for every level i (i = 0, 1, . . . , depth(BT (G))) of balanced decomposition tree
BT (G), the corresponding local subtrees T i

1, . . . , T
i
pi

are pairwise vertex-disjoint, their
union has at most n− 1 edges. Therefore, H cannot have more than (n− 1) log1/α n
edges in total. Thus, we have proven the following result.

Theorem 2.5. Any (α, r)-decomposable graph G with n vertices admits an addi-
tive 2r-spanner with at most (n− 1) log1/α n edges.

Instead of taking the union of all local subtrees of G, one can fix i (i ∈ {0, 1, . . . ,
depth(BT (G))}) and consider separately the union of only local subtrees T i

1, . . . , T
i
pi

,
corresponding to the level i of the decomposition tree BT (G), and then extend in
linear O(m) time that forest to a spanning tree T i of G (using, for example, a variant
of the Kruskal’s spanning tree algorithm for the unweighted graphs). We call this tree
T i the spanning tree of G corresponding to the level i of the balanced decomposition
BT (G). In this way we can obtain at most log1/α n spanning trees for G, one for each
level i of BT (G). Denote the collection of those spanning trees by T (G). By Theorem
2.4, it is rather straightforward to show that for any two vertices x and y of G, there
exists a spanning tree T i′ in T (G) such that dT i′ (x, y) ≤ dG(x, y)+2r. Thus, we have
the following theorem.

Theorem 2.6. Any (α, r)-decomposable graph G with n vertices admits a system
T (G) of at most log1/α n collective additive tree 2r-spanners.

Note that such a system T (G) for an (α, r)-decomposable graph G with n vertices
and m edges can be constructed in O((p(n) + t(n) + m) log1/α n) time, where p(n) is
the time needed to find a balanced and bounded radius separator S and t(n) is the
time needed to find a central vertex for S.

2.2. Extracting an appropriate tree from T (G). Now we will show that
one can assign O(log1/α n× log n) bit labels to vertices of G such that, for any pair of

vertices x and y, a tree T i′ in T (G) with dT i′ (x, y) ≤ dG(x, y)+2r can be identified in
only O(log1/α n) time by merely inspecting the labels of x and y, without using any
other information about the graph. This will be useful in an application of collective
tree spanners, discussed in section 6.

Associate with each vertex x of G a 2× (depth(BT (G)) + 1) array Ax such that,
for each level i of BT (G), Ax[1, i] = j and Ax[2, i] = dT i

j
(x, cij) if there exists a

local subtree T i
j in LT (G) containing vertex x, and Ax[1, i] = nil and Ax[2, i] = ∞,

otherwise (i.e., the depth in BT (G) of node S(x) containing x is smaller than i).
Evidently, each label Ax (x ∈ V) can be encoded using O(log1/α n× log n) bits and a
computation of all labels Ax, x ∈ V can be performed together with the construction
of system T (G).

Given labels Ax, Ay of vertices x and y, the following procedure will return in

O(log1/α n) time an index i′ ∈ {0, 1, . . . , depth(BT (G))} such that, for tree T i′ ∈
T (G), dT i′ (x, y) ≤ dG(x, y) + 2r holds.

set i′ := 0;
set minsum := Ax[2, 0] + Ay[2, 0];
set i := 1;
while (Ax[1, i] = Ay[1, i] �= nil) and (i ≤ log1/α n) do

if Ax[2, i] + Ay[2, i] < minsum
then set i′ := i and minsum := Ax[2, i] + Ay[2, i];

i := i + 1;
enddo
return i′.

COLLECTIVE TREE SPANNERS OF GRAPHS 247

This procedure simply finds, among all local subtrees containing both x and y, a
subtree T i′

j′ for which the sum dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′) is minimum, and then returns

its upper index i′.
To show that indeed dT i′ (x, y) ≤ dG(x, y) + 2r, we will need to recall the proof

of Lemma 2.3 (note that dT i′ (x, y) = dT i′
j′

(x, y) by construction of T i′). Let again

S(x) and S(y) be the nodes of BT (G) containing vertices x and y, respectively, and
let (B0, B1

j1
, . . . , Bt

jt
) be the path of BT (G) connecting the root B0 of BT (G) with

NCABT (G)(S(x), S(y)) = Bt
jt

. In Lemma 2.3 we proved that there exists an index

i ∈ {0, 1, . . . , t} such that any BFS-tree T ′ of the graph G(↓Bi
ji

) rooted at a center

c for Bi
ji

(including local subtree T i
ji

rooted at ciji) satisfies dT ′(x, y) ≤ dT ′(x, c) +
dT ′(y, c) ≤ dG(x, y)+2r (see inequalities (1) and (2) in that proof). Since, among local
subtrees T 0, T 1

j1
, . . . , T t

jt
, the subtree T i′

j′ has minimum sum dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′),

we conclude

dT i′ (x, y) = dT i′
j′

(x, y) ≤ dT i′
j′

(x, ci
′

j′) + dT i′
j′

(y, ci
′

j′)

≤ dT i
ji

(x, ciji) + dT i
ji

(y, ciji) ≤ dG(x, y) + 2r.

3. Acyclic hypergraphs, chordal graphs and (α, r)-decomposition. Let
H = (V, E) be a hypergraph with the vertex set V and the hyperedge set E , i.e., E is a
set of nonempty subsets of V . For every vertex v ∈ V , let E(v) = {e ∈ E : v ∈ e}. The
2-section graph 2SEC(H) of a hypergraph H has V as its vertex-set and two distinct
vertices are adjacent in 2SEC(H) if and only if they are contained in a common
hyperedge of H. A hypergraph H is called conformal if every clique (a set of pairwise
adjacent vertices) of 2SEC(H) is contained in a hyperedge e ∈ E , and a hypergraph
H is called acyclic if there is a tree T with node set E such that, for all vertices v ∈ V ,
E(v) induces a subtree Tv of T . For these and other hypergraph notions see [10].

The following theorem represents two well-known characterizations of acyclic hy-
pergraphs. Let C(G) be the set of all maximal (by inclusion) cliques of a graph
G = (V,E). The hypergraph (V, C(G)) is called the clique-hypergraph of G. Recall
that a graph G is chordal if it does not contain any induced cycles of length greater
than 3.

Theorem 3.1 (see [2, 9, 10, 17, 36, 67]). Let H = (V, E) be a hypergraph. Then
the following conditions are equivalent:

(i) H is an acyclic hypergraph;
(ii) H is conformal and 2SEC(H) of H is a chordal graph;
(iii) H is the clique hypergraph (V, C(G)) of some chordal graph G = (V,E).
Later we will need also the following known result. A vertex v of a graph G is

called simplicial if its neighborhood N(v) forms a clique in G.
Theorem 3.2 (see [17, 25]). Let G = (V,E) be a graph. Then the following

conditions are equivalent:
(i) G is a chordal graph;
(ii) the clique hypergraph (V, C(G)) of G is acyclic (in other words, G is the

intersection graph of a family of subtrees of a tree);
(iii) G has a perfect elimination ordering. i.e., an ordering v1, v2, . . . , vn of vertices

of G such that, for any i, i ∈ {1, 2, . . . , n}, vertex vi is simplicial in graph
G(vi, . . . , vn), the subgraph of G induced by vertices vi, . . . , vn.

Let now G = (V,E) be an arbitrary graph and r be a positive integer. We say
that G admits a radius r acyclic covering if there is a family S(G) = {S1, . . . , Sk} of

248 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

subsets of V such that
(1)

⋃k
i=1 Si = V ;

(2) for any edge xy of G there is a subset Si (i ∈ {1, . . . , k}) with x, y ∈ Si;

(3) H = (V,S(G)) is an acyclic hypergraph;

(4) radG(Si) ≤ r for each i = 1, . . . , k.
A class of graphs F is called hereditary if every induced subgraph of a graph G

belongs to F whenever G is in F . A class of graphs F is called (α, r)-decomposable if
every graph G from F is (α, r)-decomposable.

Theorem 3.3. Let F be a hereditary class of graphs such that any G ∈ F admits
a radius r acyclic covering. Then F is a (1/2, r)-decomposable class of graphs.

Proof. Consider a graph G ∈ F and let S(G) = {S1, . . . , Sk} be its radius r acyclic
covering. Since H = (V,S(G)) is an acyclic hypergraph, 2SEC(H) is chordal and H
is conformal. It is well known [47], that every n-vertex chordal graph Γ contains a
maximal clique C such that if the vertices in C are deleted from Γ, every connected
component in the graph induced by any remaining vertices is of size at most n/2.
Moreover, according to [47], for any chordal graph on n vertices and m edges, such a
separating clique C can be found in O(n+m) time. Applying this result to an n-vertex
chordal graph 2SEC(H), we will get in at most O(n2) time a maximal clique S of
2SEC(H) such that any connected component of the graph 2SEC(H)−S (obtained
from 2SEC(H) by deleting vertices of S) has at most n/2 vertices. Since 2SEC(H) is
obtained from G by adding some new edges, removing vertices of S from the original
graph G will leave no connected component (in G− S) with more than n/2 vertices.
Furthermore, since F is a hereditary class of graphs, all connected components of
G − S induce graphs from F (and they can be assumed by induction to be (1/2, r)-
decomposable graphs). It remains to note that, from conformality of H, there must
exist a set Si in S(G) which contains S, that is, radG(S) ≤ radG(Si) ≤ r must
hold.

Since for a chordal graph G = (V,E) the clique hypergraph (V, C(G)) is acyclic
and chordal graphs form a hereditary class of graphs, from Theorem 3.3 and Theorems
2.5 and 2.6, we immediately conclude the following corollaries.

Corollary 3.4. Any chordal graph G with n vertices and m edges admits an
additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse spanner can
be constructed in O(m log2 n) time.

Corollary 3.5. Any chordal graph G with n vertices and m edges admits a
system T (G) of at most log2 n collective additive tree 2-spanners, and such a system
of spanning trees can be constructed in O(m log2 n) time.

Note that, since any additive r-spanner is a multiplicative (r+1)-spanner, Corol-
lary 3.4 improves a known result of Peleg and Schäffer on sparse spanners of chordal
graphs. In [58], they proved that any chordal graph with n vertices admits a mul-
tiplicative 3-spanner with at most O(n log2 n) edges and a multiplicative 5-spanner
with at most 2n − 2 edges. Both spanners can be constructed in polynomial time.
Note also that their result on multiplicative 5-spanners was earlier improved in [21],
where the authors showed that any chordal graph with n vertices admits an additive
4-spanner with at most 2n − 2 edges, constructable in linear time. Motivated by
this and Corollary 3.5, it is natural to ask whether a system of constant number of
collective additive tree 4-spanners exists for a chordal graph (or, generally, for which
r, a system of constant number of collective additive tree r-spanners exists for any
chordal graph). Recall that the problem whether a chordal graph admits a (one)
multiplicative tree t-spanner is NP-complete for any t > 3 [14].

COLLECTIVE TREE SPANNERS OF GRAPHS 249

Peleg and Schäffer showed also in [58] that there are n-vertex chordal graphs for
which any multiplicative 2-spanner will need to have at least Ω(n3/2) edges. This re-
sult leads to the following observation on collective additive tree 1-spanners of chordal
graphs.

Observation 3.6. There are n-vertex chordal graphs for which any system of
collective additive tree 1-spanners will need to have at least Ω(

√
n) spanning trees.

Proof. Indeed, the existence of a system of o(
√
n) collective additive tree 1-

spanners for a chordal graph will lead to the existence of an additive 1-spanner (and
hence, of a multiplicative 2-spanner) with o(n3/2) edges.

4. Collective tree spanners in c-chordal graphs. A graph G is c-chordal
if it does not contain any induced cycles of length greater than c; c-chordal graphs
naturally generalize the class of chordal graphs. Chordal graphs are precisely the
3-chordal graphs.

Theorem 4.1. The class of c-chordal graphs is (1/2, �c/2�)-decomposable.
Proof. By Theorem 3.3 and since c-chordal graphs form a hereditary class of

graphs, we need only to show that any c-chordal graph G admits a radius �c/2�
acyclic covering. The existence of a radius �c/2� acyclic covering for G easily follows
from a famous result of [43], which states that any c-chordal graph G = (V,E) admits
a special kind of Robertson and Seymour tree-decomposition [63]. That is, a tree
DT (G), whose nodes are subsets of V , exists such that

(1′)
⋃
{S : S is a node of DT (G)} = V ;

(2′) for any edge xy of G there is a node S of DT (G) with x, y ∈ S;
(3′) for any tree nodes X,Y, Z of DT (G), if Y is on the path from X to Z in

DT (G), then X ∩ Z ⊆ Y ;
(4′) diamG(S) ≤ �c/2� for each node S of DT (G).
The reader might notice a close similarity between these four properties and the

four properties from the definition of a radius r acyclic covering. In fact, they are
almost equivalent. Note that diamG(S) ≤ �c/2� implies radG(S) ≤ �c/2�. Let
S(G) = {S : S is a node of DT (G)} and consider a hypergraph H = (V,S(G)). We
claim that for a family S(G) of subsets of V , properties (1), (2) and (3) are equivalent
to properties (1′), (2′) and (3′). Indeed, since, by property (3′), v ∈ X ∩ Z implies
v belongs to any Y on the path of DT (G) from X to Z, for any vertex v ∈ V the
elements of S(G) containing vertex v induce a subtree in DT (G). Hence, by definition,
H = (V,S(G)) is an acyclic hypergraph. Conversely, let that for a graph G, a family
S(G) of subsets of V satisfies properties (1), (2) and (3). Then, the acyclicity of the
hypergraph H = (V,S(G)) implies the existence of a tree T with node set S(G) such
that for any vertex v ∈ V , the elements of S(G) containing v induce a subtree in T .
Therefore, if two nodes X and Z of the tree T contain a vertex v then any node Y of
T between X and Z must contain v, too.

A balanced separator of radius at most �c/2� of a c-chordal graph G on n vertices
and m edges can be found in O(n3) time as follows. Use an O(nm) time algorithm
from [33] to construct a Robertson–Seymour tree-decomposition DT (G) of G (it will
have at most n nodes [33]). Then define the family S(G) = {S : S is a node of DT (G)}
and consider the 2-section graph 2SEC(H) of an acyclic hypergraph H = (V,S(G)).
2SEC(H) can be constructed in at most O(n3) time. Using an algorithm from [47],
find a balanced separator C of a chordal graph 2SEC(H) in O(n2) time. We know
that C is a maximal clique of 2SEC(H) and there must exist a set S ∈ S(G) which
coincides with C (by conformality of H). As we showed earlier (see the proof of
Theorem 3.3), C = S is a balanced separator of radius at most �c/2� of G.

250 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

Thus, from Theorems 2.5 and 2.6, we conclude the following corollaries.
Corollary 4.2. Any c-chordal graph G with n vertices admits an additive

(2�c/2�)-spanner with at most (n − 1) log2 n edges, and such a sparse spanner can
be constructed in O(n3 log2 n) time.

Corollary 4.3. Any c-chordal graph G with n vertices admits a system T (G)
of at most log2 n collective additive tree (2�c/2�)-spanners, and such a system of
spanning trees can be constructed in O(n3 log2 n) time.

Note that there are c-chordal graphs which do not admit any radius r acyclic
covering with r < �c/2�. Consider, for example, the complement C6 of an induced
cycle C6 = (a − b − c − d − e − f − a), which is a 4-chordal graph. A family S(C6)
consisting of one set {a, b, c, d, e, f} gives a trivial radius 2 = �4/2� acyclic covering of
C6, and a simple consideration shows that no radius 1 acyclic covering can exist for C6

(it is impossible, by simply adding new edges to C6, to get a chordal graph in which
each maximal clique induces a radius one subgraph of C6). In the next subsection
we will show that yet an interesting subclass of 4-chordal graphs, namely, the class of
chordal bipartite graphs, does admit radius 1 acyclic coverings.

4.1. Collective tree spanners in chordal bipartite graphs. A bipartite
graph G = (X ∪ Y,E) is chordal bipartite if it does not contain any induced cycles of
length greater than 4 [48].

For a chordal bipartite graph G, consider a hypergraph H = (X ∪ Y, {N [y] : y ∈
Y }). In what follows we show that H is an acyclic hypergraph.

Lemma 4.4. The 2-section graph 2SEC(H) of H is chordal.
Proof. First notice that any y ∈ Y is simplicial in 2SEC(H) by construction of

H and definition of 2SEC(H). Assume now, by way of contradiction, that there is
an induced cycle Cp of length p, p ≥ 4, in 2SEC(H). Necessarily, all vertices of Cp

are from part X of G, since Cp is induced and all vertices from Y are simplicial in
2SEC(H). Let Cp = (x1, x2, . . . , xp, x1). For any edge xixi+1 of Cp (including the
edge xpx1), since it is not an edge of G, there must exist a vertex yi in Y such that
both xi and xi+1 are adjacent to yi in G. Also, since Cp is induced in 2SEC(H), yi is
not adjacent to any other vertex of Cp. Therefore, a cycle (x1, y1, x2, y2, . . . , xp, yp, x1)
of G must be induced. But, since its length is 2p ≥ 8, a contradiction with G being
a chordal bipartite graph arises.

Lemma 4.5. The hypergraph H = (X ∪ Y, {N [y] : y ∈ Y }) is conformal.
Proof. Let C be a clique of 2SEC(H) consisting of p vertices. First, note that, by

definitions of H and 2SEC(H), the clique C can contain at most one vertex from Y .
If C contains a vertex from Y (say y ∈ C ∩ Y) then for all v ∈ C \ {y}, vy is an edge
of G, and therefore C ⊆ N [y] must hold. Let now C ∩ Y = ∅. By induction on p we
will show that there exists a vertex y ∈ Y such that C ⊂ N [y]. Since G is connected,
any vertex x ∈ C ⊆ X has a neighbor in Y . Also, by definition of 2SEC(H), for
any edge uv of 2SEC(H) with u, v ∈ X there must exist a vertex y in Y adjacent
to both u and v. Assume now, by induction, that each p − 1 vertice of C has a
common neighbor y in Y . Consider three different vertices a, b and c in C and three
corresponding vertices a′, b′ and c′ in Y such that C \ {a} ⊂ N [a′], C \ {b} ⊂ N [b′]
and C \ {c} ⊂ N [c′]. Since graph G cannot have any induced cycles of length 6, the
cycle (a− b′ − c− a′ − b− c′ − a) of G cannot be induced. Without loss of generality,
assume that a is adjacent to a′ in G. But then, all p vertices of C are contained in
N [a′].

Since chordal bipartite graphs form a hereditary class of graphs and, for any
chordal bipartite graph G = (X ∪ Y,E), a family {N [y] : y ∈ Y } of subsets of X ∪ Y

COLLECTIVE TREE SPANNERS OF GRAPHS 251

satisfies all four conditions of radius 1 acyclic covering, by Theorem 3.3 we have the
following theorem.

Theorem 4.6. The class of chordal bipartite graphs is (1/2, 1)-decomposable.
Hence, by Theorems 2.5 and 2.6, we immediately conclude the following cor-

ollaries.
Corollary 4.7. Any chordal bipartite graph G with n vertices and m edges

admits an additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse
spanner can be constructed in O(nm log2 n) time.

Corollary 4.8. Any chordal bipartite graph G with n vertices and m edges
admits a system T (G) of at most log2 n collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(nm log2 n) time.

Recall that the problem whether a chordal bipartite graph admits a (one) multi-
plicative tree t-spanner is NP-complete for any t > 3 [15]. Also, any chordal bipartite
graph G with n vertices admits an additive 4-spanner with at most 2n−2 edges which
is constructable in linear time [21]. Again, it is interesting to know whether a system
of constant number of collective additive tree 4-spanners exists for a chordal bipartite
graph. We have the following observation on collective additive tree 1-spanners for
chordal bipartite graphs.

Observation 4.9. There are chordal bipartite graphs on 2n vertices for which any
system of collective additive tree 1-spanners will need to have at least Ω(n) spanning
trees.

Proof. Consider the complete bipartite graph G = Kn,n on 2n vertices (which is
clearly a chordal bipartite graph), and let T (G) be a system of μ collective additive
tree 1-spanners of G. Then, for any two adjacent vertices x and y of G there must
exist a spanning tree T in T (G) such that dT (x, y) ≤ 2. If dT (x, y) = 2, then a
common neighbor z of x and y in G would form a triangle with vertices x and y,
which is impossible for G = Kn,n. Hence, dT (x, y) = 1 must hold. Thus, any edge xy
of G is an edge of some tree T ∈ T (G). Since there are n2 graph edges to cover by
spanning trees from T (G), we conclude μ ≥ n2/(2n− 1) > n/2.

4.2. Collective tree spanners in cocomparability graphs. We will use the
following definition of cocomparability graphs (see [16, 48, 56]). A graph G is a
cocomparability graph if it admits a vertex ordering σ = [v1, v2, . . . , vn], called a co-
comparability ordering, such that, for any i < j < k, if vi is adjacent to vk, then vj
must be adjacent to vi or to vk. According to [56], such an ordering of a cocomparabil-
ity graph can be constructed in linear time. It is well known also that cocomparability
graphs are 4-chordal and they contain all interval graphs, all permutation graphs, and
all trapezoid graphs (see, e.g., [16, 48] for the definitions).

Since C6 is a cocomparability graph, cocomparability graphs generally do not
admit radius 1 acyclic coverings (although, we can show that both the class of per-
mutation graphs and the class of trapezoid graphs do admit radius 1 acyclic coverings
[28]). Here we will present a very simple direct proof for the statement that the class
of cocomparability graphs is (1/2, 1)-decomposable.

Theorem 4.10. The class of cocomparability graphs is (1/2, 1)-decomposable.
Moreover, for a given cocomparability graph G with n vertices and m edges a decom-
position tree BT (G) can be constructed in O(m log2 n) time.

Proof. Let G be a cocomparability graph with a cocomparability ordering σ =
[v1, v2, . . . , vn]. Consider the closed neighborhood of the vertex v�n/2�. We claim that
the graph G′ obtained from G by removing vertices of N [v�n/2�] has no connected
components with more that n/2 vertices. Indeed, there are no more than n/2 vertices

252 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

in G which are on the left (analogously, on the right) side of v�n/2� with respect
to σ. Also, if there is an edge connecting vertices vi and vj with i < �n/2� < j,
then at least one of these vertices must belong to N [v�n/2�] as σ is a cocomparability
ordering. Therefore, each connected component Gs of G′ has at most n/2 vertices
since it consists of vertices which are only on one side of v�n/2�. It is clear also that
the ordering σ projected to the vertices of Gs gives a cocomparability ordering of Gs.
Hence we can assume by induction that Gs is a (1/2, 1)-decomposable graph.

Hence, we have the following corollaries.
Corollary 4.11. Any cocomparability graph G with n vertices and m edges

admits an additive 2-spanner with at most (n − 1) log2 n edges, and such a sparse
spanner can be constructed in O(m log2 n) time.

Corollary 4.12. Any cocomparability graph G with n vertices and m edges
admits a system T (G) of at most log2 n collective additive tree 2-spanners, and such
a system of spanning trees can be constructed in O(m log2 n) time.

It is known [62] that any cocomparability graph admits a (one) additive tree 3-
spanner. In a forthcoming paper [31], using different technique, we show that the
result stated in Corollary 4.12 can further be improved. One can show that any
cocomparability graph admits a system of two collective additive tree 2-spanners and
there are cocomparability graphs which do not have any (one) additive tree 2-spanners.
Since the complete bipartite graph Kn,n is a cocomparability graph, from the proof
of Observation 4.9, we also have the following observation.

Observation 4.13. There are cocomparability graphs on n vertices for which any
system of collective additive tree 1-spanners will need to have at least Ω(n) spanning
trees.

5. Collective tree spanners in circular-arc graphs. In this section we de-
scribe another way of obtaining a system of few collective additive tree spanners. We
demonstrate it on the class of circular-arc graphs.

The intersection graph of a family of n sets is the graph where the vertices are the
sets, and the edges are the pairs of sets that intersect. Every graph is the intersection
graph of some family of sets. A graph G = (V,E) is an interval graph if it is the
intersection graph of a finite set of intervals (line segments) on a line. A graph G is a
circular-arc graph if it is the intersection graph of a finite set of arcs on a circle. An
interval graph is a special case of a circular-arc graph; it is a circular-arc graph that
can be represented with arcs that do not cover the entire circle. Hence, if we remove
from a circular-arc graph G = (V,E) a vertex v ∈ V together with its neighbors, the
resulting graph will be interval [48] (see Figure 3 for an illustration).

It is well known that any interval graph admits an additive tree 2-spanner, and
such a tree spanner is computable in linear time [61]. On the other hand, for any
constant r ≥ 0, there is a circular-arc graph without any additive tree r-spanner.
Indeed, consider an induced cycle Cq on q ≥ 3 vertices. Clearly, it is a circular-arc
graph. Let P be an arbitrary spanning path of Cq and x and y be the end vertices
of P . Then, trivially, dCq (x, y) = 1, dP (x, y) = q − 1, i.e., a circular-arc graph Cq

does not admit any additive tree (q − 3)-spanner. In what follows we show that two
spanning trees are enough to collectively additively 2-span any circular-arc graph.

Let G = (V,E) be a circular-arc graph, u be its arbitrary vertex, and Tu be a BFS-
tree of G rooted at u. Consider an interval graph G− obtained from G by removing
vertices of N [u]. For each connected component of G−, compute its additive tree 2-
spanner using a linear time algorithm from [61]. Extend obtained forest to a spanning
tree T of the original graph G (see Figure 3 for an illustration).

COLLECTIVE TREE SPANNERS OF GRAPHS 253

l
b

h

f

g

(a)

e
d

j

i

a

c

k

g k j

(b)

b

h

i clf

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

�
�
�
�

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��

����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
��������
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����������������
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���������������������
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����

f

k g

l e

h

b c

d

a
ji

(c)

��
��
��

��
��
��

�
�
�
�

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��

��
��
��

�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���

����
����
����
����
����
����
����

����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

����
����
����
����
����
����

����
����
����
����
����
����

����������������
����
����
����
����
����
����
����

����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����������������

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
���������

����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

f

k g

l e

h

b c

d

a
ji

(d)

Fig. 3. (a) A set S of circular-arcs (with arcs from N [e] in bold); (b) the set of intervals
corresponding to S \N [e]; (c) the corresponding to S circular-arc graph G with a spanning tree Te

in bold; (d) a spanning tree T of G obtained from two local tree 2-spanners.

Lemma 5.1. Spanning trees {T, Tu} are collective additive tree 2-spanners of a
circular-arc graph G.

Proof. Let x and y be two arbitrary vertices of G. If there is a shortest path
in G connecting vertices x and y and avoiding the neighborhood N [u] of u, then
dG(x, y) = dG−(x, y) and, by construction of T , dT (x, y) ≤ dG−(x, y)+2 = dG(x, y)+2
holds. Let now a shortest path P connecting x and y in G intersect N [u], and let v
be a vertex from N [u]∩P . Since Tu is a shortest-path tree of G rooted at u, we have
dG(x, u) = dTu(x, u) and dG(u, y) = dTu(u, y). Hence, dG(x, y) = dG(x, v)+dG(v, y) ≥
dG(x, u) − 1 + dG(u, y) − 1 = dTu(x, u) + dTu(u, y) − 2 ≥ dTu(x, y) − 2.

Hence, we conclude the following theorem and corollary.
Theorem 5.2. Any circular-arc graph G admits a system of two collective addi-

tive tree 2-spanners, and such a system of spanning trees can be constructed in linear
time.

Corollary 5.3. Any circular-arc graph G with n vertices and m edges admits
an additive 2-spanner with at most 2n − 2 edges, and such a sparse spanner can be
constructed in O(m + n) time.

6. Collective tree spanners and routing labeling schemes. Routing is one
of the basic tasks that a distributed network of processors must be able to perform.

254 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

A routing scheme is a mechanism that can deliver packets of information from any
vertex of the network to any other vertex. More specifically, a routing scheme is a
distributed algorithm. Each processor in the network has a routing daemon running
on it. This daemon receives packets of information and has to decide whether these
packets have already reached their destination, and if not, how to forward them
towards their destination. Each packet of information has a header attached to it.
This header contains the address of the destination of the packet, and in some cases,
some additional information that can be used to guide the routing of this message
towards its destination. Each routing daemon has a local routing table at its disposal.
It has to decide, based on this table and on the packet header only, whether to pass
the packet to its host, or whether to forward the packet to one of its neighbors in the
network.

The efficiency of a routing scheme is measured in terms of its multiplicative stretch,
called delay, (or additive stretch, called deviation), namely, the maximum ratio (or
surplus) between the length of a route, produced by the scheme for some pair of
vertices, and their distance.

A straightforward approach for achieving the goal of guaranteeing optimal routes
is to store a complete routing table in each vertex v in the network, specifying for each
destination u the first edge (or an identifier of that edge, indicating the output port)
along some shortest path from v to u. However, this approach may be too expensive
for large systems since it requires a total of O(n2 log d) memory bits in an n-processor
network with maximum degree d [41]. Thus, an important problem in large-scale
communication networks is the design of routing schemes that produce efficient routes
and have relatively low memory requirements (see [3, 24, 35, 49, 57, 60, 68]).

This problem can be approached via localized techniques based on labeling
schemes [57]. Informally speaking, the routing problem can be presented as requiring
us to assign a label to every vertex of a graph. This label can contain the address of
the vertex as well as the local routing table. The labels are assigned in such a way
that at every source vertex v and given the address of any destination vertex u, one
can decide the output port of an outgoing edge of v that leads to u. The decision
must be taken locally in v, based solely on the label of v and the address of u.

Following [57], one can give the following formal definition. A family � of graphs
is said to have an l(n) routing labeling scheme if there is a function L labeling the
vertices of each n-vertex graph in � with distinct labels of up to l(n) bits, and there
exists an efficient algorithm, called the routing decision, that given the label of a
source vertex v and the label of the destination vertex (the header of the packet),
decides in time polynomial in the length of the given labels and using only those two
labels, whether this packet has already reached its destination, and if not, to which
neighbor of v to forward the packet. Thus, the goal is, for a family of graphs, to find
routing labeling schemes with small stretch factor, relatively short labels, and fast
routing decision.

To obtain routing schemes for general graphs that use o(n)-bit label for each
vertex, one has to abandon the requirement that packets are always routed on shortest
paths, and settle instead for the requirement that packets are routed on paths with
relatively small stretch [3, 4, 24, 35, 60, 68]. A delay-3 scheme that uses labels of size
Õ(n2/3) was obtained in [24], and a delay-5 scheme that uses labels of size Õ(n1/2)
was obtained in [35].1 Recently, authors of [68] further improved these results. They
presented a routing scheme that uses only Õ(n1/2) bits of memory at each vertex of

1Here, Õ(f) means O(f polylog n).

COLLECTIVE TREE SPANNERS OF GRAPHS 255

an n-vertex graph and has delay 3. Note that each routing decision takes constant
time in their scheme, and the space is optimal, up to logarithmic factors, in the sense
that every routing scheme with delay < 3 must use, on some graphs, routing tables
of total size Ω(n2), and hence Ω(n) at some vertex (see [39, 42, 45]).

There are many results on optimal (with delay 1) routing schemes for particular
graph classes, including complete graphs, grids (alias meshes), hypercubes, complete
bipartite graphs, unit interval and interval graphs, trees and 2-trees, rings, tori, unit
circular-arc graphs, outerplanar graphs, and squaregraphs. All those graph families
admit optimal routing schemes with O(d log n) labels and O(log d) routing decision.
These results follow from the existence of special so-called interval routing schemes for
those graphs. We will not discuss details of this scheme here; for precise definitions
and an overview of this area, we refer the reader to [41].

Observe that in interval routing schemes the local memory requirement increases
with the degree of the vertex. Routing labeling schemes aim at overcoming the prob-
lem of large degree vertices. In [40], a shortest-path routing labeling scheme for trees
of arbitrary degree and diameter is described that assigns each vertex of an n-vertex
tree a O(log2 n/ log log n)-bit label. Given the label of a source vertex and the label
of a destination it is possible to compute, in constant time, the neighbor of the source
that heads in the direction of the destination. A similar result was independently
obtained also in [68]. This result for trees was recently used in [32, 33] to design inter-
esting low-deviation routing schemes for chordal graphs and general c-chordal graphs.
Reference [32] describes a routing labeling scheme of deviation 2 with labels of size
O(log3 n/ log log n) bits per vertex and O(1) routing decision for chordal graphs. Ref-
erence [33] describes a routing labeling scheme of deviation 2�c/2� with labels of size
O(log3 n) bits per vertex and O(log log n) routing decision for the class of c-chordal
graphs.

Our collective additive tree spanners give much simpler and easier to understand
means of constructing compact and efficient routing labeling schemes for all (α, r)-
decomposable graphs. We simply reduce the original problem to the problem on trees.

Let G be an (α, r)-decomposable graph and let T (G) = {T 1, T 2, . . . , Tμ} (μ ≤
O(log2 n)) be a system of μ collective additive tree 2r-spanners of G. We can prepro-
cess each tree T i using the O(n log2 n) algorithm from [40] and assign to each vertex
v of G a tree label Li(v) of size O(log2 n/ log log n) bits associated with the tree T i.
Then we can form a label L(v) of v of size O(log3 n/ log log n) bits by concatenating
the μ tree labels. We store in L(v) also the string Av of length O(log2 n) bits described
in subsection 2.2. Thus, L(v) := Av ◦ L1(v) ◦ · · · ◦ Lμ(v).

Now assume that a vertex v wants to send a message to a vertex u. Given the
labels L(v) and L(u), v first uses their substrings Av and Au to find in log2 n time
an index i such that for tree T i ∈ T (G), dT i(v, u) ≤ dG(v, u) + 2r holds. Then, v
extracts from L(u) the substring Li(u) and forms a header of the message H(u) :=
i ◦ Li(u). Now, the initiated message with the header H(u) = i ◦ Li(u) is routed to
the destination using the tree T i: when the message arrives at an intermediate vertex
x, vertex x using own substring Li(x) and the string Li(u) from the header makes a
constant time routing decision.

Thus, the following result is true.
Theorem 6.1. Each (α, r)-decomposable graph with n vertices and m edges

admits a routing labeling scheme of deviation 2r with addresses and routing tables of
size O(log3 n/ log log n) bits per vertex. Once computed by the sender in log2 n time,
headers never change. Moreover, the scheme is computable in O((p(n) + t(n) + m +
n log2 n) log2 n) time, and the routing decision is made in constant time per vertex,

256 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

Table 1

Routing labeling schemes obtained for special graph classes via collective additive tree spanners.

Graph Scheme Addresses and Message Routing Devia-
class construction routing tables initiation decision tion

time (bits per vertex) time time

Chordal O(m log2 n O(log3 n/ log logn) log2 n O(1) 2
+n log2

2 n)

Chordal O(nm log2 n) O(log3 n/ log logn) log2 n O(1) 2
bipartite

Cocompa- O(m log2 n O(log3 n/ log logn) log2 n O(1) 2
rability +n log2

2 n)

c-Chordal O(n3 log2 n) O(log3 n/ log logn) log2 n O(1) 2�c/2�

Circular- O(n log2 n O(log2 n) O(1) O(1) 2
arc +m)

where p(n) is the time needed to find a balanced and bounded radius separator S and
t(n) is the time needed to find a central vertex for S.

Projecting this theorem to the particular graph classes considered in this paper,
we obtain the following results summarized in Table 1. For circular-arc graphs, the
labels are of size O(log2 n) bits per vertex since this size labels are needed to decide in
constant time which tree T or Tu is good for routing for given source x and destination
y. We will choose tree T ′ ∈ {T, Tu} such that dT ′(x, y) = min{dT (x, y), dTu(x, y)}.
According to [57], in O(n log2 n) total time the vertices of an n-vertex tree T can be
labeled with labels of up to O(log2 n) bits such that, given two labels of two vertices
x, y of T , it is possible to compute in constant time the distance dT (x, y), by merely
inspecting the labels of x and y.

7. Extension to the weighted graphs. Although in our previous discussions
graph G is assumed (for simplicity) to be unweighted, the obtained results, in slightly
modified form, are true even for weighted graphs.

Let G = (V,E,w) be a weighted graph with the weight function w : E → R+. In a
weighted graph G, the length of a path is the sum of the weights of edges participating
in the path. The distance dG(x, y) between vertices x and y is the length of a shortest-
length path connecting vertices x and y.

It is easy to see that, if in sections 2–4 we consider shortest path trees instead
of BFS-trees, interpret r as an upper bound on the weighted radius of a balanced
separator S ⊆ V , and denote the maximum edge weight by w, then the following
corollaries from the previous results are true.

• Any weighted (α, r)-decomposable graph with n vertices, where r is an upper
bound on the weighted radius of a balanced separator, admits a system of at
most log1/α n collective additive tree 2r-spanners.

• Any weighted c-chordal graph with n vertices admits a system of at most
log2 n collective additive tree (2�c/2�w)-spanners.

• Any weighted chordal, chordal bipartite, or cocomparability graph with n
vertices admits a system of at most log2 n collective additive tree 2w-spanners.

8. Conclusion and further developments. In this paper, we introduced a
new notion of collective tree spanners, and showed that any (α, r)-decomposable graph
G with n vertices admits a system of at most log1/α n collective additive tree 2r-
spanners. As a consequence, we got that any chordal graph, chordal bipartite graph

COLLECTIVE TREE SPANNERS OF GRAPHS 257

or cocomparability graph admits a system of at most log2 n collective additive tree
2-spanners. We complemented these results by lower bounds, which say that any
system of collective additive tree 1-spanners must have Ω(

√
n) spanning trees for

some chordal graphs and Ω(n) spanning trees for some chordal bipartite graphs and
some cocomparability graphs. We also showed that every c-chordal graph admits a
system of at most log2 n collective additive tree (2�c/2�)-spanners and every circular-
arc graph admits a system of two collective additive tree 2-spanners. Furthermore,
we discussed an application of the collective tree spanners to the problem of designing
compact and efficient routing schemes in graphs.

Collective tree spanners can find applications also in designing compact and ef-
ficient distance labeling schemes for graphs, defined in [57]. As shown in [57], the
vertices of any n-vertex tree T can be labeled with labels of up to O(log2 n) bits such
that, given two labels of two vertices x, y of T , it is possible to compute in constant
time the distance dT (x, y) by merely inspecting the labels of x and y. Hence, any
n-vertex graph G, admitting a system of μ collective additive tree r-spanners, admits
a labeling that assigns O(μ log2 n) bit labels to vertices of G such that, given two
labels of two vertices x, y of G, it is possible to compute in O(μ) time an additive
r-approximation to the distance dG(x, y) by merely inspecting the labels of x and y,
without using any other information about the graph.

In forthcoming papers [23, 29, 31], we investigate the collective tree spanners
problem in other special families of graphs such as homogeneously orderable graphs,
AT-free graphs, House–Hole–Domino-free graphs, graphs of bounded tree-width (in-
cluding series-parallel graphs, outerplanar graphs), graphs of bounded asteroidal num-
ber, and others. We show that

• any homogeneously orderable graph admits a system of at most log2 n collec-
tive additive tree 2-spanners and (one) additive tree 3-spanner,

• any House–Hole–Domino-free graph admits a system of at most 2 log2 n col-
lective additive tree 2-spanners,

• any AT-free graph admits a system of two collective additive tree 2-spanners,
• any graph whose asteroidal number is bounded by a constant admits a system

of a constant number of collective additive tree 3-spanners,
• any graph whose tree-width is bounded by a constant admits a system of at

most O(log2 n) collective additive tree 0-spanners,
• any graph whose clique-width is bounded by a constant admits a system of

at most O(log2 n) collective additive tree 2-spanners.
We conclude this paper with a few open questions/problems:
1. What is the complexity of the problem, “Given a graph G and integers μ,

r, decide whether G has a system of at most μ collective additive tree r-
spanners” for different μ ≥ 1, r ≥ 0 on general graphs and on different
restricted families of graphs?

2. What is the best trade-off between the number of trees μ and the additive
stretch factor r on planar graphs? (So far, we can state only that any planar
graph admits a system of O(

√
n) collective additive tree 0-spanners.)

3. What would be some more applications where collective tree spanners could
be useful? The fact that collective tree spanners give a collection of (good)
trees might make it easy to adapt many tree algorithms for the graphs that
have collective tree r-spanners.

When this paper was already under review for this journal, we learned from A.
Gupta that they introduced in [49] a notion of tree covers of graphs which is identical to
our notion of collective multiplicative tree spanners. They additionally showed there

258 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

that any planar graph admits a system of at most 2 log2 n collective multiplicative
tree 3-spanners. This result makes question 2 even more intriguing.

Acknowledgments. We are very grateful to anonymous referees for many useful
suggestions.

REFERENCES

[1] I. Althöfer, G. Das, D. Dobkin, D. Joseph, and J. Soares, On sparse spanners of weighted
graphs, Discrete Comput. Geom., 9 (1993), pp. 81–100.

[2] G. Ausiello, A. D’Arti, and M. Moscarini, Chordality properties on graphs and minimal
conceptual connections in sematic data models, J. Comput. System Sci., 33 (1986), pp. 179–
202.

[3] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg, Improved routing strategies with
succinct tables, J. Algorithms, 11 (1990), pp. 307–341.

[4] B. Awerbuch and D. Peleg, Routing with polynomial communication-space tradeoff, SIAM
J. Discrete Math., 5 (1992), pp. 151–162.

[5] H.-J. Bandelt and A. Dress, Reconstructing the shape of a tree from observed dissimilarity
data, Adv. in Appl. Math., 7 (1986), pp. 309-343.

[6] Y. Bartal, Probabilistic approximations of metric spaces and its algorithmic applications, in
Proceedings of the 37th Annual Symposium on Foundations of Computer Science, IEEE,
1996, pp. 184–193.

[7] Y. Bartal, On approximating arbitrary metrices by tree metrics, Proceedings of the 13th
Annual ACM Symposium on Theory of Computing, 198, pp. 161-168.

[8] J.-P. Barthélemy and A. Guénoche, Trees and Proximity Representations, Wiley, New York,
1991.

[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis, On the desirability of acyclic database
schemes, J. ACM, 30 (1983), pp. 479–513.

[10] C. Berge, Hypergraphs, North-Holland, Amsterdam, 1989.
[11] S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg, Optimal simulations of tree machines,

in Proceedings of the 27th Annual Symposium on Foundations of Computer Science, IEEE,
1986, pp. 274–282.

[12] U. Brandes and D. Handke, NP–Completeness Results for Minimum Planar Spanners,
preprint, University of Konstanz, Konstanzer Schriften in Mathematik und Informatik,
Nr. 16, Germany, 1996.

[13] A. Brandstädt, V. Chepoi, and F. F. Dragan, Distance approximating trees for chordal
and dually chordal graphs, J. Algorithms, 30 (1999), pp. 166-184.

[14] A. Brandstädt, F. F. Dragan, H.-O. Le, and V. B. Le, Tree spanners on chordal graphs:
Complexity, algorithms, open problems, in Proceedings of the 13th International Sym-
posium on Algorithms and Computation, Lecture Notes in Comput. Sci. 2518, Springer,
Berlin, 2002, pp. 163–174.

[15] A. Brandstädt, F. F. Dragan, H.-O. Le, V. B. Le, and R. Uehara, Tree spanners for bipar-
tite graphs and probe interval graphs, in Graph-Theoretic Concepts in Computer Science,
Lecture Notes in Comput. Sci. 2880, Springer, Berlin, 2003, pp. 106–118.

[16] A. Brandstädt, V. B. Le, and J. Spinrad, Graph Classes: A Survey, SIAM, Philadelphia,
1999.

[17] P. Buneman, A characterization of rigid circuit graphs, Discrete Math., 9 (1974), pp. 205–212.
[18] L. Cai, Tree Spanners: Spanning Trees that Approximate the Distances, Ph.D. thesis, Univer-

sity of Toronto, 1992.
[19] L. Cai and D. G. Corneil, Tree spanners, SIAM J. Discrete Math., 8 (1995), pp. 359–387.
[20] M. Charikar, C. Chekuri, A. Goel, S. Guha, and S. Plotkin, Approximating a finite

metric by a small number of tree metrics, in Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, IEEE, 1998, pp. 379–388.

[21] V. D. Chepoi, F. F. Dragan, and C. Yan, Additive spanners for k-chordal graphs, Proceedings
of the 5th Conference on Algorithms and Complexity, Lecture Notes in Comput. Sci. 2653,
Springer, Berlin, 2003, pp. 96–107.

[22] L. P. Chew, There are planar graphs almost as good as the complete graph, J. Comput. System
Sci., 39 (1989), pp. 205–219.

[23] D. G. Corneil, F. F. Dragan, E. Köhler, and C. Yan, Collective tree 1-spanners for interval
graphs, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in Comput. Sci.
3787, Springer, Berlin, 2005, pp. 151–162.

COLLECTIVE TREE SPANNERS OF GRAPHS 259

[24] L. Cowen, Compact routing with minimum stretch, in Proceedings of the 10th Annual ACM-
SIAM Symposium on Discrete Algorithms, 1999, pp. 255–260.

[25] G. A. Dirac, On rigid circuit graphs, Abh. Math. Sem. Univ. Hamburg, 25 (1961), pp. 71–76.
[26] H. N. Djidjev, On the problem of partitioning planar graphs, SIAM J. Alg. Discrete Meth., 3

(1982), pp. 229–240.
[27] H. N. Djidjev, A separator theorem for graphs of fixed genus, Serdica, 11 (1985), pp. 319–329.
[28] F. F. Dragan and I. Lomonosov, On compact and efficient routing in certain graph classes, in

Proceedings of the 15th Annual International Symposium on Algorithms and Computation,
Lecture Notes in Comput. Sci. 3341, Springer, Berlin, 2004, pp. 402–414.

[29] F. F. Dragan and C. Yan, Collective Tree Spanners of Homogeneously Orderable Graphs, in
preparation.

[30] F. F. Dragan, C. Yan, and I. Lomonosov, Collective tree spanners of graphs, in Proceedings
of the 9th Scandinavian Workshop on Algorithm Theory, Lecture Notes in Comput. Sci.
3111, Springer, Berlin, 2004, pp. 64–76.

[31] F. F. Dragan, C. Yan, and D. G. Corneil, Collective tree spanners and routing in AT-
free related graphs, in Graph-Theoretic Concepts in Computer Science, Lecture Notes in
Comput. Sci. 3353, Springer, Berlin, 2004, pp. 68–80.

[32] Y. Dourisboure and C. Gavoille, Improved compact routing scheme for chordal graphs, in
Proceedings of the 16th International Conference on Distributed Computing, Lecture Notes
in Comput. Sci. 2508, Springer, Berlin, 2002, pp. 252–264.

[33] Y. Dourisboure and C. Gavoille, Tree-Decompositions with Bags of Small Diameter, Dis-
crete Math., 2003, to appear.

[34] W. Duckwortha and M. Zito, Sparse hypercube 3-spanners, Discrete Appl. Math., 103 (2000),
pp. 289–295.

[35] T. Eilam, C. Gavoille, and D. Peleg, Compact routing schemes with low stretch factor, in
Proceedings of the 17th Annual ACM Symposium Prin. Distr. Comput., 1998, pp. 11–20.

[36] R. Fagin, Degrees of acyclicity for hypergraphs and relational database schemes, J. ACM, 30
(1983), pp. 514–550.

[37] J. Fakcharoenphol, S. Rao, and K. Talwar, A tight bound on approximating arbitrary met-
rics by tree metrics, in Proceedings of the 35th ACM Symposium on Theory of Computing,
2003, pp. 448–455.

[38] S. P. Fekete and J. Kremer, Tree spanners in planar graphs, Discrete Appl. Math., 108
(2001), pp. 85–103.

[39] P. Fraigniaud and C. Gavoille, Memory requirements for universal routing schemes, in
Proceedings of the 14th Annual ACM Symposium Prin. Distr. Comput., 1995, pp. 223–
230.

[40] P. Fraigniaud and C. Gavoille, Routing in trees, in Proceedings of the 28th Int. Colloquium
on Automata, Languages and Programming, Lecture Notes in Comput. Sci. 2076, Springer,
Berlin, 2001, pp. 757–772.

[41] C. Gavoille, A survey on interval routing schemes, Theoret. Comput. Sci., 245 (1999),
pp. 217–253.

[42] C. Gavoille and M. Gengler, Space-efficiency of routing schemes of stretch factor three, J.
Parallel and Distr. Comput., 61 (2001), pp. 679–687.

[43] C. Gavoille, M. Katz, N. A. Katz, C. Paul, and D. Peleg, Approximate distance labeling
schemes, in Proceedings of the 9th Annual European Symposium on Algorithms, Lecture
Notes in Comput. Sci. 2161, Springer, Berlin, 2001, pp. 476–487.

[44] C. Gavoille, D. Peleg, S. Pérennes, and R. Raz, Distance labeling in graphs, in Proceedings
of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms, 2001, pp. 210–219.

[45] C. Gavoille and S. Pérennès, Memory requirements for routing in distributed networks, in
Proceedings of the 15th Ann. ACM Symposium on Prin. Distr. Comput., 1996, pp. 125–133.

[46] J. R. Gilbert, J. P. Hutchinson, and R. E. Tarjan, A separator theorem for graphs of
bounded genus, J. Algorithms, 5 (1984), pp. 391–407.

[47] J. R. Gilbert, D. J. Rose, and A. Edenbrandt, A separator theorem for chordal graphs,
SIAM J. Alg. Discrete Meth., 5 (1984), pp. 306–313.

[48] M. C. Golumbic, Algorithmic Graph Theory and Perfect Graphs, Academic Press, New York,
1980.

[49] A. Gupta, A. Kumar, and R. Rastogi, Traveling with a Pez dispenser (or, routing issues in
MPLS), SIAM J. Comput., 34 (2005), pp. 453–474. Appeared also in FOCS IEEE, 2001.

[50] M. Katz, N. A. Katz, and D. Peleg, Distance labeling schemes for well-separated graph
classes, in Proceedings of the 17th Annual Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Comput. Sci. 1770, Springer, Berlin, 2000, pp. 516–528.

[51] H.-O Le and V. B. Le, Optimal tree 3-spanners in directed path graphs, Networks, 34 (1999),
pp. 81–87.

260 FEODOR F. DRAGAN, CHENYU YAN, AND IRINA LOMONOSOV

[52] A. L. Liestman and T. Shermer, Additive graph spanners, Networks, 23 (1993), pp. 343–364.
[53] R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs, SIAM J. Appl. Math.,

36 (1979), pp. 177–189.
[54] R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem, SIAM J. Comput.,

9 (1980), pp. 615–627.
[55] M. S. Madanlal, G. Venkatesan, and C. Pandu Rangan, Tree 3-spanners on interval,

permutation and regular bipartite graphs, Inform. Process. Lett., 59 (1996), pp. 97–102.
[56] R. M. McConnell and J. P. Spinrad, Linear-time transitive orientation, in Proceedings of

the 8th Annual ACM-SIAM Symposium on Discrete Algorithms, 1997, pp. 19–25.
[57] D. Peleg, Distributed Computing: A Locality-Sensitive Approach, SIAM Monogr. Discrete

Math. Appl., SIAM, Philadelphia, 2000.
[58] D. Peleg and A. A. Schäffer, Graph spanners, J. Graph Theory, 13 (1989), pp. 99–116.
[59] D. Peleg and J. D. Ullman, An optimal synchronizer for the hypercube, in Proceedings of

the 6th ACM Symposium on Prin. of Distr. Comput., 1987, pp. 77–85.
[60] D. Peleg and E. Upfal, A tradeoff between space and efficiency for routing tables, in Pro-

ceedings of the 20th ACM Symposium on the Theory of Computing, 1988, pp. 43–52.
[61] E. Prisner, Distance approximating spanning trees, in Proceedings of the 14th Annual Sym-

posium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 1200,
Springer, Berlin, 1997, pp. 499–510.

[62] E. Prisner, D. Kratsch, H.-O. Le, H. Müller, and D. Wagner, Additive tree spanners,
SIAM J. Discrete Math., 17 (2003), pp. 332–340.

[63] N. Robertson and P. D. Seymour, Graph minors. Algorithmic aspects of tree-width, J. Al-
gorithms, 7 (1986), pp. 309–322.

[64] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy, W. H. Freeman, San Francisco,
1973.

[65] J. Soares, Graph spanners: A survey, Congr. Numer., 89 (1992), pp. 225–238.
[66] D. L. Swofford and G. J. Olsen, Phylogeny reconstruction, in Molecular Systematics, D. M.

Hillis and C. Moritz, eds., Sinauer Associates, Sunderland, MA, 1990, pp. 411–501.
[67] R. E. Tarjan and M. Yannakakis, Simple linear time algorithms to test chordality of graphs,

test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs, SIAM J. Comput.,
13 (1984), pp. 566–579.

[68] M. Thorup and U. Zwick, Compact routing schemes, Proceedings of the 13th Annual ACM
Symposium on Par. Alg. and Arch., 2001, pp. 1–10.

[69] G. Venkatesan, U. Rotics, M. S. Madanlal, J. A. Makowsky, and C. Pandu Rangan,
Restrictions of minimum spanner problems, Inform. and Comput., 136 (1997), pp. 143–164.

