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Abstract. It is well known that chordal graphs can be characterized via m-convexity. In this
paper we introduce the notion of m3-convexity (a relaxation of m-convexity) which is closely related
to semisimplicial orderings of graphs. We present new characterizations of HHD-free graphs via
m3-convexity and obtain some results known from [B. Jamison and S. Olariu, Adv. Appl. Math.,
9 (1988), pp. 364–376] as corollaries. Moreover, we characterize weak bipolarizable graphs as the
graphs for which the family of all m3-convex sets is a convex geometry. As an application of our
results we present a simple efficient criterion for deciding whether a HHD-free graph contains a
r-dominating clique with respect to a given vertex radius function r.
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1. Introduction. This paper was inspired by the results of Farber and Jamison
[16] on convexity in chordal graphs and by the results of Jamison and Olariu [19] on
semisimplicial orderings of graphs produced by “lexicographic breadth first search”
(LexBFS) [25] and “maximum cardinality search” (MCS) [28].

Throughout this paper all graphs G = (V,E) are finite, undirected, and simple
(i.e., loop-free and without multiple edges). The complement of a graph G is the
graph G with the same vertex set V , where two vertices are adjacent in G iff they are
nonadjacent in G.

A path is a sequence of vertices v0, . . . , vl such that vivi+1 ∈ E for i = 0, . . . , l−1;
its length is l. An induced path is a path, where vivj ∈ E iff i = j−1 and j = 1, . . . , l.
An induced cycle is a sequence of vertices v0, . . . , vk such that v0 = vk and vivj ∈ E
iff |i − j| = 1 (modulo k). The length |C| of a cycle C is its number of vertices. Let
also |P | be the number of vertices of a path P . A hole is an induced cycle of length
at least five, whereas an antihole is the complement of a hole. By Pk we denote an
induced path on k vertices. A graph G is connected iff for any pair of vertices of G
there is a path in G joining these vertices. A set S ⊂ V is connected in G iff the
subgraph G(S) induced by S is connected.

The distance dG(u, v) between two vertices u, v is the minimum number of edges
on a path connecting these vertices, and is infinite if u and v lie in distinct connected
components of the graph G. If no confusion can arise we will omit the index G. For
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a vertex v ∈ V and a set S ⊆ V we denote by d(v, S) the minimum over all distances
d(v, s), s ∈ S. A subgraph H of a graph G is isometric iff the distance between any
pair of vertices in H is the same as that in G.

The kth neighborhood Nk(v) of a vertex v of G is the set of all vertices of distance
k to v, i.e.,

Nk(v) := {u ∈ V : dG(u, v) = k},
whereas the disk of radius k centered at v is the set of all vertices of distance at most
k to v:

DG(v, k) := {u ∈ V : dG(u, v) ≤ k}.
Again, if no confusion arises we will omit the index G. We also write N(v) instead of
N1(v).

The eccentricity e(v) of a vertex v ∈ V is the maximum value of d(v, x) taken
over all vertices x ∈ V . The radius rad(G) of G is the minimum eccentricity of a
vertex of G, whereas the diameter diam(G) of G is the maximum eccentricity of a
vertex of G.

Now we will give a short introduction to the theory of convex geometry re-
lated to graph theory following [16] (for more information on abstract convexity and
antimatroids the interested reader can consult [21]). Let V be a finite set and M be
a family of subsets of V . M is called alignment of V iff the family M is closed under
intersection and contains both V and the empty set. Elements of M will be considered
as convex sets. An aligned space is a pair (V,M), where M is an alignment of V .

The smallest member of M containing a given set S ⊆ V is the hull of S, denoted
by M(S). An element x of a set X ∈M is an extreme point of X iff X r {x} ∈M.

The Caratheodory number of an aligned space (V,M) is the minimum integer k
such that for all X ⊆ V , M(X) is the union of the hulls of all subsets Y of X such
that |Y | ≤ k.

A convex geometry (antimatroid) on a finite set is an aligned space satisfying the
following additional property.

Minkowski–Krein–Milman property. Every convex set is the hull of its extreme
points.

Equivalently, a convex geometry is an aligned space satisfying the following prop-
erty.

Antiexchange property. For any convex set S and two distinct points x, y /∈ S,
x ∈M(S ∪ {y}) implies y /∈M(S ∪ {x}).

For any convex geometry the following fundamental result holds.
Theorem 1.1 (see [16]). If (V,M) is a convex geometry, then S ∈ M iff is an

ordering (x1, . . . , xk) of V rS such that xi is an extreme point of S ∪{xi, . . . , xk} for
each i = 1, . . . , k.

For a given ordering (v1, . . . , vn) of the vertex set of a graph G = (V,E) let Gi :=
G({vi, . . . , vn}) be the subgraph of G induced by the set {vi, . . . , vn}, i = 1, . . . , n.

Numerous classes of graphs can be characterized in the following way. G is a
member of class G iff there is an ordering (v1, . . . , vn) of V (G) such that vi satisfies a
certain property P in the subgraph Gi, i = 1, . . . , n.

Theorem 1.1 suggests that such classes of graphs might be related to convex
geometries, and so it is natural to ask for a graph theoretical description of convex
sets of this aligned space. On the other hand, given a collection M of subsets of V (G),
one can ask when (V (G),M) is a convex geometry.
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For example, if property P means “is simplicial” then G is the class of chordal
graphs, i.e., the graphs without induced cycles of length at least four [7, 24]. A
vertex v of G is called simplicial iff D(v, 1) induces a complete subgraph of G, and
nonsimplicial otherwise. It is well known that a graph is chordal iff it has a perfect
elimination ordering, i.e., an ordering (v1, . . . , vn) of V such that vi is simplicial in
Gi for each i = 1, . . . , n (cf. [7, 24]). Moreover, there are two linear time algorithms
for computing perfect elimination orderings of chordal graphs: LexBFS [25] and MCS
[28].

Two types of convexity in graphs have been studied most extensively, namely,
monophonic (m-) convexity and geodesic (g-) convexity (see, e.g., [4, 12, 13, 14, 15,
16, 17, 20, 22, 26, 27]). A set S ⊆ V (G) is m-convex (g-convex ) iff S contains every
vertex on every induced (shortest) path between vertices in S. Both types of convexity
have a relation to simplicial vertices; a vertex v is an extreme point of a m-convex
(g-convex) set S iff v is simplicial in G(S). In [16] it is shown that G is a chordal
graph iff the monophonic alignment of G is a convex geometry, while the geodesic
alignment of G is a convex geometry iff G is a chordal graph without induced 3-fan
(i.e., a P4 with an additional vertex adjacent to all vertices of P4). To prove that the
monophonic alignment of a chordal graph is a convex geometry, the authors of [16]
show the following nice result. Every nonsimplicial vertex of a chordal graph lies on
an induced path between simplicial vertices.

For any notion of convexity on the vertex set of G, at least four degrees of local
convexity may be distinguished [17]:

(1.1) D(v, 1) is convex for every vertex v of G,
(1.2) D(v, k) is convex for every vertex v of G and every k ≥ 1,

(1.3)
⋃
v∈S D(v, 1) is convex for every convex subset S ⊆ V of G,

(1.4)
⋃
v∈S D(v, k) is convex for every convex subset S ⊆ V of G and every

k ≥ 1.

In [16] it was shown that for m-convexity the conditions (1.1)–(1.4) are equivalent
and hold iff the graph is chordal. For g-convexity conditions (1.1)–(1.3) are not
equivalent (note that (1.3) implies (1.4) for any convexity in graphs [17]). Several
characterizations for graphs with property (1.1), (1.2), or (1.3) are given in [14, 17, 27].
Here we will mention only one result which clearly shows an analogy with chordal
graphs. Namely, a graph G fulfills the condition (1.3) iff G is a bridged graph, i.e., a
graph which contains no isometric cycles of length at least four.

Note that a vertex is simplicial iff it is not midpoint of a P3. Jamison and Olariu
relaxed this condition in [19] in the following way: A vertex is semisimplicial iff it is
not a midpoint of a P4, and nonsemisimplicial otherwise. An ordering (v1, . . . , vn) is
a semisimplicial ordering iff vi is semisimplicial in Gi for all i = 1, . . . , n. In [19] the
authors characterized the graphs for which every LexBFS-ordering is a semisimplicial
ordering as the HHD-free graphs, i.e., the graphs which contain no house, hole, or
domino as an induced subgraph (cf. Figure 1). Moreover, the graphs for which every
MCS-ordering of an arbitrary induced subgraph F is a semisimplicial ordering of F
are the HHP-free graphs, i.e., the graphs which contain no house, hole, or “P” as an
induced subgraph (cf. Figure 1).

If a HHD-free graph G does not contain the “A” of Figure 1 as an induced
subgraph then G is called weak bipolarizable (HHDA-free) [23].

In this paper we introduce the notion ofm3-convexity (a relaxation ofm-convexity),
which is closely related to semisimpliciality. A subset S ⊆ V is called m3-convex iff
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Fig. 1.

for any pair of vertices x, y of S each induced path of length at least 3 connecting
x and y is completely contained in S. Note that a m3-convex set is not necessarily
connected, and it is not difficult to see that the family of m3-convex sets is closed
under intersection. Observe also that a vertex v is an extreme point of a m3-convex
set S iff v is semisimplicial in G(S).

In this paper we present new characterizations of HHD-free and HHDA-free
graphs via m3-convexity. We show that for m3-convexity the conditions (1.1)–(1.4)
are again equivalent and hold iff the graph is HHD-free. We characterize weak bipo-
larizable graphs as the graphs for which the m3-convex alignment is a convex ge-
ometry, i.e., by Theorem 1.1, for which every m3-convex set is reachable via some
semisimplicial ordering. Again, as for chordal graphs, in weak bipolarizable graphs
every nonsemisimplicial vertex lies on an induced path of length at least 3 between
semisimplicial vertices.

Convexity in graphs is a useful tool not only for geometric characterizations of
several graph classes but also for resolving some problems related to distances in
graphs [1, 4, 5, 6, 9, 14, 22]. As an application of our results we present a simple
efficient criterion for deciding whether a HHD-free graph G = (V,E) with given
vertex radius function r : V → N has an r-dominating clique. Note that this problem
is NP-complete for weakly chordal graphs (i.e., the graphs without holes and antiholes)
[2]. From this criterion we obtain the inequality diam(G) ≥ 2rad(G)− 2 between the
diameter and radius of a HHD-free graph G. These results extend the known ones for
chordal, distance-hereditary, and house-hole-domino-sun–free graphs [3, 5, 8, 9, 10].

Thus, the results of the paper show strict analogies between these graphs and
chordal graphs. HHD-free, HHDA-free, and HHP-free graphs are three very natural
generalizations of the class of chordal graphs.

2. m3-convex sets in HHD-free graphs. In this section we characterize
HHD-free graphs as the graphs with m3-convex disks. Using m3-convexity we give
new properties of LexBFS-and MCS-orderings in HHD-free graphs and obtain known
results from [19] as corollaries.

Since a vertex v is an extreme point of a m3-convex set S iff v is semisimplicial
in G(S), we immediately conclude the following.

Lemma 2.1. An ordering (v1, . . . , vn) of the vertices of a graph G is semisimplicial
iff V (Gi) = {vi, . . . , vn} is m3-convex in G for all i = 1, . . . , n.

The following lemma will be frequently used in what follows.
Lemma 2.2 (cycle lemma for hole-free graphs). Let C be a cycle of length at

least 5 in a hole-free graph G. Then for each edge xy of C there are vertices w1, w2

in C such that xw1 ∈ E, yw2 ∈ E, and d(w1, w2) ≤ 1, i.e., each edge of a cycle is
contained in a triangle or a 4-cycle.

Proof. By induction on the length of the cycle.
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Fig. 2.

To make the paper self-contained we present the rules of the LexBFS and MCS
algorithms.

LexBFS: Order vertices of a graph by assigning numbers from n = |V | to 1. Assign
the number k to a vertex v (as yet unnumbered), which has lexically largest
vector (si : i = n, n− 1, . . . , k+ 1), where si = 1 if v is adjacent to the vertex
numbered i, and si = 0 otherwise.

MCS: Order vertices of a graph by assigning numbers from n = |V | to 1. As the
next vertex to number pick a vertex adjacent to the most numbered vertices.

Subsequently, we will write x < y whenever in a given ordering of the vertex set
of a graph G vertex x has a smaller number than vertex y.

In what follows we will often use the following properties:

(P1)
If a < b < c and ac ∈ E and bc /∈ E, then there exists a vertex d such that
c < d, db ∈ E, and da /∈ E.

(P2)
If a < b < c and ac ∈ E and bc /∈ E, then there exists a vertex d such that
b < d, db ∈ E, and da /∈ E.

Evidently, (P2) is a relaxation of (P1). It is well known that any LexBFS-ordering
has property (P1) [18] and any MCS-ordering has property (P2) [28].

Theorem 2.3.

(1) Let G be a HHD-free graph and (v1, . . . , vn) be a LexBFS-ordering of G. Then
for each i = 1, . . . , n the set V (Gi) is m3-convex in G.

(2) Let G be a HHP-free graph and (v1, . . . , vn) be a MCS-ordering of G. Then
for each i = 1, . . . , n the set V (Gi) is m3-convex in G.

Proof. We prove assertion (1) by induction on i. Assume that V (Gi) is not m3-
convex in G but V (Gj) is so for j ≥ i + 1. Then there must be a vertex y in Gi+1

and an induced path P of length at least 3 connecting vi and y, which contains some
vertices not in Gi. Choose y and P such that |P | is minimum and y is rightmost in
the LexBFS-ordering.

Case 1. The neighbor of y in P does not belong to Gi.

Let x be this neighbor of y, and let P = vi − u1 − · · · − ul − x − y, l ≥ 1. By
applying (P1) to x < vi < y, we obtain a vertex v > y adjacent to vi but not to x.

The path Q = v − vi − u1 − · · · − ul − x − y has both endpoints in Gi+1. By
the induction hypothesis V (Gi+1) is m3-convex. Thus Q cannot be induced. Since
P is induced, all possible chords of Q must be incident to v. If v is adjacent only to
y, we obtain a forbidden induced cycle of length at least 5. So let uj be the vertex
of P r {y} closest to y on the path P and adjacent to v. We immediately conclude
j = l for otherwise we have a hole. Now the m3-convexity applied to v − ul − x − y
implies vy ∈ E. Since the house and domino are forbidden subgraphs we conclude
l ≥ 3 (see Figure 2). Let j < l be the index such that vuj ∈ E, but vus /∈ E for all
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s = j + 1, . . . , l− 1. For j = l− 1 we have a house; for j = l− 2 we obtain a domino;
otherwise v − uj − · · · − ul − v forms a hole.

Case 2. The neighbor of y in P belongs to Gi.

By minimality of |P | we immediately conclude P = vi − x−w − y, where w, y ∈
V (Gi+1) and x /∈ V (Gi). Now (P1) applied to x < vi < w gives a vertex v > w
adjacent to vi but not to x. We may choose v with maximum number in the LexBFS-
ordering. By considering the path v − vi − x − w the m3-convexity implies vw ∈ E.
Note that vy /∈ E for otherwise we obtain a house. Therefore, we have constructed a
“P” (see Figure 3).

Case 2.1. y < v.

By applying (P1) to vi < y < v we obtain a vertex u > v adjacent to y but not
to vi. Note that w < v < u implies u 6= w. Suppose ux ∈ E. Then (P1) applied to
x < vi < u gives a vertex t > u > v adjacent to vi but not to x, a contradiction to
the maximality of v. Thus ux /∈ E. In the path v − w − y − u both endpoints have
greater numbers than y. Let y = vj for some j > i. Then the m3-convexity of Gj+1

implies uv ∈ E or uw ∈ E. If we have both edges, then we obtain a house induced
by {vi, x, v, w, u}. If uv ∈ E but uw /∈ E then we have a domino. Finally, if uw ∈ E
and uv /∈ E then we can replace y by u > y in P , a contradiction to the choice of y.

Case 2.2. y > v.

By applying (P1) to w < v < y we obtain a vertex u > y adjacent to v but not
to w. If uvi ∈ E then m3-convexity implies the edges ux and uy. So {vi, u, x, y, w}
induces a house. Thus uvi /∈ E. Moreover, with the same arguments as in Case 2.1
we show ux /∈ E. In the path u − v − w − y both endpoints have greater numbers
than v. Let v = vj for some j > i. Then the m3-convexity of Gj+1 implies uy ∈ E.
Thus we get a domino. This settles the proof of assertion (1).

Now to get a proof for assertion (2) we can repeat the arguments of the proof
above up to Cases 2.1 and 2.2 using (P2) instead of (P1).

Note that any vertex u ∈ V r V (Gi) is semisimplicial in G({u, vi, . . . , vn}) since
V (Gi) is m3-convex in G. Thus we can conclude the following.

Corollary 2.4 (see [19]).

(1) For any HHD-free graph G and any LexBFS-ordering (v1, . . . , vn) of G vertex
vi is semisimplicial in Gi, i = 1, . . . , n.

(2) For any HHP-free graph G and any MCS-ordering (v1, . . . , vn) of G vertex vi
is semisimplicial in Gi, i = 1, . . . , n.

Moreover, since there is a MCS-ordering of the “P,” which is not a semisimplicial
ordering and neither holes nor a domino contain a semisimplicial vertex we immedi-
ately conclude the following.
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Theorem 2.5 (see [19]). A graph G is HHP-free iff any MCS-ordering of any
induced subgraph F of G is a semisimplicial ordering of F .

Note that in Theorem 2.5 it is necessary to consider all induced subgraphs of a
given graph, since the graph presented in Figure 4 contains a “P” but every MCS-
ordering of this graph is a semisimplicial ordering. For LexBFS it is sufficient to
consider the graph itself, since as we will show the class of graphs where any LexBFS-
ordering gives a semisimplicial ordering is a hereditary class.

A graph is called nontrivial if it has at least two vertices.
Theorem 2.6. The following conditions are equivalent for a graph G:
(1) G is HHD-free.
(2) Any LexBFS-ordering of G is a semisimplicial ordering.
(3) For any LexBFS-ordering (v1, . . . , vn) of G the set V (Gi) is m3-convex in G

for all i = 1, . . . , n.
(4) Every nontrivial induced subgraph of G has at least two semisimplicial ver-

tices.
Proof. It is easy to verify that none of a house, a domino, and holes contains

two semisimplicial vertices. We have to show (2) =⇒ (1) and (2) =⇒ (4). All other
directions are trivial or follow from Theorem 2.3.
(2) =⇒ (1) Let G be a graph such that every LexBFS-ordering is a semisimplicial

ordering. Clearly, G cannot contain a hole or a domino since these graphs do
not have a semisimplicial vertex. Assume that G contains a house induced
by {a, b, c, d, e} where b − c − d − e − b induces a C4 and a is adjacent to b
and c. We start LexBFS at vertex a. By the rules of LexBFS both vertices
d, e are smaller than the vertices b, c. Let vi be the smaller one of d and e.
Then vi is not semisimplicial in Gi. Thus G is HHD-free.

(2) =⇒ (4) Let H be a nontrivial induced subgraph of G. Since H is HHD-free by
(1) ⇐⇒ (2) there must be some semisimplicial vertex v of H. Now starting
procedure LexBFS at v gives a second semisimplicial vertex.

Corollary 2.7. Let G be a HHD-free graph and v be a vertex of G. Then there
is a semisimplicial vertex u such that d(u, v) = e(v).

Proof. We start procedure LexBFS at v. The first vertex u of the obtained
LexBFS-ordering is semisimplicial by the above theorem and fulfills d(u, v) = e(v) by
the rules of LexBFS.

We immediately conclude the following.
Corollary 2.8. In any nontrivial HHD-free graph G there is a pair of semisim-

plicial vertices u, v such that d(u, v) = diam(G).
Theorem 2.9. The following conditions are equivalent for a graph G:
(1) G is HHD-free.
(2) The disk D(v, 1) is m3-convex for all vertices v ∈ V .
(3) The disks D(v, k), k ≥ 1, are m3-convex for all vertices v ∈ V .
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Fig. 5.

(4) The set D(S, 1) =
⋃
v∈S D(v, 1) is m3-convex for all connected sets S ⊆ V .

(5) The sets D(S, k) =
⋃
v∈S D(v, k), k ≥ 1, are m3-convex for all connected sets

S ⊆ V .

Proof. In every forbidden subgraph there is a vertex v such that D(v, 1) is not
m3-convex. So, we have to show only (1) =⇒ (5).

Suppose that there is a connected set S such that D(S, 1) is not m3-convex. Then
there are vertices x, y in D(S, 1) and there is an induced path P = x−u1−· · ·−uk−y
such that k ≥ 2 and at least one vertex ui is not in D(S, 1). We may choose x, y, and
P such that |P | is minimal.

Case 1. P r {x, y} ⊆ V rD(S, 1).

We immediately conclude x, y /∈ S. Moreover no ui, i = 1, . . . , k, is adjacent to
some vertex of S. Let Q be a shortest path in G({x, y}∪S) connecting x and y. Since
Qr {x, y} is completely contained in S and both P and Q are induced, the cycle C
formed by P and Q is chordless. From |P | ≥ 4 we conclude |C| ≥ 5—a contradiction.

Case 2. |D(S, 1) ∩ P | ≥ 3.

By minimality of |P |, we obtain k = 3, u1, u3 /∈ D(S, 1), and u2 ∈ D(S, 1) or
k = 2, u1 /∈ D(S, 1), and u2 ∈ D(S, 1) (see Figure 5). Let Q = x−z1−· · ·−zl−y, l ≥ 1,
be a shortest path in G({x, y} ∪ S) connecting x and y and define Q′ := Qr {x, y}.

First consider the case k = 2. Note that x, u2 /∈ S, and u1 is not adjacent to any
vertex of Q′. Since the cycle x− u1 − u2 − y − zl − · · · − z1 − x is of length at least
5 the cycle lemma applied to the edge xu1 gives z1u2 ∈ E. If yz1 ∈ E then we have
a house. Hence l ≥ 2. If u2z2 ∈ E then we obtain a house. So let u2z2 /∈ E. If y is
adjacent to z2 then we have a domino. Thus l ≥ 3 and we can apply the cycle lemma
to the edge z1u2 in the cycle u2 − y − zl − · · · − z1 − u2 of length at least 5. So we
conclude u2z3 ∈ E which gives a domino.

Now consider the case k = 3. Note that x, y, u2 /∈ S. Since Q′ is completely
contained in S neither u1 nor u3 is adjacent to any vertex of Q′. On the other hand,
the cycle x − u1 − u2 − u3 − y − zl − · · · − z1 − x is of length at least 6. Thus the
cycle lemma applied to the edge u3y implies u2zl ∈ E. If zlx /∈ E we proceed as in
the case k = 2; otherwise we obtain a domino.

Thus, for every connected set S, D(S, 1) is m3-convex. It is easy to see that
D(S, 1) is connected too. Now, since D(S, k) = D(D(S, k − 1), 1), we are done by
induction on k.

Corollary 2.10. If in a HHD-free graph nonadjacent vertices x, y ∈ Nk(v) are
joined by a path P such that P r {x, y} is contained in V rD(v, k), then there is a
common neighbor of x and y in Nk+1(v) ∩ P .

3. Weak bipolarizable graphs. Here we characterize weak bipolarizable graphs
as the graphs for which the m3-convex alignment is a convex geometry. Let M3(G)
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denote the set of all m3-convex sets of a graph G. For a set S ⊆ V the m3-convex
hull m3-conv(S) is the smallest member of M3(G) containing S.

A set H ⊆ V is homogeneous iff N(x) rH = N(y) rH for any pair of vertices
x, y of H. A homogeneous set H is proper iff 1 < |H| < |V |.

The next lemma gives a nice criterion for checking the semisimpliciality of a
vertex.

Lemma 3.1. A vertex v of a graph G is semisimplicial in G iff the connected
components of the complement of G(N(v)) are homogeneous in G.

Proof. If v is not semisimplicial then there is a P4 containing v as midpoint, say
u1− v− u2− u3. Now u1 and u2 belong to a common connected component C of the
complement of G(N(v)). But C is not homogeneous in G due to u3.

To prove the converse let C be a connected component of the complement of
G(N(v)) and suppose that C is not homogeneous in G. Then there must be vertices
x, y ∈ C and a vertex z ∈ V rC such that xz ∈ E but yz /∈ E. We may choose x and
y such that their distance in the complement of G(C) is minimal. Obviously, z 6= v.
Moreover, since yz /∈ E but every vertex from N(v) r C must be adjacent to every
vertex of C, we have z /∈ N(v). Thus z ∈ N2(v). If xy /∈ E then z − x − v − y is a
P4. If xy ∈ E then let x− u1 − · · · − uk − y be a shortest path in the complement of
G(C). Thus xu1 /∈ E. The minimal distance of x, y now implies u1z /∈ E. Therefore,
z − x− v − u1 is a P4.

Theorem 3.2 ([23]). A graph G is weak bipolarizable iff each induced subgraph
F of G is chordal or contains a proper homogeneous set.

Let H be a proper homogeneous set in G and v ∈ H. Then the homogeneous
reduction HRed(G,H, v) is the graph induced by V (G)r (H r {v}). Conversely, the
homogeneous extension HExt(G, v,H) of G via a graph H in v with V (H)∩V (G) = ∅
is the graph obtained by substituting v by H such that the vertices of H have the
same neighbors outside of H as v had in G.

Lemma 3.3. Let H be a proper homogeneous set of a HHD-free graph G and
v ∈ H.

(1) If x is semisimplicial in HRed(G,H, v), but not in G, then x ∈ H, i.e., x = v.
(2) If x ∈ H is semisimplicial in H, but not in G, then no vertex of H is semisim-

plicial in G and v is not semisimplicial in HRed(G,H, v).

Proof. Since no P4 contains a proper homogeneous set, we conclude that for any
4-path P of G, either P ⊆ H or |P ∩H| ≤ 1.

(1) Since x is not semisimplicial in G it must be a midpoint of some 4-path P . If
x /∈ H then the semisimplicity of x in HRed(G,H, v) implies |P∩H| = 1. But
now we can replace the vertex of P ∩H by v obtaining a P4 in HRed(G,H, v),
which contains x as a midpoint—a contradiction. Thus x ∈ H, i.e., x = v.

(2) If x ∈ H is semisimplicial in H, but not in G, then no P4 in G containing
x as a midpoint is completely contained in H. Thus P ∩ H = {x} for any
4-path P in G with midpoint x. Since H is homogeneous we can replace x in
P by any vertex of H. Thus no vertex of H is semisimplicial in G, and v is
not semisimplicial in HRed(G,H, v).

In [16] it is proved that in a chordal graph every nonsimplicial vertex lies on an
induced path between two simplicial vertices. Next we present a stronger result which
we will subsequently use.

Lemma 3.4. Let G be a chordal graph and P = v1 − · · · − vk be an induced path
of length at least 2, i.e., k ≥ 3. Then there are vertices ui, i = 1, . . . , s and wj,
j = 1, . . . , t, such that u1, w1 are simplicial and u1 − u2 − · · · − us − v2 − · · · − vk−1 −
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wt − · · · − w2 − w1 is an induced path in G.

Proof. If both v1 and vk are simplicial then we are done. So suppose that v1 is
not simplicial.

Let M be the m-convex hull of {v1, . . . , vk} and S be the neighborhood of v1 in
M . Obviously, S is a v1− v3-separator in M , i.e., v1 and v3 are in different connected
components of G(M)rS. We show that S is a v1− v3-separator in G too. Assuming
the contrary there must be an induced path P in V r S joining v1 and v3. Since
S is the set of neighbors of v1 in M the neighbor of v1 in P does not belong to M .
Thus P is an induced path between vertices of M which contains vertices of V rM ,
a contradiction to the m-convexity of M . Therefore, S is a v1 − v3-separator in G.

Recall that every chordal graph is either complete or contains at least two
nonadjacent simplicial vertices [7, 24]. Thus G(M) as a chordal graph must contain
at least two simplicial vertices. Since deleting a simplicial vertex from a m-convex set
preserves m-convexity and since M is the m-convex hull of {v1, . . . , vk} we immedi-
ately conclude that v1 and vk are the only two simplicial vertices of M . Thus S is
complete.

Since v1 is not simplicial and all neighbors of v1 are contained in F := G(K ∪S),
where K is the connected component of Gr S containing v1, the chordal graph F is
not complete and hence there are two nonadjacent simplicial vertices in F . By the
completeness of S at most 1 of them is in S. Thus we have a simplicial vertex u1 in
K which is simplicial in G too. Now consider a path P connecting the vertices v1 and
u1 in K. Then no vertex up to v2 of an induced subpath u1 − · · · − us − v2 of the
path P ∪ v1v2 has a neighbor in {v3, · · · , vk}. Hence, u1 − · · · − us − v2 − · · · − vk is
an induced path. For vk we proceed analogously.

Note that every simplicial vertex is semisimplicial and thus, every nonsemisim-
plicial vertex is nonsimplicial.

Lemma 3.5. Every nonsemisimplicial vertex of a weak bipolarizable graph G lies
on an induced path of length at least 3 between two semisimplicial vertices.

Proof. We prove the assertion by induction on the size of G. The assertion holds
for all graphs with at most 4 vertices since the only graph of these sizes which contains
a nonsemisimplicial vertex is the P4. Let x be a nonsemisimplicial vertex of G, i.e., x
is a midpoint of some P4.

If G is chordal then by Lemma 3.4 there is a path P of length at least 3 con-
taining x such that both endpoints of P are simplicial and thus semisimplicial in G.
Consequently, we are done.

Now assume that G is not chordal. Hence, by Theorem 3.2, G contains a proper
homogeneous set H.

Case 1. x ∈ H.

Suppose that x is semisimplicial in HRed(G,H, x). Then by Lemma 3.3 (2),
vertex x is not semisimplicial in H. By the induction hypothesis x lies on an induced
path of length at least 3 between semisimplicial vertices y, z in H. By Lemma 3.3 (2),
both y and z must be semisimplicial in G too.

Now assume that x is not semisimplicial in HRed(G,H, x). By the induction hy-
pothesis x lies on an induced path between semisimplicial vertices y, z inHRed(G,H, x).
In particular, y, z /∈ H. Thus by Lemma 3.3 (1), both y and z must be semisimplicial
in G too.

Case 2. x /∈ H.

From Lemma 3.3 (1) we immediately conclude that x is not semisimplicial in
HRed(G,H, v), where v is a semisimplicial vertex in the weak bipolarizable graph H.



CONVEXITY AND HHD-FREE GRAPHS 129

By the induction hypothesis x lies on an induced path between semisimplicial vertices
y, z in HRed(G,H, v). Suppose that y is not semisimplicial in G. From Lemma 3.3
(1), we infer y = v. But now y = v is not semisimplicial in HRed(G,H, v) by Lemma
3.3 (2)—a contradiction. Thus both y and z are semisimplicial in G too.

To prove the next corollary we use the arguments of the proof of [16, Corollary
3.4].

Corollary 3.6. The Caratheodory number of the m3-convex alignment of a
weak bipolarizable graph is at most 2.

Proof. Let G = (V,E) be a weak bipolarizable graph and S be a subset of V .
Pick an arbitrary vertex x ∈ m3-conv(S). If x is semisimplicial in the subgraph
induced by m3-conv(S), then x ∈ S since each extreme point of m3-conv(S) is in S
by the definition of the hull of S. Otherwise, by Lemma 3.5, x lies on an induced
path of length at least 3 between semisimplicial vertices of the subgraph induced by
m3-conv(S). Hence, x is in the m3-convex hull of two extreme points of m3-conv(S).
Since each extreme point of m3-conv(S) is in S we are done.

Subsequently, we call a vertex set S of G reachable iff there is an ordering
(v1, . . . , vk) of V r S such that for each i = 1, . . . , k vertex vi is semisimplicial in
G({vi, . . . , vk} ∪ S).

Theorem 3.7. The following conditions are equivalent for a graph G:
(1) G is weak bipolarizable.
(2) In every induced subgraph F of G each nonsemisimplicial vertex lies on an

induced path of length at least 3 between semisimplicial vertices of F .
(3) Each m3-convex set of G is the hull of its semisimplicial vertices, i.e., (V (G),

M3(G)) is a convex geometry.
(4) A set S of G is m3-convex iff there is an ordering (v1, . . . , vk) of V (G)rS such

that for each i = 1, . . . , k vertex vi is semisimplicial in G({vi, . . . , vk} ∪ S),
i.e., S is reachable.

Proof. We only need to prove (4) =⇒ (1).
Claim 1. If S is a m3-convex set in F := HRed(G,H, v), where H is a proper

homogeneous set of G, then

S′ :=

{
S : v /∈ S,
S ∪H : v ∈ S

is m3-convex in G.
Suppose S′ is not m3-convex in G. Then there must be vertices x, y ∈ S′ and

an induced path P of length at least 3 joining x and y such that P r S′ 6= ∅. If
|P ∩ H| ≤ 1, then either P or (P r H) ∪ {v} is an induced path in F of length at
least 3 joining vertices of S which has at least one vertex outside S, a contradiction
to the m3-convexity of S in F . Now suppose |H ∩P | ≥ 2. Note that P rH 6= ∅. Let
P ′ = u1 − · · · − uk be a maximal by inclusion subpath of P completely contained in
H. Suppose k ≥ 2. If u1 = x then uk 6= y since P rH 6= ∅. Since H is homogeneous
u1 must be adjacent to the neighbor of uk in P r P ′—a contradiction. If u1 6= x
then the same argument can be applied to uk and the neighbor of u1 in P rP ′. Now
let k = 1. For |H ∩ P | ≥ 2 there must be a vertex z ∈ H ∩ P r N(u1). But now
N(u1)rH = N(z)rH and |P | ≥ 4 imply some chords in P , again a contradiction.
Therefore, S′ is m3-convex in G.

Claim 2. Every homogeneous set H of a graph G is m3-convex.
Let x, y be nonadjacent vertices of a homogeneous set H in G. If x has a neighbor

z outside H then yz ∈ E, and vice versa. Thus any induced path between nonadjacent
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vertices of H containing vertices from V rH must be of length 2. Consequently, H
is m3-convex in G.

Claim 3. Let H be a proper homogeneous set of a graph G. If S is m3-convex in
G(H) then it is so in G.

Since S is a subset of H we can use the same arguments as in the proof of
Claim 2.

Claim 4. If v is a simplicial vertex in a graph G then any m3-convex set of Gr{v}
is m3-convex in G.

Since the neighborhood of a simplicial vertex v is complete no induced path of
length at least 3 can contain v as an inner point.

Now we prove by induction on the size of G that any graph fulfilling (4) is weak
bipolarizable, i.e., HHDA-free. Since any singleton of V (G) is a m3-convex set, G
possesses a semisimplicial ordering, and thus does not contain a hole or a domino.
Let F be an induced subgraph of G isomorphic to the house and K be the 3-clique
of F . Now the m3-convex set K must be reachable, but no vertex of F r K is
semisimplicial in F—a contradiction. Therefore, G is a HHD-free graph.

Case 1. G contains a proper homogeneous set H.

Let v be a vertex of H, F := HRed(G,H, v) and S be a m3-convex set in F . Then
S′ as defined in Claim 1 is m3-convex in G and thus reachable. Hence, S is reachable
in F since each semisimplicial vertex of G is semisimplicial in every induced subgraph
containing this vertex. Therefore, F fulfills (4) and, by the induction hypothesis, is
HHDA-free. Applying the same arguments to a m3-convex set S of H and using
Claim 3 implies that H is HHDA-free. Now we conclude that G itself is HHDA-free
as the homogeneous extension of the HHDA-free graph F by the HHDA-free graph
H (see [23]).

Case 2. G has no proper homogeneous set.

Suppose G contains an “A” induced by the 4-cycle x − c − d − y − x and the
pendant vertices a, b where ax ∈ E and by ∈ E. In what follows we prove that
M := D(a, 1) ∪D(b, 1) is m3-convex in G. Thus M must be reachable, but neither c
nor d are semisimplicial in the “A”—a contradiction.

First note that every semisimplicial vertex v of G is simplicial due to Lemma
3.1. From Claim 4 we conclude that G r {v} fulfills (4) and thus, by the induction
hypothesis, is HHDA-free. Therefore, a and b are the only semisimplicial vertices of
G, and D(a, 1), D(b, 1) are complete.

• If there is a common neighbor z of a and b, then z is adjacent to all vertices
a, b, c, d, x, y.
Considering the cycle z− a− x− y− b− z implies the edges zx and zy. Now
{z, x, y, c, d} induces a house, thus zc ∈ E or zd ∈ E. Suppose zc /∈ E. Then
zd ∈ E and {a, z, x, c, d} induces a house. Hence both zc ∈ E and zd ∈ E.

• N(a) ⊆ N(c) and N(b) ⊆ N(d).
Let w be a neighbor of a and suppose wc /∈ E. Thus w 6= x, wx ∈ E, and
wb /∈ E. Since Gr{a} is HHDA-free w must be adjacent to y or d. If wy ∈ E
then the graph induced by {w, x, y, c, d} implies wd ∈ E. Hence wd ∈ E. But
now {a, x, w, c, d} induces a house.
• Every vertex of N(a) is adjacent to every vertex of N(b).

If w ∈ N(a) ∩ N(b), then w is adjacent to all vertices of N(a) ∪ N(b) since
both D(a, 1) and D(b, 1) are complete. So suppose for the contrary that there
are nonadjacent vertices z ∈ N(a)rN(b) and w ∈ N(b)rN(a). Since xy ∈ E
we have either z = x and w 6= y, z 6= x, and w = y or z 6= x and w 6= y.
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First assume z = x (analogously, w = y). The graph induced by {w, d, y, c, z}
implies wc ∈ E. But now {b, y, w, z, c} induces a house. So let x 6= z and
y 6= w. By the same arguments as above we may assume zy ∈ E and wx ∈ E.
Now considering {w, d, y, z, c} gives zd ∈ E or wc ∈ E. By symmetry, say
wc ∈ E. But this yields a house induced by {b, y, w, z, c}.

To complete the proof suppose that M = D(a, 1)∪D(b, 1) is not m3-convex in G.
Then there must be nonadjacent vertices w, z ∈M and an induced path P of length
at least 3 joining w and z such that P rM is nonempty. Since every vertex of N(a)
is adjacent to every vertex of N(b) we conclude {w, z} ∩ {a, b} 6= ∅. Say z = a. Then
w /∈ D(a, 1). Let z′ be the neighbor of z in P , i.e., z′ ∈ N(a). If w ∈ N(b) then
z′w ∈ E gives a contradiction. Hence w = b. Now consider the neighbor w′ of w in
P . From w′ ∈ N(b) we conclude z′w′ ∈ E—again a contradiction.

4. The existence of r-dominating cliques. Let r : V → N be some vertex
function defined on G. Then a set D ⊆ V r-dominates G iff for all vertices x in V rD
there is a vertex y ∈ D such that d(x, y) ≤ r(x). D is a r-dominating clique iff D is
complete and r-dominates G. Note that there are graphs and vertex functions r such
that G has no r-dominating clique. For some graph classes, such as chordal, distance-
hereditary, and HHDS-free graphs, there is an existence criterion for r-dominating
cliques [9, 8, 10]. In what follows we prove this criterion for HHD-free graphs. The
method is similar to the one used for chordal graphs in [9] and essentially exploits
m3-convexity of disks in HHD-free graphs.

Lemma 4.1. Let C be a clique in a HHD-free graph G and v be a vertex of G
such that for all vertices w of C the distance to v is k ≥ 1. Then there is a vertex u
at distance k − 1 to v which is adjacent to all vertices of C.

Proof. We prove the assertion by induction on k. For k = 1 there is nothing to
show. Let x be a vertex of Nk−1(v) adjacent to a maximal number of vertices of C.
Suppose that there is some vertex a ∈ C which is not adjacent to x, and let y be a
neighbor of a in Nk−1(v). By the choice of x there must be a vertex b ∈ C adjacent
to x but not to y. Thus we have the path x− b− a− y of length 3 between vertices
x, y of D(v, k−1), which contains vertices a, b outside of D(v, k−1). By Theorem 2.9
D(v, k − 1) is m3-convex; hence xy ∈ E. Now, by applying the induction hypothesis
to the clique {x, y} we obtain a common neighbor u of x, y in Nk−2(v). Therefore we
have constructed a house—a contradiction.

In a similar way we can prove the following lemma.

Lemma 4.2. If x, y, v are vertices of a HHD-free graph G such that d(x, v) =
d(y, v) = k and N(x)∩N(y)∩Nk+1(v) 6= ∅, then there is a vertex u ∈ N(x)∩N(y)∩
Nk−1(v).

Define the projection of a vertex v to a set S by

Proj(v, S) := {x ∈ S : d(v, x) = d(v, S)}

and the projection of a set C to a set S by Proj(C, S) :=
⋃
v∈C Proj(v, S).

Lemma 4.3. Let u, v be vertices of a HHD-free graph. Then for any vertex
x in D(v, k) there is a shortest path between u and x going through the projection
Proj(u,D(v, k)).

Proof. If d(u, v) ≤ k then Proj(u,D(v, k)) = {u} and there is nothing to show.
So let d(u, v) ≥ k + 1. Choose an arbitrary vertex w ∈ Proj(u,D(v, k)) and assume
d(u, x) < d(u,w) + d(w, x). Let P be a shortest path connecting u and x, and let
z be the vertex of V (P ) ∩ D(v, k) closest to u on the path P (see Figure 6). Thus
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d(u, x) = d(u, z) + d(z, x). If z ∈ Proj(u,D(v, k)) then we are done. So assume
z /∈ Proj(u,D(v, k)) implying d(u, z) > d(u,w). Note that zw /∈ E for, otherwise,

d(u,w)+1+d(z, x) ≤ d(u, z)+d(z, x) = d(u, x) < d(u,w)+d(w, x) ≤ d(u,w)+d(z, x)+1

is a contradiction. Thus by Corollary 2.10 there is a common neighbor a of w and
z in Nk+1(v) ∩ P implying that d(u, z) ≤ d(u,w) + 2 and d(w, x) ≤ d(z, x) + 2.
Moreover, d(u, x) < d(u,w) + 2 + d(z, x). Therefore, d(u, z) + d(z, x) = d(u, x) <
d(u,w) + 2 + d(z, x) gives d(u, z) = d(u,w) + 1, and d(u, a) = d(u,w). Now applying
Lemma 4.2 to z, w, and v gives a common neighbor b of z, w in Nk−1(v). By distance
requirements ab /∈ E. Furthermore, Lemma 4.1, applied to {a,w} and u, yields a
common neighbor c of a,w at distance d(u,w) − 1 to u. Thus neither cz ∈ E nor
cb ∈ E. Consequently, {a, b, c, w, z} induces a house.

Let U1, U2 be subsets of V . The sets U1, U2 form a join iff any vertex of U1 is
adjacent to any vertex of U2.

Lemma 4.4. Let G be a HHD-free graph and xy be an edge outside of D(v, k).
Then Proj(x,D(v, k)) ⊆ Proj(y,D(v, k)) or Proj(y,D(v, k)) ⊆ Proj(x,D(v, k)).
Moreover, assuming Proj(x,D(v, k)) ⊆ Proj(y,D(v, k)) implies that the sets Proj
(x,D(v, k)) and Proj(y,D(v, k))r Proj(x,D(v, k)) form a join.

Proof. We will present the proof for the equidistant case, i.e., d(x, v) = d(y, v).
The cases d(x, v) = d(y, v)+1 and d(y, v) = d(x, v)+1 can be handled in a similar (even
easier) way. Let A := Proj(x,D(v, k))∩Proj(y,D(v, k)), B := Proj(x,D(v, k))rA,
and C := Proj(y,D(v, k))rA.

Suppose wx ∈ B, wy ∈ C. Since d(y, wy) = d(x,wx) = d(x, v) − k we have
d(x,wy) = d(x,wx) + 1 and d(y, wx) = d(y, wy) + 1. Now if wxwy /∈ E we get a
contradiction to Corollary 2.10. Therefore, wxwy ∈ E. Let b (c) be the neighbor of wx
(wy) in a shortest path Px (Py) between x (y) and wx (wy). Obviously, wxc, wyb /∈ E.
Lemma 2.2 applied to the edge wxwy in the cycle induced by the vertices of Px and
Py gives bc ∈ E. Thus {b, c, wx, wy, s} induces a house where s is a common neighbor
of wxwy in Nk−1(v) due to Lemma 4.1. Consequently, either B = ∅ or C = ∅.

Finally, suppose w ∈ A, wx ∈ B and wxw /∈ E. Consider the three vertices
w,wx, v. By Corollary 2.10 there is a common neighbor z of w and wx at distance
k + 1 to v and d(x,w) − 1 to x. By Lemma 4.2 there is a common neighbor u of w
and wx at distance k − 1 to v. Let t be the neighbor of w on a shortest path joining
w and y. Since wx /∈ A we have twx /∈ E. By distance requirements zu, tu /∈ E. If
tz ∈ E then {t, z, w,wx, u} induces a house. So assume tz /∈ E and consider the cycle
C formed by w and by the shortest paths joining t, y and z, x. Obviously |C| ≥ 5.
Applying the circle lemma to edge zw yields the edge ts, where s is the neighbor of
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z in the shortest path between x and z. By distance requirements {s, t, z, w,wx, u}
induces a domino. Therefore, A and B form a join.

Lemma 4.5. Let G be a HHD-free graph and C be a clique such that C r
D(v, k) 6= ∅. Then there is some vertex u ∈ Nk−1(v) adjacent to all vertices of
Proj(C,D(v, k)).

Proof. Choose a maximal clique C ′ in Proj(C,D(v, k)) containing C ∩ D(v, k).
By Lemma 4.1 there is a vertex a in Nk−1(v) adjacent to all vertices of C ′. Choose
such a vertex a with a maximal number of neighbors in Proj(C,D(v, k)) and suppose
that there is some vertex y ∈ Proj(C,D(v, k)) r C ′ nonadjacent to a. Since C ′ is
maximal there is a vertex w ∈ C ′ which is not adjacent to y. Note y /∈ C. Thus
there is a common neighbor z of y and w in Nk+1(v) (either z ∈ C or the existence
of z follows from Corollary 2.10). Now applying Lemma 4.2 to w, y gives a common
neighbor b of w and y in Nk−1(v). By distance requirements za, zb /∈ E. If ab ∈ E,
then {a, b, y, z, w} induces a house. If ab /∈ E, then we can apply Lemma 4.2 to a, b
yielding a common neighbor c of a, b in Nk−2(v). But now {c, a, b, y, w, z} induces a
domino.

Theorem 4.6. Let G be a HHD-free graph and r : V → N be a vertex function
on G. Then G has a r-dominating clique iff for all vertices x, y ∈ V , d(x, y) ≤
r(x) + r(y) + 1 holds.

Proof. Obviously, if G has a r-dominating clique then the inequality is fulfilled.
To prove the converse let (v1, . . . , vn) be any ordering of V and suppose that there is
a clique C which r-dominates {v1, . . . , vi−1} but not vi. Thus d(vi, C) ≥ r(vi) + 1.
Let B := Proj(C,D(vi, r(vi) + 1)).

Claim 1. B r-dominates {v1, . . . , vi−1}.
Let k ≤ i− 1 and consider vertex vk. Since C r-dominates {v1, . . . , vi−1} there is

some vertex c ∈ C such that d(c, vk) ≤ r(vk).
If vk ∈ D(vi, r(vi) + 1) then by Lemma 4.3 there is a shortest path joining c and

vk going through B. Thus vk is r-dominated by some vertex of B.
Now let vk ∈ V rD(vi, r(vi)+1). Since d(vk, vi) ≤ r(vk)+r(vi)+1 we may choose

a vertex xk in D(vk, r(vk)) ∩ Nr(vi)+1(vi). Again, by Lemma 4.3 there is a shortest
path joining c and xk which contains a vertex of B, say yk. If d(c, xk) ≥ 3, then
yk ∈ D(vk, r(vk)) since both c and xk are contained in the m3-convex set D(vk, r(vk)).
If cxk ∈ E then either c = yk or xk = yk and we are done since vk is r-dominated
by yk. So let d(c, xk) = 2. Again, if c = yk or xk = yk then we are done. Thus
let c − yk − xk induce a P3 and assume d(vk, yk) > r(vk). We immediately conclude
d(vk, c) = d(vk, xk) = r(vk) and d(vk, yk) = r(vk) + 1. Thus Lemma 4.2 applied to
c, xk, and vk gives a common neighbor a of c and xk at distance r(vk)−1 to vk. Since

d(vi, yk) = d(vi, xk) = d(vi, a)− 1 = d(vi, c)− 1 = r(vi) + 1

applying Lemma 4.1 to the edge xkyk and to vi yields a common neighbor b of xk and
yk at distance r(vi) to vi. By distance requirements the set {a, b, xk, yk, c} induces a
house—a contradiction. Thus yk r-dominates vk and we are done.

Let C ′′ be a maximal clique in Proj(C,D(vi, r(vi) + 1)) such that C ′′ ⊃ C ∩
D(vi, r(vi) + 1). By Lemma 4.5 there is a vertex a in Nr(vi)(vi) adjacent to all
vertices of B. Define C ′ := C ′′ ∪ {a}.

Claim 2. C ′ r-dominates {v1, . . . , vi}.
Obviously, a r-dominates vi. Suppose there is some vertex vk, k ≤ i− 1 which is

not r-dominated by C ′. By Claim 1 vk is r-dominated by B. More exactly, there is a
vertex c ∈ C and a vertex yk ∈ Proj(c,D(vi, r(vi) + 1)) ⊆ B rC ′ both r-dominating
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vk. Since C ′′ is maximal there must be a vertex w ∈ C ′′ nonadjacent to yk. By
Lemma 4.4 both vertices yk, w are contained in the projection of c.

Let z be a common neighbor of w and yk at distance d(c, w) − 1 to c obtained
from Lemma 4.2. If d(yk, c) ≥ 3 then the m3-convexity of D(vk, r(vk)) implies z ∈
D(vk, r(vk)). We conclude d(vk, z) = d(vk, yk) = r(vk). Now we can apply Lemma
4.1 to the edge ykz obtaining a common neighbor s of yk and z at distance r(vk)− 1
to vk. By distance requirements sw, sa, az /∈ E. Thus {s, w, a, z, yk} induces a house.
In a similar way we can handle the case c = z. So assume d(yk, c) = 2. If z ∈
D(vk, r(vk)) then we proceed as above. So by assuming d(z, vk) > r(vk) we have
d(vk, c) = d(vk, yk) = r(vk) and d(vk, z) = r(vk)+1. Now we can apply Lemma 4.2 to
c, yk obtaining a common neighbor b of c, yk at distance r(vk)− 1 to vk. By distance
requirements bw, ba /∈ E. Thus {c, b, z, yk, a, w} induces a domino.

Consequently we have constructed a clique which r-dominates {v1, . . . , vi}. In-
duction on i settles the proof.

Corollary 4.7. For a HHD-free graph G we have 2rad(G) ≥ diam(G) ≥
2(rad(G)− 1).

Proof. Suppose that diam(G) < 2(rad(G)− 1). Then by Theorem 4.6 for r(v) :=
rad(G)− 2, v ∈ V , there exists a r-dominating clique C in G. Hence, any vertex v of
C has e(v) ≤ rad(G)− 1, a contradiction to the definition of the radius.
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