Following Derek's footsteps

Feodor Dragan
May, 2014

Derek's Primary Universe

The talk is not about this Derek

- These footsteps are hard to follow

Derek's Parallel Universe

Partial k-tree
LDFS

Tree-width

Talk outline

collaborating with Derek

- fast estimation of diameters
- representing approximately graph distances with few tree distances
\square following Derek's footsteps
- tree- and path-decompositions and new graph parameters
- Approximating tree t-spanner problem using tree-breadth
- Approximating bandwidth using path-length
- Approximating line-distortion using path-length

Talk outline

\square collaborating with Derek

- fast estimation of diameters

2003
4 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003)
2002
3 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the Power of BFS to Determine a Graphs Diameter. LATIN 2002:209-223
2001
EE Derek G. Corneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter determination on restricted graph families. Discrete Applied Mathematics (DAM) 113(2-3):143-166 (2001)

1998

1 EE Derek G. Corneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter Determination on Restricted Graph Faminlies. WG 1998:192-202

The Diameter Problem

- The eccentricity $\operatorname{ecc}(v)=\operatorname{diam}(G)$ of a vertex v is the maximum distance from v to a vertex in G
- The diameter $\operatorname{diam}(G)$ is the maximum eccentricity of a vertex of G
- The diameter problem
(find a longest shortest path in a graph):
find $\operatorname{diam}(G)$ and x, y such that $d(x, y)=\operatorname{diam}(G)$
(in other words, find a vertex of maximum eccentricity)

Our Approach

4 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003)
Examine the naïve algorithm of

- choosing a vertex
- performing some version of BFS from this vertex and then
- showing a nontrivial bound on the eccentricity of the last vertex visited in this search.
\square This approach has already received considerable attention
- (classical result [Handler'73]) for trees this method produces a vertex of maximum eccentricity
- [Dragan et al' 97] if LexBFS is used for chordal graphs, then $\operatorname{ecc}(v) \geq \operatorname{diam}(G)-1$ whereas for interval graphs and Ptolemaic graphs ecc(v) $=\operatorname{diam}(G)$
- [Corneil et al'99] if LexBFS is used on AT-free graphs, then $\operatorname{ecc}(\mathrm{v}) \geq \operatorname{diam}(G)-1$
- [Dragan'99] if LexBFS is used, then $\operatorname{ecc}(v) \geq \operatorname{diam}(G)-2$ for HH-free graphs, $\operatorname{ecc}(v) \geq \operatorname{diam}(G)-1$ for HHD-free graphs and $\operatorname{ecc}(v)=\operatorname{diam}(G)$ for HHD-free and AT-free graphs
- [Corneil et al'01] considered multi sweep LexBFSs ...

Variants of BFS used

Algorithm BFS: Breadth First Search

Input: graph $G(V, E)$ and vertex u
Output: vertex ε, the last vertex visited by a BFS starting at u
Initialize queue Q to be $\{u\}$ and mark u as "visited".
while $Q \neq 0$ do
Let ε be the first vertex of Q and remove it from Q.
Each unvisited neighbour of τ is added to the end of Q and marked as "visited".
Algorithm LBFS: Lexicographic Breadth First Search
Input: graph $G(V, E)$ and vertex u
Output: vertex ε, the last vertex visited by an LBFS starting at u
Assign label \emptyset to each vertex in V.
for $i=n$ downto 1 do
Pick an unmarked vertex ε with the largest (with respect to lexicographic order) label. Mark 2 "visited".
For each unmarked neighbour y of ε, add i to the label of y.

Can be implemented to run in linear time

Algorithm LL: Last Layer
Input: graph $G(V, E)$ and vertex u
Output: vertex ε, a vertex in the last layer of u
Run BFS to get the layering of V with respect to u.
Choose ε to be an arbitrary vertex in the last layer.

$$
\begin{array}{|l}
\text { Algorithm LL+: Last Layer, Minimum Degree } \\
\text { Input: graph } G(V, E) \text { and vertex } u \\
\text { Output: vertex } \varepsilon \text {, a vertex in the last layer of } u \text {, that has minimum degree with respect to the } \\
\text { vertices in the previous layer }
\end{array}
$$

Our Results on Restricted Families of Graphs

GRAPH CLASS	LL	LL+	BFS	LBFS
chordal graphs	$\geq D-2$ [2] Fig. 4	$\geq D-2$ [2] Fig. 5	$\geq \underset{\left.{ }^{*}\right]}{ } \mathrm{D}-1$ Fig. 2	$\begin{gathered} \geq D-1 \\ \quad[6] \\ \text { Fig. } 6 \end{gathered}$
AT-free graphs	$\begin{gathered} \geq D-2 \\ {\left[{ }^{*}\right]} \\ \text { Fig. } 3 \\ \hline \end{gathered}$	$\begin{gathered} \geq D-1 \\ {\left[^{*}\right]} \end{gathered}$ Fig. 7	$\begin{gathered} \geq D-2 \\ {\left[{ }^{*}\right]} \\ \text { Fig. } 3 \end{gathered}$	$\begin{gathered} \geq D-1 \\ \quad[3] \\ \text { Fig. } 7 \\ \hline \end{gathered}$
\{AT,claw\}-free graphs	$\begin{gathered} \geq D-1 \\ {\left[{ }^{*}\right]} \\ \text { Fig. } 2 \end{gathered}$	$\begin{gathered} =D \\ {\left[^{*}\right]} \end{gathered}$	$\begin{gathered} \geq D-1 \\ \left.\quad{ }^{*}\right] \\ \text { Fig. } 2 \\ \hline \end{gathered}$	$\begin{gathered} =D \\ {\left[^{*}\right]} \end{gathered}$
interval graphs	$\geq \begin{aligned} & \geq D-1 \\ & \left.{ }^{*}\right] \end{aligned}$ Fig. 2	$\begin{gathered} =D \\ {\left[{ }^{*}\right]} \end{gathered}$	$\geq \begin{aligned} & \left.\geq{ }^{*}\right] \end{aligned}$ Fig. 2	$\begin{gathered} =D \\ {[6]} \end{gathered}$
hole free graphs	$\begin{gathered} \geq D-2 \\ \left.\quad{ }^{*}\right] \\ \text { Fig. } 8 \end{gathered}$	$\begin{gathered} \geq D-2 \\ {\left[{ }^{*}\right]} \\ \text { Fig. } 8 \end{gathered}$	$\begin{gathered} \geq D-2 \\ {\left[{ }^{*}\right]} \\ \text { Fig. } 8 \end{gathered}$	$\begin{gathered} \geq D-2 \\ \left.{ }^{*}{ }^{*}\right] \\ \text { Fig. } 8 \end{gathered}$

No induced cycles of length >3

No asteroidal triples

No asteroidal triples and
The intersection graph of intervals of a line

No induced cycles of length >4

Figure 7: LBFS: u|ccla|bv

asteroidal triple a,b,c

Arbitrary k-Chordal graphs

a graph is k-chordal if it has no induced cycles of length greater than k.

4 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003)

- if $L L$ is used for k-chordal graphs $(k>3)$, then $\operatorname{ecc}(v) \geq \operatorname{diam}(G)-\lfloor k / 2\rfloor$

○ $k=4 l$

- $\operatorname{diam}(G)=4 l=k=d(a, b)$

○ $\operatorname{ecc}(v)=2 l+1=4 l-2 l+1$
$=\operatorname{diam}(G)-k / 2+1$

Figure 14: LBFS: u|... |acb|v
\square Conclusion:

- Full power of LBFS is not needed
- Good bounds hold for other graph families

Hyperbolic graphs

δ-Hyperbolicity (M. Gromov, 1987)

for any four points u, v, w, x of a metric space (X, d), the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most 2δ.
δ-Hyperbolicity measures the local deviation of a metric from a tree metric: a metric is a tree metric iff it is 0 -hyperbolic.

- $h b(G)=0$ iff G is a block graph (metrically a tree)

$h b\left(K_{n}\right)=0$ (is a tree metrically)

$$
h b\left(S_{4}\right)=1
$$

- Chordal graphs: $h b(G) \leq 1$ [Brinkmann, Koolen, Moulton: (2001)]
- k-Chordal graphs $(\mathrm{k}>3): h b(G) \leq^{k} / 4$ [Wu, Zhang: (2011)]
- if $L L$ is used for δ-hyperbolic graphs, then $\operatorname{ecc}(v) \geq \operatorname{diam}(G)-2 \delta$

Real-Life datasets

Graph $G=(V, E)$	$\mathrm{n}=$ $\|V\|$	$\mathrm{m}=$ $\|E\|$	diameter diam (G)	radius rad (G)
PPI [46]	1458	1948	19	11
Yeast [14]	2224	6609	11	6
DutchElite [29]	3621	4311	22	12
EPA [1]	4253	8953	10	6
EVA [57]	4475	4664	18	10
California [49]	5925	15770	13	7
Erdös [10]	6927	11850	4	2
Routeview [2]	10515	21455	10	5
Homo release 3.2.99 [63]	16711	115406	10	5
AS_Caida_20071105 [18]	26475	53381	17	9
Dimes 3/2010 [61]	26424	90267	8	4
Aqualab 12/2007- 09/2008 [19]	31845	143383	9	5
AS_Caida_20120601 [16]	41203	121309	10	5
itdk0304 [17]	190914	607610	26	14
DBLB-coauth [67]	317080	1049866	23	12
Amazon [67]	334863	925872	47	24

\# of BFS scans needed to get $\operatorname{diam}(G)$	estimated radius or $\operatorname{ecc}(\cdot)$ of a middle vertex	$\frac{\delta A}{\delta(G)}$
3	12	3.5
3	6	2.5
4	13	4
2	7	2.5
2	10	1
2	8	3
2	3	2
2	5	2.5
2	6	2
2	9	2.5
2	5	2
2	5	2
2	5	2
2	15	
2	14	
2	26	

Talk outline

\square collaborating with Derek

- fast estimation of diameters
- representing approximately graph distances with few tree distances

Tree t-Spanner Problem

35 EE Leizhen Cai, Derek G. Corneil: Tree Spanners. SLAM J. Discrete Math. (SIAMDM) 8(3):359-387 (1995)

- Given unweighted undirected graph $G=(V, E)$ and integers t, s.
- Does G admit a spanning tree $T=\left(V, E^{\prime}\right)$ such that

$$
\begin{aligned}
\forall u, v \in V, \operatorname{dist}_{T}(v, u) \leq t \times \operatorname{dist}_{G}(v, u) & (\text { a multiplicative tree } t \text {-spanner of } G) \\
& \text { or }
\end{aligned}
$$

$\forall u, v \in V, \operatorname{dist}_{T}(u, v)-\operatorname{dist}_{G}(u, v) \leq s \quad($ an additive tree s-spanner of $G)$?

multiplicative tree 4- and

Some known results for the tree spanner problem (mostly multiplicative case)

- general graphs [CC'95]
- $t \geq 4$ is NP-complete. ($t=3$ is still open, $t \leq 2$ is P)
- approximation algorithm for general graphs [EP'04]
- O(logn) approximation algorithm
\square chordal graphs [BDLL'02]
- $t \geq 4$ is NP-complete. ($t=3$ is still open.)
\square planar graphs [FK'01]
- $t \geq 4$ is NP-complete. ($t=3$ is polynomial time solvable.)
\square AT-free graphs and their subclasses
- additive tree 3-spanner [Pr'99, PKLMW’03]
- a permutation graph admits a multiplicative tree 3-spanner [MVP'96]
- an interval graph admits an additive tree 2 -spanner

Collective Additive Tree r-Spanners Problem

Feodor F. Dragan, Chenyu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76
Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

- Given unweighted undirected graph $G=(V, E)$ and integers μ, r.
- Does G admit a system of μ collective additive tree r-spanners $\left\{T_{1}, T_{2} \ldots, T \mu\right\}$ such that
$\forall u, v \in V$ and $\exists 0 \leq i \leq \mu$, $\operatorname{dist}_{T_{i}}(v, u)-\operatorname{dist}_{G}(v, u) \leq r$
(a system of μ collective additive tree r-spanners of G)?

2 collective additive tree 2-spanners
surplus
collective multiplicative tree t-spanners
can be defined similarly

Collective Additive Tree r-Spanners Problem

Feodor F. Dragan, Chenyu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76
Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

- Given unweighted undirected graph $G=(V, E)$ and integers μ, r.
- Does G admit a system of μ collective additive tree r-spanners $\left\{T_{1}, T_{2} \ldots, T \mu\right\}$ such that
$\forall u, v \in V$ and $\exists 0 \leq i \leq \mu, \operatorname{dist}_{T_{i}}(v, u)-\operatorname{dist}_{G}(v, u) \leq r$
(a system of μ collective additive tree r-spanners of G)?

2 collective additive tree 2-spanners

Collective Additive Tree r-Spanners Problem

Feodor F. Dragan, Chenyu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

- Given unweighted undirected graph $G=(V, E)$ and integers μ, r.
- Does G admit a system of μ collective additive tree r-spanners $\left\{T_{1}, T_{2} \ldots, T \mu\right\}$ such that
$\forall u, v \in V$ and $\exists 0 \leq i \leq \mu, \operatorname{dist}_{T_{i}}(v, u)-\operatorname{dist}_{G}(v, u) \leq r$
(a system of μ collective additive tree r-spanners of G)?

2 collective additive tree 2-spanners

Collective Additive Tree r-Spanners Problem

Feodor F. Dragan, Chenyu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80

- Given unweighted undirected graph $G=(V, E)$ and integers μ, r.
- Does G admit a system of μ collective additive tree r-spanners $\left\{T_{1}, T_{2} \ldots, T \mu\right\}$ such that
$\forall u, v \in V$ and $\exists 0 \leq i \leq \mu, \operatorname{dist}_{T_{i}}(v, u)-\operatorname{dist}_{G}(v, u) \leq r$
(a system of μ collective additive tree r-spanners of G)?

2 collective additive tree 2-spanners

Applications of Collective Tree Spanners

\square message routing in networks
Efficient routing schemes are known for trees
but not for general graphs. For any two nodes, we can route the message between them in one of the trees which approximates the distance between them.

- $\left(\mu \log ^{2} n\right)$-bit labels,
- $O(\mu)$ initiation, $O(1)$ decision
\square solution for sparse t-spanner problem
If a graph admits a system of μ collective additive tree r spanners, then the graph admits a sparse additive r-spanner with at most $\mu(n-1)$ edges, where n is the number of nodes.

2 collective tree 2spanners for G

Some results on collective tree spanners

Feodor F. Dragan, Chenyu Yan, Irina Lomonosov: Collective Tree Spanners of Graphs. SWAT 2004: 64-76

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004: 68-80
\square chordal graphs, chordal bipartite graphs

- $\log n$ collective additive tree 2 -spanners in polynomial time
- ' $\Omega\left(\mathrm{n}^{1 / 2}\right)$ or ${ }^{\prime} \Omega(\mathrm{n})$ trees necessary to get +1
- no constant number of trees guaranties $+2(+3)$
\square circular-arc graphs
- 2 collective additive tree 2 -spanners in polynomial time
\square-chordal graphs
- $\log n$ collective additive tree $2\lfloor k / 2\rfloor$-spanners in polynomial time
\square interval graphs
- $\log n$ collective additive tree 1 -spanners in polynomial time
- no constant number of trees guaranties +1

Results for AT-free graphs

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. J. Graph Algorithms Appl. 10(2): 97-122 (2006)

AT-free graphs

- include: interval, permutation, trapezoid, co-comparability
- 2 collective additive tree 2-spanners in linear time
- an additive tree 3 -spanner in linear time (before)
\square graphs with a dominating shortest path
- an additive tree 4 -spanner in polynomial time (before)
- 2 collective additive tree 3 -spanners in polynomial time
- 5 collective additive tree 2 -spanners in polynomial time
\square graphs with asteroidal number an $(\mathrm{G})=\mathrm{k}$
- $\mathrm{k}(\mathrm{k}-1) / 2$ collective additive tree 4 -spanners in polynomial time
- $\mathrm{k}(\mathrm{k}-1)$ collective additive tree 3 -spanners in polynomial time

Results for AT-free graphs

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. J. Graph Algorithms Appl. 10(2): 97-122 (2006)
\square Any AT-free graph G admits an additive tree 3-spanner [PKLMW'03]
\square Thm: Any AT-free graph G admits a system of 2 collective additive tree 2 -spanners which can be constructed in linear time.
\square To get +2 , one needs at least 2 spanning trees
\square To get +1 , one needs at least $\Omega(n)$ spanning trees

Results for AT-free graphs

Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. J. Graph Algorithms Appl. 10(2): 97-122 (2006)
$\square 2$ collective additive tree 2 -spanners of G

caterpillar-tree

cactus-tree

Talk outline
 collaborating with Derek

o fast estimation of diameters

- representing approximately graph distances with few tree distances

2012	
	Feodor F. Dragan, Derek G. Corneil, Ekkehard Köhler, Yang Xiang: Collective additive tree spanners for circle graphs and polygonal graphs. Discrete Applied Mathematics (DAM) 160(12):1717-1729 (2012)
2008	
8 EE	Feodor F. Dragan, Derek G. Corneil, Ekkehard Köhler, Yang Xiang: Additive Spanners for Circle Graphs and Polygonal Graphs. WG 2008:110-121
2006	
7 EE	Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. J. Graph Algorithms Appl. (JGAA) 10(2):97-122 (2006)
2005	
6 EE Derek G. Corneil Feodor F. Dragan, Ekkehard Köhler, Chenyu Yan: Collective Tree 1-Spanners for Interval Graphs. WG 2005:151-162	
2004	
$\underline{5}$ EE Feodor F. Dragan, Chenyu Yan, Derek G. Corneil: Collective Tree Spanners and Routing in AT-free Related Graphs. WG 2004:68-80	
2003	
4 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the power of BFS to determine a graph's diameter. Networks 42(4):209-222 (2003)	
2002	
23 EE Derek G. Corneil, Feodor F. Dragan, Ekkehard Köhler: On the Power of BFS to Determine a Graphs Diameter. LATIN 2002:209-223	
2001	
$2 \mathrm{EE}$	Derek G. Corneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter determination on restricted graph families. Discrete Applied Mathematics (DAM) 113(2-3):143-166 (2001)
1998	
$\underline{1} \mathrm{EE}$	Derek G. Corneil, Feodor F. Dragan, Michel Habib, Christophe Paul: Diameter Determination on Restricted Graph Faminlies. WG 1998:192-202

Papers that influenced my (later) work

(among many others)

\square Graph searches and their algorithmic use

93 EE	EE D	Derek G. Corneil, Barnaby Dalton, Michel Habib: LDFS-Based Certifying Algorithm for the Minimum Path Cover Problem on Cocomparability Graphs. SIAM J. Comput. (SIAMCOMP) 42(3):792-807 (2013)
85 EE	EE D	Derek G. Corneil, Ekkehard Köhler, Jean-Marc Lanlignel: On end-vertices of Lexicographic Breadth First Searches. Discrete Applied Mathematics (DAM) 158(5):434-443 (2010)
84 EF	EE	Derek G. Corneil, Stephan Olariu, Lorna Stewart: The LBFS Structure and Recognition of Interval Graphs. SIAM J. Discrete Math. (SIAMDM) 23(4):1905-1953 (2009)
82 EE	EE D	Derek G. Corneil, Richard Krueger: A Unified View of Graph Searching. SIAM J. Discrete Math. (SIAMDM) 22(4):1259-1276 (2008)
68 Ex	EE	Derek G. Corneil: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Applied Mathematics (DAM) 138(3):371-379 (2004)
53 E	EE	Derek G. Corneil, Stephan Olariu, Lorna Stewart: LBFS Orderings and Cocomparability Graphs. SODA 1999:883-884
		\square At-free oraphs
54 E		Derek G. Corneil, Stephan Olariu, Lorna Stewart: Linear Time Algorithms for Dominating Pairs in Asteroidal Triple-free Graphs. SIAM J. Comput. (SIAMCOMP) 28(4):1284-1297 (1999)
45	EE	Derek G. Corneil, Stephan Olariu, Lorna Stewart: Asteroidal Triple-Free Graphs. SIAM J. Discrete Math. (SIAMDM) 10(3):399-430 (1997)
36	EE	Derek G. Corneil, Stephan Olariu, Lorna Stewart: A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph. Inf. Process. Lett. (IPL) 54(5):253-257 (1995)

Papers that influenced my (later) work

(among many others)
\square Tree spanners, tree powers

35 EE Leizhen Cai, Derek G. Corneil: Tree Spanners. SIAM J. Discrete Math. (SIAMDM) 8(3):359-387 (1995)

\square Graph decompositions and their parameters

92 EE Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, Udi Rotics: Polynomial-time recognition of clique-width ≤ 3 graphs. Discrete Applied Mathematics (DAM) 160(6):834-865 (2012)

72 EE Derek G. Corneil, Udi Rotics: On the Relationship Between Clique-Width and Treewidth. SIAM J. Comput. (SIAMCOMP) 34(4):825-847 (2005)
23 EE Stefan Arnborg, Andrzej Proskurowski, Derek G. Corneil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM) 80(1):1-19 (1990)
\square first paper that I got from Derek (long time ago)

[^0]
Papers that influenced my (later) work

(among many others)
\square Tree spanners, tree powers

49 EE Paul E. Kearney, Derek G. Corneil: Tree Powers. J. Algorithms (JAL) 29(1):111-131 (1998)
35 EE Leizhen Cai, Derek G. Corneil: Tree Spanners. SIAM J. Discrete Math. (SIAMDM) 8(3):359-387 (1995)

\square Graph decompositions and their parameters

92 EE Derek G. Corneil, Michel Habib, Jean-Marc Lanlignel, Bruce A. Reed, Udi Rotics: Polynomial-time recognition of clique-width ≤ 3 graphs. Discrete Applied Mathematics (DAM) 160(6):834-865 (2012)
72 EE Derek G. Corneil, Udi Rotics: On the Relationship Between Clique-Width and Treewidth. SIAM J. Comput. (SIAMCOMP) 34(4):825-847 (2005)
23 EE Stefan Arnborg, Andrzej Proskurowski, Derek G. Corneil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM) 80(1):1-19 (1990)
\square first paper that I got from Derek (long time ago)

[^1]
Following Derek's footsteps

- Derek's journey \square How I envision it

Following Derek's footsteps

Talk outline

\square collaborating with Derek

- fast estimation of diameters
- representing approximately graph distances with few tree distances
\square following Derek's footsteps
- tree- and path-decompositions and new graph parameters
- Approximating tree t-spanner problem using tree-breadth
- Approximating bandwidth using path-length
- Approximating line-distortion using path-length

Talk outline

\square following Derek's footsteps

fo tree- and path-decompositions and new graph parameters

- Approximating tree t-spanner problem using tree-breadth
\square Graph decompositions and their parameters +
Tree spanners =

Tree-Decomposition

[Robertson, Seymour]
\square Tree-decomposition $T(G)$ of a graph $G=(V, E)$ is a pair ($\left\{X_{i}: i \in I\right\}, T=(I, F)$) where $\left\{X_{i}: i \in I\right\}$ is a collection of subset of V (bags) and T is a tree whose nodes are the bags satisfying:

1) $\cup_{i \in I} X_{i}=V$
2) $\forall u v \in E, \exists i \in I$ s.t. $u, v \in X_{i}$
3) $\forall v \in V$, the set of bags $\left\{i \in I, v \in X_{i}\right\}$ form a subtree T_{v} of T

Tree-Decomposition and Graph Parameters

\square Tree-width $\boldsymbol{t w}(\boldsymbol{G})$:

- Width of $T(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- tw(G): minimum width over all tree-decompositions
\square Tree-length $\boldsymbol{t l}(\boldsymbol{G})$:
- Length of $T(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $\boldsymbol{t l}(\boldsymbol{G})$: minimum length over all tree-decompositions \square Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with $X_{i} \subseteq$
 $D_{r}\left(v_{i}, G\right)$
- $\operatorname{tb}(G)$: minimum breadth over all tree-decompositions

Tree-length was introduced in [Dourisboure, Gavoille: $D M(2007)$] and [Dragan,Lomonosov: DAM (2007)]
Tree-breadth was introduced in [Dragan,Lomonosov: DAM(2007)] and [Dragan, Köhler: APPROX (2011)]

Tree-Decomposition and Graph Parameters

\square Tree-width $\boldsymbol{t w}(\boldsymbol{G})$:

- Width of $T(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- $t w(G)$: minimum width over all tree-decompositions
\square Tree-length $\boldsymbol{t l}(\boldsymbol{G})$:
- Length of $T(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $\operatorname{tl}(G)$: minimum length over all tree-decompositions \square Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with $X_{i} \subseteq$
 $D_{r}\left(v_{i}, G\right)$
- $\operatorname{tb}(G)$: minimum breadth over all tree-decompositions
- $\forall G, \operatorname{tb}(G) \leq t l(G) \leq 2 t b(G) \quad$ as $\forall S \subseteq V(G), \operatorname{rad}_{G}(S) \leq \operatorname{diam}_{G}(S) \leq 2 \operatorname{rad}_{G}(S)$
- $\quad t w(G)$ and $t l(G)$ are not comparable (check cycles and cliques)

$$
\begin{gathered}
t w\left(C_{3 k}\right)=2, \quad t l\left(C_{3 k}\right)=k \\
t w\left(K_{n}\right)=n-1, \quad t l\left(K_{n}\right)=1
\end{gathered}
$$

Tree-stretch vs tree-breadth

Tree t-spanner problem:

- Given unweighted undirected graph $G=(V, E)$ and integer t.
- Does G admit a spanning tree $T=\left(V, E^{\prime}\right)$ such that

$$
\forall u, v \in V, \quad \operatorname{dist}_{T}(v, u) \leq t \times \operatorname{dist}_{G}(v, u)
$$

- If a graph G admits a tree t-spanner then $\mathrm{tb}(G) \leq\lceil t / 2\rceil$.

Tree spanners in bounded tree-breadth graphs

Lm1) Each graph G has balanced disk separator $D_{r}(v, G)$, where $r \leq \mathrm{tb}(G)$. It can be found in $O(\mathrm{~nm})$.
Lm2) $\mathrm{tb}\left(G_{i}^{+}\right) \leq \mathrm{tb}(G)$.
Lm3) $T_{i} \mathrm{~s}$ are α-spanners $\Rightarrow T$ is $(\alpha+2 r)$-spanner, where $r \leq \mathrm{tb}(G)$.
Tm2) Any connected graph G admits a tree $\left(2 \mathrm{tb}(G)\left\lfloor\log _{2} n\right\rfloor\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time.
Tree_Spanner(G)
If G has at most 9 vertices
Find a tree t-spanner T of G with minimum t directly; Output T.
Else
Find a balanced disk-separator $D_{r}(v, G)$ of G with minimum r; Find connected components G_{1}, \ldots, G_{k} of graph $G\left[V \backslash D_{r}(v, G)\right]$;
Build graphs $G_{1}^{+}, \ldots, G_{k}^{+}$;

Set $T_{i}:=$ Tree_Spanner $\left(G_{i}^{+}\right)$, for each $i=1, \ldots, k$;
Construct a shortest path tree $S P T_{D}$ of $G\left[D_{r}(v, G)\right]$ rooted at vertex v; Construct a spanning tree T of G from trees T_{1}, \ldots, T_{k} and $S P T_{D}$;
Output T.

- leaves have tree $4 \mathrm{tb}(G)$-spanners
- depth is at most $\log _{2} n-2$
- total number of edges per level of recursion is $O(m)$; total number of vertices is $O(n \log n)$

Approximating tree t-spanner problem in general unweighted graphs

Tm2) Any connected graph G admits a tree $\left(2 \operatorname{tb}(G)\left\lfloor\log _{2} n\right\rfloor\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time.

- If a graph G admits a tree t-spanner then $\operatorname{tb}(G) \leq\lceil t / 2\rceil$.

Tm3) Any connected graph G admits a tree $\left(2\lceil t / 2\rceil\left\lfloor\log _{2} n\right\rfloor\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time.

our resuits vS known resuite

- G chordal \Rightarrow
- \exists a tree $\left(2\left\lfloor\log _{2} n\right\rfloor\right)$-spanner in $O(m \log n)$ time
- no t-spanner with $t<\log _{2} \frac{n}{3}+2$
- NP-complete for every $t \geq 4$ (BDLL '04)
- $\mathrm{tb}(G)=\rho \Rightarrow$
- a tree $\left(2 \rho\left\lfloor\log _{2} n\right\rfloor\right)$-spanner in $O\left(m n \log ^{2} n\right)$ time or

- k-snowflake has no tree t-spanner with $t<k+1=\log _{2} \frac{n}{3}+2$
- a tree $\left(12 \rho\left\lfloor\log _{2} n\right\rfloor\right)$-spanner in $O(m \log n)$ time
- no previous result known
- if G admits a tree t-spanner we construct
- a tree $\left(2\lceil t / 2\rceil\left\lfloor\log _{2} n\right\rfloor\right)$-spanner in $O\left(m n \log ^{2} n\right)$ time or
- a tree $\left(6 t\left\lfloor\log _{2} n\right\rfloor\right)$-spanner in $O(m \log n)$ time
- if G admits a tree t-spanner, Emek \& Peleg (2008) construct a tree $\left(6 t\left\lceil\log _{2} n\right\rceil\right)$-spanner in $O\left(m n \log ^{2} n\right)$ time.

Real-Life datasets

$\left.\begin{array}{|c|c|c|c|c|c|}\hline \begin{array}{c}\text { Graph } \\ G=(V, E)\end{array} & \begin{array}{c}\mathrm{n}= \\ |V|\end{array} & \begin{array}{c}\mathrm{m}= \\ |E|\end{array} & \begin{array}{l}\text { diameter } \\ \text { diam }(G)\end{array} & \begin{array}{c}\text { radius } \\ \operatorname{rad}(G)\end{array} & \begin{array}{c}\text { lower bound } \\ \text { on } \operatorname{tb}(G)\end{array} \\ \hline \hline \text { PPI [46] } & 1458 & 1948 & 19 & 11 & 2 \\ \hline \text { Yeper bound } \\ \text { on } t b(G)\end{array}\right]$

Talk outline

\square following Derek's footsteps

Fo Approximating bandwidth using path-length

- Approximating line-distortion using path-length
\square Graph decompositions and their parameters +
\square AT-free graphs =

```
72 EE Derek G. Corneil, Udi Rotics: On the Relationship Between Clique-Width and Treewidth. SIAM J. Comput. (SIAMCOMP) 34(4):825-847 (2005)
23 EE Stefan Arnborg, Andrzei Proskurowski, Derek G. Corneil: Forbidden minors characterization of partial 3-trees. Discrete Mathematics (DM)
    80(1):1-19 (1990)
45 EE Derek G. Corneil, Stephan Olariu, Lorna Stewart: Asteroidal Triple-Free Graphs. SIAM J. Discrete Math. (SIAMDM) 10(3):399-430 (1997)
36 EE Derek G. Corneil, Stephan Olariu, Lorna Stewart: A Linear Time Algorithm to Compute a Dominating Path in an AT-Free Graph. Inf. Process.
    Lett. (IPL) 54(5):253-257 (1995)
    [ F. Dragan, E. Köhler, A. Leitert: Line-distortion, Bandwidth and Path-length of a graph, SWAT 2014 ]
```


Path-Decomposition

[Robertson, Seymour]
\square Path-decomposition $P(G)$ of a graph $G=(V, E)$ is a pair ($\left\{X_{i}: i \in I\right\}, P=(I, F)$) where $\left\{X_{i}: i \in I\right\}$ is a collection of subset of V (bags) and P is a path whose nodes are the bags satisfying:

1) $\bigcup_{i \in I} X_{i}=V$
2) $\forall u v \in E, \exists i \in I$ s.t. $u, v \in X_{i}$
3) $\forall v \in V$, the set of bags $\left\{i \in I, v \in X_{i}\right\}$ form a subpath of P

Path-Decomposition and new Graph Parameters

\square path-width $\boldsymbol{p w}(\boldsymbol{G})$:

- Width of $P(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- $\boldsymbol{p w}(\boldsymbol{G})$: minimum width over all path-decompositions
\square path-length $\boldsymbol{p l}(\boldsymbol{G})$:
- Length of $P(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $p l(G)$: minimum length over all path-decompositions
\square path-breadth $\boldsymbol{p b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with X_{i}
$\subseteq D_{r}\left(v_{i}, G\right)$
- $\boldsymbol{p b} \boldsymbol{b}(\boldsymbol{G})$: minimum breadth over all path-decompositions

Line distortion and bandwidth

\square Line-distortion $\boldsymbol{l d}(\boldsymbol{G}): \boldsymbol{f}: V \rightarrow \boldsymbol{l}$ with minimum k such that $\forall x, y \in V$

- Non-contractiveness: $d_{G}(x, y) \leq|f(x)-f(y)|$
- minimum distortion $k:|f(x)-f(y)| \leq k d_{G}(x, y)$

\square Bandwidth $\boldsymbol{b w}(\boldsymbol{G}): \boldsymbol{b}: V \rightarrow N$ with minimum k such that $\forall x y \in E$
- minimum bandwidth $k:|b(x)-b(y)| \leq k$

Line distortion and bandwidth

\square Line-distortion $\boldsymbol{l d}(\boldsymbol{G}): \boldsymbol{f}: V \rightarrow \boldsymbol{l}$ with minimum k such that $\forall x, y \in V$

- Non-contractiveness: $d_{G}(x, y) \leq|f(x)-f(y)|$
- minimum distortion $k:|f(x)-f(y)| \leq k d_{G}(x, y)$

\square Bandwidth $\boldsymbol{b w}(\boldsymbol{G}): \boldsymbol{b}: V \rightarrow N$ with minimum k such that $\forall x y \in E$
- minimum bandwidth $k:|b(x)-b(y)| \leq k$

$$
\begin{aligned}
& b w(G) \leq l d(G) \\
& b w\left(C_{k}\right)=2 \\
& \operatorname{ld}\left(C_{k}\right)=k-1
\end{aligned}
$$

Line distortion and bandwidth

\square Line-distortion $\boldsymbol{l d}(\boldsymbol{G}): \boldsymbol{f}: V \rightarrow \boldsymbol{l}$ with minimum k such that $\forall x, y \in V$

- Non-contractiveness: $d_{G}(x, y) \leq|f(x)-f(y)|$
- minimum distortion $k:|f(x)-f(y)| \leq k d_{G}(x, y)$

Hard to approximate within a constant factor
\square Bandwidth $\boldsymbol{b w}(\boldsymbol{G}): \boldsymbol{b}: V \rightarrow N$ with minimum k such that $\forall x y \in E$

- minimum bandwidth $k:|b(x)-b(y)| \leq k$

Hard to approximate within a constant factor

Line-distortion vs path-length

\square For an arbitrary graph $G, \mathrm{pl}(G) \leq \operatorname{ld}(G), \mathrm{pw}(G) \leq \operatorname{ld}(G)$ and $\mathrm{pb}(G) \leq\lceil\operatorname{ld}(G) / 2\rceil$.

\square Line-distortion is hard to approximate within a constant factor
\square Theorem: a factor 2 approximation of the path-length of an arbitrary n-vertex graph can be computed in $\mathcal{O}\left(n^{3}\right)$ total time.

Line-distortion vs path-length

\square For an arbitrary graph $G, \mathrm{pl}(G) \leq \operatorname{ld}(G), \mathrm{pw}(G) \leq \operatorname{ld}(G)$ and $\mathrm{pb}(G) \leq\lceil\operatorname{ld}(G) / 2\rceil$.

\square Line-distortion is hard to approximate within a constant factor
\square Theorem: a factor 2 approximation of the path-length of an arbitrary n-vertex graph can be computed in $\mathcal{O}\left(n^{3}\right)$ total time.

Path-length and AT-free graphs

- For a graph G with $\mathrm{pl}(G) \leq \lambda, G^{2 \lambda}$ is an AT-free graph.
\square Every graph G with $\mathrm{pl}(G) \leq \lambda$ has a λ-dominating pair.

Approximating line-distortion

hard to approximate within a constant factor in general graphs
\square Proposition: Every graph G with a k-dominating shortest path admits an embedding f of G into the line with distortion at most $(8 k+4) \operatorname{ld}(G)+(2 k)^{2}+2 k+1$. If a k-dominating shortest path of G is given in advance, then such an embedding f can be found in linear time.

$$
\mathrm{k} \leq p l(G) \leq l d(G)
$$

\square Corollary: For every n-vertex m-edge graph G, an embedding into the line with distortion at most $(12 \mathrm{pl}(G)+7) \operatorname{ld}(G)$ can be found in $\mathcal{O}\left(n^{2} m\right)$ time.

Theorem: For every class of graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum line-distortion problem.
\square Corollary: $[4] \quad$ For every graph G with $\operatorname{ld}(G)=c$, an embedding into the line with distortion at most $\mathcal{O}\left(c^{2}\right)$ can be found in polynomial time.

Bandwidth approximation

hard to approximate within a constant factor in general graphs
\square Proposition: Every graph G with a k-dominating shortest path has a layout f with bandwidth at most $(4 k+2) \mathrm{bw}(G)$. If a k-dominating shortest path of G is given in advance, then such a layout f can be found in linear time.

\square Corollary: For every n-vertex m-edge graph G, a layout with bandwidth at most $(4 \mathrm{pl}(G)+$ 2) $\mathrm{bw}(G)$ can be found in $\mathcal{O}\left(n^{2} m\right)$ time.
\square Theorem: For every class of graphs with path-length bounded by a constant, there is an efficient constant-factor approximation algorithm for the minimum bandwidth problem.

AT-free graphs

\square If G is an AT-free graph, then $\mathrm{pb}(G) \leq \mathrm{pl}(G) \leq 2$.
\square There is a linear time algorithm to compute an 8-approximation of the line-distortion of an AT-free graph.

There is a linear time algorithm to compute a 4-approximation of the minimum bandwidth of an AT-free graph.

[^0]: 22 EE Derek G. Corneil, Lorna K. Stewart: Dominating sets in perfect graphs. Discrete Mathematics (DM) 86(1-3):145-164 (1990)

[^1]: 22 EE Derek G. Corneil, Lorna K. Stewart: Dominating sets in perfect graphs. Discrete Mathematics (DM) 86(1-3):145-164 (1990)

