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Abstract/Résumé

Distance labeling schemes are schemes that label the vertices of a graph with short labels in such a way that

the distance between any two vertices u and v can be determined efficiently (e.g., in constant or logarithmic

time) by merely inspecting the labels of u and v, without using any other information. Similarly, routing

labeling schemes are schemes that label the vertices of a graph with short labels in such a way that given the

label of a source vertex and the label of a destination, it is possible to compute efficiently (e.g., in constant or

logarithmic time) the port number of the edge from the source that heads in the direction of the destination.

In this note we show that the three major classes of non-positively curved plane graphs enjoy such distance

and routing labeling schemes using O(log2 n) bit labels on n-vertex graphs. In constructing these labeling

schemes interesting metric properties of those graphs are employed.

Keywords: distance labeling schemes, routing labeling scheme, planar graphs.

Les schémas de calcul de distance par étiquetage consistent à attribuer à chaque sommet d’un graphe une

étiquette courte de telle sorte qu’on puisse calculer efficacement (typiquement en temps constant ou logar-

ithmique) la distance entre deux sommets quelconques u et v en se servant uniquement de leurs étiquettes.

De façon similaire, les schémas de routage par étiquetage consistent à attribuer à chaque sommet d’un graphe

une étiquette courte de telle sorte que, étant données les étiquettes d’un sommet source et d’un sommet des-

tination, on puisse calculer efficacement le numéro de port d’une arête qui quitte la source vers la destination.

Dans ce rapport, nous montrons que pour trois classes majeures de graphes planaires à courbure combinatoire

non-positive de tels schémas existent. Ils utilisent des étiquettes de taille O(log2 n) bits pour des graphes à

n sommets. Pour construire ces schémas, d’intéressantes propriétés métriques de ces graphes sont utilisées.

Mots-clés : distance par étiquetage, routage par étiquetage, graphes planaires.
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1 Introduction

Traditional graph representations are global in nature, and require users to have access to
data on the entire graph topology in order to derive useful information, even if the sought
piece of information is very local, and pertains to only few vertices.

In contrast, the notion of adjacency labeling scheme, introduced in [12, 13] involves using
more localized labeling schemes for graphs. The idea is to assign each vertex v a label
L(v) in a way that will allow one to infer the adjacency of two vertices directly from their
labels, without using any additional information. Obviously, labels of unrestricted size can
be used to encode any desired information. However, efficiency considerations dictate the
use of relatively short labels (say, of length polylogarithmic in n), which nevertheless allow
us to deduce adjacencies efficiently (say, in constant time). The feasibility of such efficient
adjacency labeling schemes is explored in [36, 52].

Interest in this natural idea was recently revived by the observation that in addition
to adjacency labeling schemes, it may be possible to device similar schemes for capturing
distance, connectivity, flow and other information [46, 47, 38, 24, 33, 30, 55, 56, 37].

1.1 Distance labeling schemes

The notion of distance labeling schemes was first introduced in [47], where also the relevance
of distance labeling schemes in the context of communication networks was pointed out. Let
us define this notion more formally. A graph family F is said to have an l(n) distance labeling
scheme if there is a function L labeling the vertices of each n-vertex graph in F with distinct
labels of up to l(n) bits, and there exists an algorithm, called distance decoder, that given
two labels L(v), L(u) of two vertices v, u in a graph from F , decides the distance between v
and u in time polynomial in the length of the given labels. Note that the algorithm is not
given any additional information, other that the two labels, regarding the graph from which
the vertices were taken.

As observed in [36], a class of 2Ω(n1+ε) n-vertex graphs, must use adjacency labels (and
thus distance labels) whose total combined length is Ω(n1+ε). Hence, at least one label must
be of Ω(nε) bits. Specifically, for the class of all unweighted graphs, any distance labeling
scheme must label some n-vertex graphs with labels of size Ω(n). This raises the natural
question of whether more efficient labeling schemes can be constructed for special graph
classes.

A distance labeling scheme for trees that uses only O(log2 n) bit labels and a constant
time distance decoder has been given in [46]1 . This result is complemented by a lower bound
proven in [33], showing that Ω(log2 n) bit labels are necessary for the class of all trees. The
scheme developed for trees was later extended in [38, 33, 31] to other graph classes with
”well-behaved” separators; O(log2 n) distance labeling schemes were presented for interval
graphs, permutation graphs, distance-hereditary graphs and all graphs of bounded treewidth,
while an O(

√
n log n) distance labeling scheme was presented for all planar graphs. Recently,

authors of [32] improved the bound on the label size given in [33] for interval graphs by a
log n factor. They designed a distance labeling scheme with O(log n) bit labels and a constant
time distance decoder for interval graphs and circular arc graphs. Note that for the class
of planar graphs only a lower bound of Ω(n1/3) on the label size is known. This leaves an
intriguing polynomial gap between upper and lower bounds on the label size.

Note also that another interesting question of whether more efficient labeling schemes can
be constructed if one abandons the ambitious goal of capturing exact information and settles

1[46] claims to have only O(log n) time distance decoder, but in fact it is not hard to make that decoder
to run in constant time.
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for obtaining approximate estimates is addressed in [30]. Here we will mention only a recent
result for planar graphs obtained in [54]: any planar graph admits an approximate distance
labeling scheme with stretch 1 + ε and O(log ∆ log n/ε) bit labels, where ∆ is the graph’s
diameter.

Adjacency and distance labeling schemes motivated the general question of developing
label-based network representations that allow retrieving useful information about arbitrary
functions or substructures in a graph in a localized manner, i.e., using only the local informa-
tion available to the vertices under inspection, and not having to search for additional global
information. Such kind of informative labeling schemes are considered in [47].

1.2 Routing labeling schemes

Routing is one of the basic tasks that a distributed network of processors must be able to
perform. A routing scheme is a mechanism that can deliver packets of information from any
vertex of the network to any other vertex. One aims at routing along short paths. More
specifically, a routing scheme is a distributed algorithm. Each processor in the network
has a routing daemon running on it. This daemon receives packets of information and has
to decide whether these packets have already reached their destination, and if not, how to
forward them towards their destination. Each packet of information has a header attached
to it. This header contains the address of the destination of the packet, and in some cases,
some additional information that can be used to guide the routing of this message towards its
destination. Each routing daemon has a local routing table at its disposal. It has to decide,
based on this table and on the packet header only, whether to pass the packet to its host,
or whether to forward the packet to one of its neighbors in the network. The stretch of a
routing scheme is the worst ratio between the length of a path on which a message is routed
and the length of the shortest path in the network from the source to the destination.

A straightforward approach for achieving the goal of guaranteeing optimal routes is to
store a complete routing table in each vertex v in the network, specifying for each destination
u the first edge (or an identifier of that edge, indicating the output port) along some shortest
path from v to u. However, this approach may be too expensive for large systems since it
requires a total of O(n2 log d) memory bits in an n-processor network with maximum degree
d. Thus, an important problem in large scale communication networks is the design of routing
schemes that produce efficient routes and have relatively low memory requirements.

This problem can be approached via localized techniques based on labeling schemes [48].
Informally speaking, the routing problem can be presented as requiring us to assign a label
to every vertex of a graph. This label can contain the address of the vertex as well as the
local routing table. The labels are assigned in such a way that at every source vertex v and
given the address of any destination vertex u, one can decide the output port of an outgoing
edge of v that leads to u. The decision must be taken locally in v, based solely on the label
of v and the address of u.

Following [48], one can give the following formal definition. A family < of graphs is
said to have an l(n) routing labeling scheme if there is a function L labeling the vertices of
each n-vertex graph in < with distinct labels of up to l(n) bits, and there exists an efficient
algorithm, called the routing decision, that given the label of a source vertex v and the label
of the destination vertex (the header of the packet), decides in time polynomial in the length
of the given labels and using only those two labels, whether this packet has already reached
its destination, and if not, to which neighbor of v to forward the packet.

Thus, the goal is, for a family of graphs, to find routing labeling schemes with small
stretch factor, relatively short labels and fast routing decision.
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To obtain routing schemes for general graphs that use o(n)-bit label for each vertex, one
has to abandon the requirement that packets are always routed on shortest paths, and settle
instead for the requirement that packets are routed on paths with relatively small stretch
[49, 1, 2, 18, 21, 56]. A stretch 3 scheme that uses labels of size Õ(n2/3) was obtained in
[18], and a stretch 5 scheme that uses labels of size Õ(n1/2) was obtained in [21].2 Recently,
authors of [56] further improved these results. They presented a routing scheme that uses
only Õ(n1/2) bits of memory at each vertex of an n-vertex graph and has stretch 3. Note
that, each routing decision takes constant time in their scheme, and the space is optimal,
up to logarithmic factors, in the sense that every routing scheme with stretch < 3 must
use, on some graphs, routing tables of total size Ω(n2), and hence Ω(n) at some vertex (see
[22, 34, 28]).

There are many results on optimal (with stretch factor 1) routing schemes for particular
graph classes, including complete graphs, grids (alias meshes), hypercubes, complete bipartite
graphs, unit interval and interval graphs, trees and 2-trees, rings, tori, unit circular-arc
graphs, outerplanar graphs, and squaregraphs (see [3, 17, 23, 26, 39, 40, 44, 45, 51]). All those
graph families admit optimal routing schemes with O(d log n) labels and O(log d) routing
decision. These results follow from the existence of special so called interval routing schemes
for those graphs. In this special routing method, each vertex is assigned a distinct label
from the set {1, . . . , n}. And, for each vertex v, the incident edges are labeled with one or
several subintervals of the (linear or circular) interval [1..n] so that intervals associated with
edges incident to v are pairwise disjoint and their union covers [1..n]. When a message with
destination u arrives at vertex v 6= u, the message is forwarded on the unique outgoing edge
labeled with an interval containing the label of u. We will not discuss details of this scheme
here; for precise definitions and an overview of this area, we refer the reader to [27].

Observe that in interval routing schemes the local memory requirement increases with
the degree of the vertex. Routing labeling schemes aim at overcoming the problem of large
degree vertices. In [56], a shortest path routing labeling scheme for trees of arbitrary degree
and diameter is described that assigns each vertex of an n-vertex tree a (1 + o(1)) log2 n--
bit label. Given the label of a source vertex and the label of a destination it is possible
to compute, in constant time, the neighbor of the source that heads in the direction of the
destination. A similar result was independently obtained also in [24]. Recently, the result
for trees was used in [19] in designing an interesting additive 2 stretched routing scheme for
chordal graphs with labels of O(log3 n/ log log n) bits per vertex and O(1) routing decision.
For planar graphs, a routing labeling scheme with optimal stretch 1 which uses 8n + o(n)
bits per vertex is developed in [29].

1.3 Our contribution

In this note we design efficient distance and routing labeling schemes for three natural classes
of planar graphs introduced in [42, 43] and further investigated in [9, 10, 8, 50, 57] and
the references cited therein. These are the basic classes of planar graphs of non-positive
combinatorial curvature: (i) the plane graphs with all inner faces of length at least 4 and
with all inner vertices of degree at least 4 (called the (4,4)-graphs), (ii) the plane graphs
with all inner faces of length at least 3 and all inner vertices of degree at least 6 (called the
(3,6)-graphs), and (iii) the plane graphs with all inner faces of length at least 6 and all inner
vertices of degree at least 3 (called the (6,3)-graphs). Particular instances of (4,4)-graphs are
the squaregraphs (the (4,4)-graphs in which all inner faces have length 4) [4, 11, 15, 17, 53],
the planar cellular graphs (the bipartite (4,4)-graphs) [5], and particular instances of (3,6)-

2Here, Õ(f) means O(f polylog n).
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graphs are the trigraphs (the (3,6)-graphs in which all inner faces have length 3) investigated
in [6, 15, 17]. Based on geometric properties of these graph classes, we design for them
labeling schemes with labels of size O(log2 n) bits and a constant time distance decoder and
routing decision.

The paper is organized as follows. The next section presents the main definitions and
notions. Section 3 describes the general lines of the method used for distance queries and
routing in all three classes of graphs. In Section 4 we establish the principal distance prop-
erties of (4,4)-, (3,6)-, and (6,3)-graphs used in these schemes. We conclude with a detailed
presentation of the labeling schemes from Section 3.

2 Preliminaries

All graphs G = (V, E) occurring in this paper are undirected, unweighted, connected, n-vertex
planar graphs embedded on the plane. The distance d(u, v) := dG(u, v) between two vertices
u and v is the length of a shortest (u, v)-path, and the interval I(u, v) between u and v consists
of all vertices on shortest (u, v)-paths, that is, I(u, v) = {x ∈ V : d(u, x) + d(x, v) = d(u, v)}.
An induced subgraph of G (or the corresponding vertex set A) is called convex if it includes
the interval between any of its vertices. For a set S ⊆ V and a vertex x of G, the projection
Pr(x, S) of x on S consists of all vertices v ∈ S such that I(v, x) ∩ S = {v}. Notice that
I(s, x) ∩ Pr(x, S) 6= ∅ for any vertex s ∈ S. A set S ⊆ V is called gated [20] if for every
vertex x /∈ S the projection Pr(x, S) consists of a single vertex (the gate of x) and is called
quasigated if for every vertex x /∈ S the projection Pr(x, S) consists of one or two adjacent
vertices of S (also called the gates of x).

For a plane graph G, let ∂G be the cycle (actually, closed walk) bounding the outer face
of G oriented counterclockwise and let G∗ be the geometric dual of G (in which vertices are
defined only for inner faces of G). Notice that the class of (4,4)-graphs is self-dual in the
sense that the dual of a (4,4)-graph is again a (4,4)-graph, while the classes of (3,6)- and
(6,3)-graphs are mutually dual. Two neighbors x, y of a vertex v of G are called consecutive
if u, x, y belong to a common inner face of G. Following [41, 43, 9, 10] and the references
therein, we introduce now the curvature function of a plane graph G. Assume that each inner
face with k sides of G is replaced by a regular k-gon in Euclidean plane with side length 1,
thus yielding a cell complex ||G||. For a vertex v of G, let α(v) denote the sum of the corner
angles of the polygons of ||G|| containing the vertex v. If v is an inner vertex of G, denote
the curvature at v to be κ(v) = 2π − α(v), i.e., it is defined as the 2π-angle-defect of the flat
polygons meeting at v. When v is a vertex in the boundary ∂G, define the turning angle at v
to be τ(v) = π − α(v). A vertex v ∈ ∂G with τ(v) > 0 is called a corner of G. The following
Lyndon’s curvature theorem [43] is a discrete version of the Gauss-Bonnet theorem and holds
for all plane graphs:

∑

v∈V −∂G

κ(v) +
∑

v∈∂G

τ(v) = 2π.

A plane graph G has non-positive curvature if κ(v) ≤ 0 for every inner vertex v of G. It
can be easily shown that the plane graphs of each of the types (4,4), (3,6), and (6,3) have
non-positive curvature, and from this perspective they have been investigated in a number
of papers; cf. for example [9, 10, 42, 43, 57]. From the Gauss-Bonnet formula it follows that
a plane graph of non-positive curvature has at least 3 corners. In Section 4, we will further
specify this property for each type of those graphs.

For an edge uv of a graph G, define the following partition of the vertex set V :

W (u, v) = {x ∈ V : d(x, u) < d(x, v)},
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W (v, u) = {x ∈ V : d(x, v) < d(x, u)},
W=(uv) = {x ∈ V : d(x, v) = d(x, u)}.

If G is bipartite, then the set W=(uv) is empty. A cut {A, B} of G is a partition of the
vertex-set V into two parts, and a convex cut is a cut in which the halves A and B are
convex. Denote by E(A, B) the set of all edges of G having one end in A and another one
in B, and say that those edges are crossed (or cut) by {A, B}. The zone Z(A, B) of the
cut {A, B} is the subgraph induced by the union of all inner faces of G sharing edges with
E(A, B) and call the subgraphs induced by ∂A = Z(A, B) ∩ A and ∂B = Z(A, B) ∩ B the
borders of the cut {A, B}. A zone Z(A, B) is called a strip if ||Z(A, B)|| is a simply connected
region of the plane (in particular, Z(A, B) induces a path in the dual graph G∗).

We continue with the definition of alternating cuts introduced and investigated in [14, 50].
Two edges e′ = (u′, v′) and e′′ = (u′′, v′′) on a common inner face F of G are called opposite
in F if dF (u′, u′′) = dF (v′, v′′) and equals the diameter of the cycle F. If F is an even face,
then any its edge has an unique opposite edge, otherwise, if F is an odd face, then every
edge e ∈ F has two opposite edges e+ and e− sharing a common vertex. In the latter case, if
F is oriented clockwise, for e we distinguish the left opposite edge e+ and the right opposite
edge e−. If every face of Z(A, B) is crossed by a cut {A, B} in two opposite edges, then we
say that {A, B} is an opposite cut of G. We say that an opposite cut {A, B} is straight on
an even face F ∈ Z(A, B) and that it makes a turn on an odd face F ∈ Z(A, B). The turn
is left or right depending which of the pairs {e, e+} or {e, e−} it crosses. An opposite cut
{A, B} of a plane graph G is alternating if the turns on it alternate. For a graph G of one
of the three types (4,4), (3,6), or (6,3), denote by AC(G) the collection of alternating cuts of
G (if G is not bipartite, then every alternating cut whose zone consists of even faces only is
considered in AC(G) twice).

Finally, for a graph G = (V, E) and a vertex x, let F (x) =
∑

v∈V d(x, v). Any vertex
minimizing the function F is called a median vertex of the graph G. Notice the following
simple but important property of the function F : if uv is an edge of G, then F (v)−F (u) =
|W (u, v)| − |W (v, u)|. From this we immediately conclude that if v is a median vertex of G,
then |W (u, v)| ≤ |V |/2 for any neighbor u of v.

3 General method

Our distance and routing labeling schemes are based on geometric properties of alternating
cuts of (4,4)-, (3,6)-, and (6,3)-graphs G (some of them have been already proven in [8, 50] in
order to establish the scale 2 embedding of these graphs into hypercubes). First we prove that
any alternating cut {A, B} of G is convex, moreover its borders are convex paths (thus the
zone of every such cut is a strip sharing two edges with ∂G). Then, in case of (4,4)-graphs,
we show that the zones of alternating cuts are quasigated (in cellular graphs, in particular, in
squaregraphs, the zones are gated). For (3,6)-graphs, we show that the projections on zones
of alternating cuts are convex paths whose vertices have the same distance to x. Finally,
for (6,3)-graphs, we show that if x ∈ A, then Pr(x, Z(A, B)) either consists of one or two
adjacent vertices or of a sequence of vertices of ∂A such that any two consecutive vertices are
at distance 2 from each other and all vertices of Pr(x, Z(A, B)) except the leftmost and the
rightmost have the same distance to x while those two end vertices may be one step further
from x. In all cases, the projection Pr(x, Z(A, B)) can be compactly represented by the end
vertices and the type of this projection. For example, for (4,4)-graphs, at vertex x we will
keep the gate(s) on Z(A, B) and the distance from x to the projection. For (3,6)-graphs,
we will keep the end vertices of the convex path Pr(x, Z(A, B)) and the distance from x to
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the projection. For (6,3)-graphs, additionally to the end vertices of P (x, Z(A, B)), we will
keep the distances from x to the projection and to the two end vertices of the projection.
For routing messages from x the following property of Pr(x, Z(A, B)) is crucial: we show
that either there is a neighbor of x one step closer to Z(A, B) whose projection on this zone
coincides with that of x or there exist two neighbors of x one step closer to the zone and
whose projections on Z(A, B) cover the projection of x. We will keep at x the information
about such neighbors and use it in the routing decision. So, in all cases we need only O(log n)
bits to store at x the entire information about the relative position of x with respect to the
zone Z(A, B). Therefore, we can report in constant time the distance between two vertices
x ∈ A and y ∈ B using only the information related to Z(A, B) stored at x and y (for this
we design also an O(1)-time algorithm for computing the distance between two projections
on Z(A, B)). However, we need more information in order to compute the distances between
two vertices of A or two vertices of B.

To compute the distances or a routing shortest path between arbitrary two vertices of G,
we describe a distributed data structure which at each vertex x ∈ V keeps the projections
of x on the zones of only O(log2 n) alternating cuts of G. For this, let v be a median vertex
of G and let u0, u1, . . . , uk−1 be its neighbors in counterclockwise order around v, according
to the embedding of G in the plane. (We may assume without loss of generality that v is
an inner vertex of G, otherwise we can add a constant number of vertices and faces around
v to transform it into an inner vertex and obtain a graph of the same type.) Every edge
vui is crossed by two alternating cuts {A′

i, B
′
i} and {A′′

i , B′′
i } such that v ∈ A′

i ∩ A′′
i and

ui ∈ B′
i ∩B′′

i . Let us orient the cuts {A′
i, B

′
i} and {A′′

i , B′′
i } such that v is on the left border-

line. In this case, we will denote by {A′
i, B

′
i} that cut from the two alternating cuts separating

ui and v, such that the last turn before uiv is on the right (if it exists) and the next turn
after uiv is on the left (if it exists). If none of these two turns exists, then {A′

i, B
′
i} and

{A′′
i , B′′

i } coincide. For each vertex ui, set Cv(ui) = B′
i ∩ A′

i+1(mod k) and call Cv(ui) a cone
with apex ui. Every cone is convex as the intersection of two convex sets. We show that
Cv(ui) ⊆ W (ui, v), yielding |Cv(ui)| ≤ n/2 because v is a median vertex. Furthermore, we
establish that the cones Cv(u0), . . . , Cv(uk−1) together with the vertex v form a partition
of the vertex-set of G. To report the distance or a routing path between two query vertices
x and y efficiently, yet another property of the partition Cv(u0) ∪ . . . ∪ Cv(uk−1) ∪ {v} is
significant. We call two neighbors ui, uj of v p-consecutive and their cones Cv(ui), Cv(uj)
p-neighboring if min{|i − j|, k − |i − j|} = p. Let x ∈ Cv(ui) and y ∈ Cv(uj). We show that
if Cv(ui) and Cv(uj) are not p-neighboring for p ≤ 2, then d(x, y) = d(x, v) + d(v, y) (for
squaregraphs a similar property with p ≤ 1 holds). Therefore, in order to report distance
between two vertices x and y in different cones, we have to keep their distances to the median
vertex v, the projections on and the distances to the 1-neighboring and 2-neighboring cones,
more precisely on/to the zones separating the respective cones. Finally, if x and y belong to
the same cone Cv(ui), then the distance d(x, y) can be retrieved by recursively decomposing
the (convex) subgraph Gi induced by Cv(ui). Routing between x and y can be performed
by converting the distance labeling scheme in the following way. To route a message from x
to y lying in different cones, additional to distances, we have to store in the label of x the
output port number of the first edge on a shortest path from x to v and the output port
number of the first edge on a shortest path from x to each of the two end vertices of the
projection of x on the 1-neighboring as well as 2-neighboring cones, or more precisely on
the zones separating the respective cones. If x is its own projection on the zone between x
and y, we consider the relative position of x and the projection of y on the zone to decide
in constant time via which edge the message should be sent. Finally, if x and y belong to
the same cone Ci(v), then, again, the routing can be done by recursively decomposing the
subgraph Gi induced by this cone.
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All these facts suggest the necessity of building a decomposition tree T (G) of G, which
can be constructed in the following way. Find a median vertex v of G and the cones
Cv(u0), . . . , Cv(uk−1) with apices at the neighbors of v. Let Gi be the subgraph of G induced
by the vertices of Cv(ui). For each Gi construct a decomposition tree T (Gi) recursively and
build T (G) by taking pair (G, v) to be the root and connecting the root of each tree T (Gi) as
a child of (G, v). It is easy to see that a decomposition tree T (G) of a graph G with n vertices
has depth at most log2 n and can be constructed in O(n2 log n) time (for squaregraphs and
trigraphs we need only O(n log n) time because a median vertex in these graphs can be found
in linear time). Indeed, in each level of recursion we need to find median vertices of current
subgraphs and to construct the corresponding cones. Also, since the graph sizes are reduced
by a factor 1/2, the recursion depth is O(log n).

For tree T (G) we need a labeling scheme for depths of nearest common ancestors (NCA-
depth labeling scheme). In [47] such a scheme with O(log2 n) bit labels but with O(log n)
query time was presented for any tree with n nodes. One can use here the fact that T (G)
has the O(log n) depth and get constant query time in this case. To do this one can simply
translate the technique of Harel and Tarjan [35] to a labeling scheme. Note that whenever
they access global information, it is associated with an ancestor in a tree. Since the depth
of our tree is O(log n), one can copy this ancestor information down to each descendant and
get the desired label of O(log2 n) bits. Thus, tree T (G) can be preprocessed in O(n log n)
time for depths of nearest common ancestors. This preprocessing step creates for T (G) an
NCA-depth labeling scheme with O(log2 n) bit labels and constant query time. For each
vertex x of a graph G, let S(x) be the deepest node of T (G) containing x and Ax be the
label of S(x) in the NCA-depth labeling scheme. Let also S0, S1, . . . , Sh be the nodes of the
path of T (G) from the root (G, v) (which is S0) to the node S(x) = Sh. Clearly, h ≤ log2 n.

In our distance (or routing) labeling scheme, vertex x will keep in its label L(x) the string
Ax and O(log2 n) strings of O(log n) bits, one for each node Si (i ∈ {0, . . . , h}). The string
for Si = (Gi, vi) will contain the distance (or routing) and projection information obtained
during the decomposition of a subgraph Gi using its median vertex vi. To report the distance
between vertices x and y of G (or to route a message from x to y), we can do the following.
First, using strings Ax and Ay, find the depth in T (G) of the nearest common ancestor
Sk = (Gk, vk) of S(x) and S(y). Clearly, vertices x and y belong to different cones defined
by vk in Gk. Therefore, one can apply the method described above to compute dG(x, y) (or
the port number of an edge incident to x which heads in the direction of y) in constant time
using only the strings in L(x) and L(y) which correspond to the node Sk of T (G).

In Section 5, this general method will be described in details for each of the three graph
classes.

4 Geometry of (4,4)-, (3,6)-, and (6,3)-graphs

Here we establish the metric and structural properties of (4,4)-, (3,6)-, and (6,3)-graphs used
in the distance and routing labeling schemes described in Section 3 and detailized in Section
5. In the following results, unless specified, G is a plane graph of one of those types.

4.1 Alternating cuts

We start with a result first established by Lyndon [42] for the three classes of plane graphs
in question and later extended to all plane graphs of non-positive curvature by Baues and
Peyerimhoff [9].
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Figure 1: To the proof of Lemma 4.2.

Lemma 4.1 [9, 42] For each vertex x of a plane graph G of non-positive curvature, all
vertices at maximum distance from x are located on the outer face ∂G.

As we noticed in Section 2, every plane graph G of non-positive curvature has at least
3 corners. If G is a (4,4)-graph, then every corner of G is a vertex of degree 2, and from
the Gauss-Bonnet formula we conclude that in fact such a graph G must contain at least 4
corners. In a similar way, one concludes that a (3,6)-graph either contains exactly 3 corners
which are vertices of degree 2 incident to inner faces of length 3 or at least 4 corners. In
the latter case, the corners are either vertices of degree 2 or vertices of degree 3 incident to
two inner faces, one of length 3 and another of length at most 5. Finally, in a (6,3)-graph
all corners are vertices of degree 2 and G contains at least 6 corners. The following sharper
version of this result established in [8] will be of more use: ∂G contains at least 6 edges
whose end vertices are corners; we call them corner edges (this again follows easily from the
Gauss-Bonnet formula).

We continue with the properties of alternating cuts of G. In the following results, {A, B}
is an alternating cut of the graph G. Several lemmata have been proven in [8] for (3,6)- and
(6,3)-graphs. For (4,4)-graphs, the analogies of some of those results have been established
in [50]. For the sake of completeness we provide all results with proof.

Lemma 4.2 [8, 50] Z(A, B) is a strip.

Proof. Suppose, by way of contradiction, that Z(A, B) is self-intersecting. Then we will
obtain one of the four configurations depicted in Figure 1. In the first three cases, consider
the subgraph H of G induced by all vertices lying in the bounded region R. Obviously H
has the same type as G. If G is a (4,4)-graph, then all vertices of ∂H except one must have
degree larger that two, otherwise we get an inner vertex of degree 2 or 3 in G. However this
contradicts the fact that H must have at least 4 corners. Analogously, if G is a (6,3)-graph,
H cannot contain any corner edge. If G is a (3,6)-graph, any corner of H different from x
will be an inner vertex of G of degree at most 5, again leading to a contradiction. In the
fourth case, the region R degenerates into a path, and one of the end vertices of this path
(namely, the vertex x) is an inner vertex of G having degree 2. �
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Lemma 4.3 [8] The border lines of an alternating cut are convex paths. In particular, the
alternating cuts of G and their zones are convex.

Proof. From Lemma 4.2 we conclude that ∂A and ∂B are paths. Therefore, it suffices
to establish that they are convex. Assume the contrary and among alternating cuts with
nonconvex border lines pick an alternating cut {A, B} such that ∂A contains a closest pair of
vertices x and y which can be connected by a shortest (x, y)-path P such that P∩∂A = {x, y}.
Since the lengths of the subpaths of ∂A and ∂B, comprised between the end vertices of two
edges of E(A, B), differ by at most 1 (because the cut {A, B} is alternating), necessarily the
whole path P must belong to the set A. Otherwise, we can replace x, y ∈ ∂A with a pair of
vertices of ∂B ∩ P, contrary to our choice. Let z be a neighbor of x on the path P. Consider
the alternating cuts {A′, B′} and {A′′, B′′} which cross the edge xz. If one of these cuts,
say {A′, B′}, crosses another edge x′y′ of P, where z, y′ ∈ A′, then by replacing x, y ∈ ∂A
with the pair z, y′ ∈ ∂A′, we will get a contradiction with the choice of x, y. Thus, we may
assume that both these alternating cuts separate some adjacent vertices u, v of the path ∂A,
say x, u ∈ ∂A′ and z, v ∈ ∂B′. We will obtain one of the situations depicted in Figure 2. In
the first case, let H be the subgraph of G comprised in the region R. Let t be the closest to
u common vertex of ∂A and ∂A′. If G is a (4,4)-graph, then H may contain only two corners
t and u. If G is a (6,3)-graph, then H may contain at most four corner edges which are all
incident to t or to u. Finally, if G is a (3,6)-graph, then any corner w of H other than t and u
will be an inner vertex of G having degree at most 5: if, say w ∈ ∂A′, then w has maximum 4
neighbors in the zone Z(A′, B′) and yet another neighbor located in the interior of the region
R. This contradicts the fact that H must contain at least three corners. Now consider the
second possibility from Figure 2. If G is a (4,4)- or a (6,3)-graph, then from the definition of
an alternating cut one concludes that u cannot have other neighbors in ∂B ′ except v. Since
u can have at most one neighbor in ∂B, u is an inner vertex of G of degree 2 or 3, which
is impossible if G is of type (4,4). But, if u has degree 3, then necessarily the inner face of
Z(A, B) containing the edge uv is either of length 4 or 5, yielding a contradiction if G is of
type (6,3). Finally, if G is of type (3,6), since ∂A and ∂A′ share the subpath between u and
x, one can easily deduce that u is an inner vertex of G of degree at most 5, a contradiction.
This shows that the border lines of alternating cuts of G are convex paths, from which we
infer that the alternating cuts of G and their zones are convex, too. �

Since every edge of G is crossed by exactly two alternating cuts from AC(G), previous
lemma implies that the graphs of types (4,4), (3,6), and (6,3) have a scale 2 embedding into
a hypercube (i.e., for any pair of vertices x, y of G, 2d(x, y) equals the number of cuts of
AC(G) separating the vertices x and y), a result established in [8] for (3,6)- and (6,3)-graphs
and in [50] for (4,4)-graphs.

Let xy be an edge of G and let {A′, B′} and {A′′, B′′} be the (not necessarily distinct)
alternating cuts crossing xy, where x ∈ A′ ∩ A′′ and y ∈ B′ ∩ B′′. We will establish now
a relation between A′, B′, A′′, B′′ and the sets W (x, y), W (y, x), W=(xy) (the third set here
may be empty). By removing the edges of E(A′, B′) ∪ E(A′′, B′′) from G but leaving their
end vertices, we get a graph whose connected components are induced by the pairwise in-
tersections A′ ∩ A′′, B′ ∩ B′′, A′ ∩ B′′, and A′′ ∩ B′. We assert that these convex sets co-
incide with W (x, y), W (y, x) and the connected components of W=(xy). First notice that
from the definition of alternating cuts and convexity of their border lines it follows that
Z = Z(A′, B′) ∩ Z(A′′, B′′) consists of one or several faces constituting a strip. Notice that
each of the end faces of Z either shares an edge with the outer face of G or is an odd face.
Denote by F and D these odd faces if they exist. Notice that all other faces of Z have even
length. Let uv and wz be the first edges of F and D cut by {A′, B′} and {A′′, B′′} while
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Figure 2: To the proof of Lemma 4.3.

moving from xy towards these faces, and assume that u, w ∈ A′ ∩ A′′ and v, z ∈ B′ ∩ B′′.
Let pr′ and pr′′ be the opposite to uv edges of F and let qt′ and qt′′ be the opposite to
wz edges of D. Assume that the cut {A′, B′} makes turns at the edges pr′′ and qt′ such
that p, t′ ∈ ∂A′ and r′′, q ∈ ∂B′. Then, the cut {A′′, B′′} makes turns at the edges pr′

and qt′′ such that r′, q ∈ ∂A′′ and p, t′′ ∈ ∂B′′; see Figure 3 for an illustration. Since the
zones Z(A′, B′), Z(A′′, B′′) and their border lines are convex, we conclude that all vertices
of ∂A′ are closer to x than to y, all vertices of ∂B′′ are closer to y than to x, while the
vertices of the subpaths L′, L′′ of ∂B′ and ∂A′′, comprised between q and their end vertices
of ∂G, are equidistant from x and y as well as the vertices of the subpaths P ′, P ′′ of ∂A′

and ∂B′′, comprised between p and their end vertices of ∂G. Now, if we pick a vertex z in
B′ ∩A′′, then any shortest path between z and x or y must cross one of the paths L′ or L′′,
therefore z is equidistant from x and y. Analogously, all vertices of A′ ∩ B′′ are equidistant
from x and y, while all vertices of A′ ∩ A′′ are closer to x than to y and all vertices of
B′ ∩ B′′ are closer to y than to x. Since any path connecting vertices from different convex
sets A′ ∩A′′, A′ ∩B′′, B′ ∩A′′, B′ ∩A′′ necessarily employs an edge of E(A′, B′)∪E(A′′ , B′′),
these sets are the connected components of the graph obtained from G by removing the edges
of E(A′, B′)∪E(A′′, B′′). If both F and D do not exist, then the cuts {A′, B′} and {A′′, B′′}
coincide, and if only one of the faces F, D exists, then W=(xy) consists of a single convex
component. Summarizing, we obtain the following result:

Lemma 4.4 W (x, y) = A′ ∩ A′′, W (y, x) = B′ ∩ B′′, while W=(x, y) := B′ ∩ A′′ and
W=(y, x) := A′∩B′′ constitute a partition of W=(xy) into two (maybe empty) convex subsets.

From the previous discussion we also conclude that every vertex z ′ ∈ W=(x, y) can be
connected to x and y by a shortest path going via p. Moreover, p is the furthest from z ′

vertex of I(z′, x) ∩ I(z′, y). Following [7], we call p the apex of z′ with respect to x and y.
Analogously, one can define the apex of every vertex z ′′ ∈ W=(y, x) and see that it coincides
with the vertex q (see Figure 3).

4.2 Faces

We continue with some properties of inner faces of G.
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Figure 3: Relationship between the sets A′, B′, A′′, B′′ and the sets W (x, y), W (y, x), W=(xy).

Lemma 4.5 The intersection of any two inner faces of G is either empty, or a vertex, or
an edge.

Proof. Let F ′ and F ′′ be two intersecting inner faces. Then F ′∩F ′′ cannot contain paths
of length 2, because all inner vertices must have degree at least 3. Thus, F ′ ∩ F ′′ consists
of a sequence of isolated vertices and edges. Let R be the region bounded by two paths of
F ′ and F ′′, respectively, comprised between two consecutive non-adjacent common vertices.
The subgraph H of G comprised in R has the same type as G but does not contain vertices
of degree 2 at all. This leads to a contradiction for the case of (4,4)- and (6,3)-graphs. If G
is a (3,6)-graph, any corner of degree 3 of H is an inner vertex of degree 3 or 4 of G, which
is impossible. This establishes our assertion. �

Lemma 4.6 [8] Every inner face F of G is convex.

Proof. Assume, by way of contradiction, that two (necessarily non adjacent) vertices u, v
of F can be connected by a shortest path P outside F, i.e., P ∩ F = {u, v}. From Lemma
4.3 we conclude that u and v will be separated by any alternating cut {A, B} which crosses
the face F. This cut crosses two edges u′v′ and u′′v′′ of F, where u′, u′′ ∈ A, v′, v′′ ∈ B and
the edge u′v′ is located in the interior of the region bounded by P and the subpath of F
comprised between u and v. Moreover, {A, B} cuts the path P in some edge xy, where x ∈ A
and y ∈ B. Since v′′, v′, y ∈ ∂B, from Lemma 4.3 we know that there exists a unique shortest
path between v′′ and y and this path must pass via the vertices v and v′, yielding v = v′.
Analogously, one concludes that u = u′, contrary to the choice of u and v. �

Lemma 4.7 Every inner face F of G is quasigated.

Proof. Suppose there exist vertices of G whose projections on F contain non-adjacent
vertices and among such triplets select the vertices x /∈ F, u, v ∈ Pr(x, F ) minimizing the
distance sum d(x, u) + d(u, v) + d(v, x). Pick shortest (u, x)- and (v, x)-paths P ′ and P ′′.
Let Q′ and Q′′ be the subpaths of F comprised between u and v, and assume, without
loss of generality, that Q′ is located in the interior of the region bounded by the closed walk
P ′∪P ′′∪Q′′. Let w be the neighbor of u in Q′. Then d(x, w) ≥ d(x, u), because u ∈ Pr(x, F ).
Since every alternating cut separating the vertices w and x either separates u from x or u
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from w, and there exists exactly 2d(w, x)(≥ 2d(u, x)) such cuts, we conclude that there exists
a cut {A, B} ∈ AC(G) such that u, x ∈ A and w, v ∈ B. This cut separates two adjacent
vertices p, q ∈ P ′′ and two adjacent vertices u′, w′ ∈ Q′′, where u′, p ∈ A and v′, q ∈ B.
Notice that u′, u, p ∈ ∂A and v′, w, q ∈ ∂B. Since ∂B is convex by Lemma 4.3, the vertices
v and w lie on this path. Therefore, w ∈ I(v, q) ⊂ I(v, x), contrary to the assumption that
I(x, v) ∩ F = {v}. This establishes that the vertices of Pr(x, F ) are pairwise adjacent. For
graphs of type (4,4) or (6,3) we immediately obtain that Pr(x, F ) consists of one or two
vertices. If G is of type (3,6), however |Pr(x, F )| > 2, then F is 3-cycle (u, v, w) whose
vertices have the same distance to x. One of these vertices, say u, is located in the region
R bounded by the edge vw and two shortest paths connecting v, w with x. Consider the
subgraph (of type (3,6)) of G induced by the vertices lying inside R or on the boundary of
R. By Lemma 4.1, all inner vertices of this graph must be closer to x than v and w, which
is not the case for u. �

Lemma 4.8 Given three vertices x, y, z such that d(x, z) = d(y, z) and d(x, y) = 1, either
x, y, z belong to a common odd face or there exists an even face F such that the edges xy and
z′z′′ are opposite in F , where Pr(z, F ) = {z′, z′′}.

Proof. Let z ∈ W=(x, y); see Figure 3. Then the required face is F if the edge xy belongs
to F or the face of Z incident to xy and comprised between xy and F. �

4.3 Intervals

The following property of intervals will be of much use.

Lemma 4.9 The vertex x has at most two (consecutive) neighbors in the interval I(x, y). If
G is a (6,3)-graph, then I(x, y) contains at most two vertices at distance 2 from x. Moreover,
if x has two neighbors and two vertices at distance 2 in I(x, y), then these five vertices belong
to a common inner face of G.

Proof. We proceed by induction on d(x, y). Pick two neighbors u, w of x in I(x, y) and
let P ′ and P ′′ be two shortest (x, y)-paths passing via u and w. From Lemma 4.1 applied to
the subgraph of G induced by all vertices lying on P ′∪P ′′ or inside the region R bounded by
the closed walk P ′∪P ′′, we conclude that any neighbor v ∈ R of x also belongs to I(x, y). So,
further assume that I(x, y) contains three vertices u, v, w such that each of the triplets x, u, v
and x, v, w lies on common inner faces F ′ and F ′′ of G. Then F ′ ∩F ′′ = {x, v}. If F ′ and F ′′

have length ≥ 4, let v′ and v′′ be the (different) neighbors of v in the faces F ′ and F ′′. Since
v′, v′′ ∈ I(v, y) in view of Lemma 4.7, by the induction assumption we conclude that v, v′,
and v′′ belong to a common inner face F of G. As a consequence, we infer that v is an inner
vertex of G of degree 3, leading to a contradiction if G is of type (4,4) or (3,6). If F ′, F ′′ have
length 3 each (i.e., G has the type (6,3)), then the edges uv and vw belong to two other inner
faces D′ and D′′. Let v′ and v′′ be the neighbors of v in D′ and D′′. Since v′, v′′ ∈ I(v, y)
by Lemma 4.8, the vertices v, v′, v′′ belong to a common face D, and we conclude that v has
degree 5 if v′ 6= v′′ and degree 4 if v′ = v′′. The case when G is of type (3,6) and only one
of the faces F ′ and F ′′ has length 3 is analogous. On the other hand, if G is of type (6,3),
then v has in I(v, y) four vertices at distance 2, in contradiction to the induction hypothesis.
Thus, in all cases, x may have maximum two consecutive neighbors in I(x, y). To complete
the proof, it remains to establish that if G is of type (6,3), then I(x, y) contains at most two
vertices at distance 2 from x. Let u and v be the neighbors of x in I(x, y), and let F be the
inner face of G passing via x, u, and v. Let u′ and v′ be the neighbors of u and v in F, and
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suppose, by way of contradiction, that v has yet another neighbor v′′ in I(v, y) ⊂ I(x, y). The
vertices v′, v, v′′ belong to a common inner face F ′ of G. As F ∩F ′ = {v, v′} and the faces F
and F ′ are quasigated and have at least 6 vertices each, we conclude that the neighbors of v ′

in F and F ′ and the neighbor of v′′ in F ′ are all different and belong to the interval I(v, y),
contrary to the induction hypothesis. �

4.4 Projections on zones

We specify the structure of projections of vertices on zones for each type of graphs.

Lemma 4.10 The zone Z(A, B) of any alternating cut {A, B} of a (4,4)-graph G is quasig-
ated, i.e., Pr(x, Z(A, B)) consists of one or two adjacent vertices. If additionally G is bi-
partite, then Z(A, B) is gated.

Proof. Let x ∈ A and denote by a, b the end vertices of the border line ∂A. Let u and
v be the vertices of Pr(x, Z(A, B)) closest to a and b, respectively. Then u ∈ I(a, x) and
v ∈ I(b, x). Suppose that d(x, v) ≤ d(x, u) and call k = d(x, v) the distance of x to Z(A, B).
We proceed by induction on k. Suppose, by way of contradiction, that u and v are not
adjacent. Then, the neighbor w of v in the convex path I(u, v) ⊆ ∂A is different from u.
Let y be a neighbor of x in I(x, v). Since the distance of y to Z(A, B) is smaller than k, by
the induction hypothesis y has a quasigate in Z(A, B). Hence, either Pr(y, Z(A, B)) = {v}
or Pr(y, Z(A, B)) = {v, w}. Notice that d(y, w) ≥ d(y, v), otherwise w ∈ I(y, v) ⊂ I(x, v),
contrary to the fact that v ∈ Pr(x, Z(A, B)). We will assume that Pr(y, Z(A, B)) = {v, w},
the other case being similar. Then w ∈ I(u, y) ⊆ I(a, y). Let z be the neighbor of u in the
convex path I(u, w). Then v, w, y ∈ W (z, u), while x /∈ W (z, u) from the choice of u. From
Lemma 4.4 we infer that one of the alternating cuts (say, {A′, B′}), crossing the edge uz,
also crosses the edge xy, say u, x ∈ ∂A′ and z, y ∈ ∂B′. Lemma 4.3 yields I(u, x) ⊆ ∂A′

and I(z, w) ⊂ I(z, y) ⊆ ∂B′. Hence uz is an inner edge of E(A′, B′). Let F ′ and F ′′ be
the faces of Z(A′, B′) sharing uz, where F ′ ∈ Z(A, B). If z 6= w, then F ′′ contains the
edge zt of the path I(z, w) incident to z. Since F ′′ ∩ F ′ = {u, z}, the edge zt belongs to a
face F 6= F ′ of the zone Z(A, B). Since the faces of G have at least 4 edges and the cut
{A′, B′} is alternating, we deduce that z is an inner vertex of degree 3, a contradiction.
Now suppose that z = w, i.e., d(u, v) = 2. In this case, d(x, u) = d(x, z) = d(x, v). Also
d(y, v) = d(y, w) because v, w ∈ Pr(y, Z(A, B)). Let y0 be the apex of y with respect to v, w,
and let y′ be the neighbor of y0 in the convex path I(y0, z) ⊆ ∂B′. Then y′ ∈ W (z, v) and
y0 /∈ W (z, v), whence, by Lemma 4.4, there is an alternating cut {A′′, B′′} crossing y0y

′ and
vz, say y′, z ∈ ∂A′′ and y0, v ∈ ∂B′′. Since y′ ∈ ∂B′ and G has type (4,4), one can easily see
that y′ is an inner vertex of degree at most 3: except its two neighbors in I(x, z), y′ may
have only one other neighbor in ∂A′. �

For a vertex x ∈ A, we call two vertices u, v of Pr(x, Z(A, B)) ⊆ ∂A consecutive if the sub-
path P of ∂A comprised between u and v does not contain other vertices of Pr(x, Z(A, B)).

Lemma 4.11 If {A, B} is an alternating cut of a (3,6)-graph G and x ∈ A, then
Pr(x, Z(A, B)) induces a (convex) subpath of ∂A all vertices of which have the same distance
to x.

Proof. Pr(x, Z(A, B)) is a subset of the convex path ∂A. To establish the assertion,
it suffices to show that two consecutive vertices u, v of Pr(x, Z(A, B)) are adjacent in G.
Suppose, by way of contradiction, that u and v are not adjacent, and let P be the subpath
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of ∂A between u and v. Then, for any vertex w ∈ P \ {u, v}, at least one of the vertices
u, v belongs to I(w, x). Therefore, there exist two adjacent or coinciding vertices w′, w′′ ∈ P
such that u ∈ I(w′, x) and v ∈ I(w′′, x). If w′ = w′′, then the neighbors t′ and t′′ of w′ in
∂A belong to the interval I(w′, x), therefore w′, t′, and t′′ belong to a common inner face F
(by Lemma 4.9). Since F is not in Z(A, B) and w′ belongs to at most three inner faces of
Z(A, B), we deduce that w′ is an inner vertex of degree at most 4: w′ has two neighbors in
∂A, at most two neighbors in ∂B and no other neighbors, yielding a contradiction.

Now suppose that w′ and w′′ are adjacent and w′ /∈ I(w′′, x), w′′ /∈ I(w′, x), whence
d(x, w′) = d(x, w′′). Notice also that w′ 6= u or w′′ 6= v, say the second. Let x0 be the apex
of x with respect to w′, w′′, and let x′ ∈ I(x0, w

′) and x′′ ∈ I(x0, w
′′) be adjacent to x0.

Consider the two alternating cuts {A′, B′} and {A′′, B′′} crossing the edge w′w′′. Then one
of these cuts, say {A′, B′}, will cross the edge x0x

′ and the second one {A′′, B′′} will cross
the edge x0x

′′. Obviously, the cut {A′, B′} will also cross an edge of every shortest (x, u)-path
and the cut {A′′, B′′} will cross an edge z′z′′ of every shortest (x, v)-path. Let x, z′, w′ ∈ A′′

and z′′, w′′ ∈ B′′, more precisely z′, w′ ∈ ∂A′′ and z′′, w′′ ∈ ∂B′′. Let also F be the face of
Z(A, B) containing the edge w′w′′. Since v ∈ I(w′′, x) and z′′ ∈ I(v, x), we conclude that
v ∈ I(w′′, z′′) ⊆ ∂B′. Therefore, the vertex w′′ belongs to a face F ∈ Z(A, B) ∩ Z(A′′, B′′),
to another face D of Z(A′′, B′′) and maybe to two other faces of Z(A, B). Since w′′ may
have only one neighbor in D∩∂A′′, except its neighbor in I(w′′, v) (this will happen if D has
length 3), we conclude that w′′ is an inner vertex of G but its degree is 4 or 5, a contradiction.
�

We call a sequence of vertices u1, u2, . . . , uk of ∂A a 2-path if d(ui, ui+1) = 2 for all
i = 1, . . . , k − 1.

Lemma 4.12 If {A, B} is an alternating cut of a (6,3)-graph G and x ∈ A, then the projec-
tion Pr(x, Z(A, B)) is a vertex, two adjacent vertices, or a 2-path such that any its consecutive
vertices belong to different faces of Z(A, B). In the latter case, all vertices of Pr(x, Z(A, B))
except maybe the leftmost and/or the rightmost vertices have the same distance to x, while
one or both end vertices may be one step further from x.

Proof. First we will establish that two consecutive vertices u, v ∈ Pr(x, Z(A, B)) are at
distance at most 2. Suppose, by way of contradiction that, d(u, v) ≥ 3. Then, as in the proof
of Lemma 4.11, there exist two adjacent or coinciding vertices w′, w′′ such that u ∈ I(w′, x)
and v ∈ I(w′′, x). If w′ = w′′, then the neighbors t′ ∈ I(w′, u) and t′′ ∈ I(w′, v) of w′ in
∂A belong to the interval I(w′, x), therefore, w′, t′, and t′′ belong to a common inner face
F of G. This face intersects Z(A, B) along the edges w′t′ and w′t′′ (which must belong to
different faces of this zone). As d(u, v) ≥ 3, we may suppose, without loss of generality, that
t′ 6= u. Since G is a (6,3)-graph, we conclude that w′ will have in I(w′, x) at least three
distinct vertices at distance 2: the neighbors of t′ and t′′ in F and the neighbor of t′ in
I(t′, u), which is impossible by Lemma 4.9. If w′ 6= w′′, then w′ 6= u or w′′ 6= v, say the
second. We employ the same notations as in the similar case for (3,6)-graphs (see the proof
of Lemma 4.11): x0 is the apex of x with respect to w′, w′′; x′ ∈ I(x0, w

′) and x′′ ∈ I(x0, w
′′)

are neighbors of x0; {A′, B′} is the alternating cut crossing the edges w′w′′ and x0x
′ and

{A′′, B′′} is the alternating cut crossing the edges w′w′′ and x0x
′′. Finally, let F ∈ Z(A, B)

and D be the faces of Z(A′, B′) and Z(A′′, B′′) sharing the edge w′w′′. Since G is a (6,3)-
graph and I(w′′, v) ⊂ ∂B′′, the face D contains the neighbor t of w′′ in I(w′′, v) (t exists
because w′′ 6= v). Analogously, if {A′, B′} crosses the edge y′y′′ of a shortest (x, u)-path
and w′, y′ ∈ ∂A′, w′′, y′′ ∈ ∂B′′, since I(w′, u) ⊂ ∂A′, we conclude that the neighbor s of w′

in I(w′, u) (if it exists) belongs to the face D. Since F ∩ D = {w′, w′′}, the vertex w′′ has
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a neighbor in ∂B. But now t will be an inner vertex of degree 2 unless t = v. If w′ 6= u,
then in a completely analogous way we can show that s = u, whence u ∈ D. On the other
hand, u ∈ F, because F has length ≥ 6 and therefore w′ cannot have a neighbor in ∂B. This
contradiction with Lemma 4.5 establishes that indeed d(u, v) ≤ 2.

If d(u, v) = 2, then u and v must belong to different faces of Z(A, B) because the faces of G
are quasigated. We also assert that in this case the vertices u and v belong to a common inner
face F /∈ Z(A, B). Let y be their common neighbor. If d(u, x) = d(v, x), then u, v ∈ I(y, x)
and u, v, y lie on a common face by Lemma 4.9. So, assume d(u, x) < d(v, x) = d(y, x).
From last equality and Lemma 4.8 one concludes that y and v belong to a common face
F ′ /∈ Z(A, B). If u ∈ F ′, we are done. Otherwise, let y′ be the neighbor of y in F ′, and let t′

be the neighbor of y′ in F ′. Since y′, u ∈ I(y, x), there is a face F ′′ passing via u, y′ and y by
Lemma 4.9. Then, the neighbor t′′ of y′ in F ′′ is different from t′. Therefore, t′′, t′, and the
neighbor of u in F ′′ are three vertices of I(y, x) at distance 2 from y, yielding a contradiction
with the second assertion of Lemma 4.9. Thus, u and v belong to a common face.

In order to further specify the structure of the projections, first suppose that Pr(x, Z(A, B))
contains two adjacent vertices u, v. We assert that in this case Pr(x, Z(A, B)) does not con-
tain any other vertices. For this, we proceed by induction on d(x, u). Suppose, by way of
contradiction, that w is yet another vertex from the projection. In view of what has been
proven above, w may be chosen so that d(v, w) ≤ 2. First assume that v and w are adjacent.
Then, the vertices u, v, and w have the same distance to x and the vertices u, w belong to
different faces of Z(A, B). Also one can easily see that v is an inner vertex of G. Let F ′ and
F ′′ be the faces containing the edges uv and vw provided by Lemma 4.8, respectively (which
do not belong to Z(A, B)). Let v′ ∈ F ′ and v′′ ∈ F ′′ be the neighbors of v and let t′ and t′′ be
the neighbors in F ′ and F ′′ of v′ and v′′ different from v. Notice that the vertices v′, v′′, t′, t′′

belong to the interval I(v, x). If v′ 6= v′′, then let F be the face passing via v, v′, v′′ (this face
exists by Lemma 4.9). The neighbors z′ and z′′ in F of v′ and v′′ also belong to I(v, x) and
are different from t′ and t′′, whence I(v, x) contains at least 4 vertices at distance 2 from
v, which contradicts Lemma 4.9. So, assume that v′ = v′′, and let F be the face passing
via the vertices t′, t′′ ∈ I(v′, x) and v′. Let z′ and z′′ be the neighbors of t′ and t′′ in F.
Denote also by s′ and s′′ the neighbors of t′ and t′′ in F ′ and F ′′. Since z′ 6= s′ and z′′ 6= s′′

and z′, z′′ ∈ I(v′, x), from Lemma 4.9 we conclude that s′ and s′′ do not belong to I(v′, x).
This is possible only if F ′ and F ′′ are faces of length 6. Let u′ be the common neighbor of
s′ and u in F ′. Consider an alternating cut {A′, B′} which crosses the edges s′u′ and v′v.
Then, s′, t′, t′′, s′′ ∈ Pr(x, Z(A′, B′)), which is impossible by the induction hypothesis. Now
consider the case when d(v, w) = 2 and d(u, w) = 3. Let y be the common neighbor of v and
w. Let the face F ′ play the same role as in previous case. From the first part of the proof we
know that v, y, w belong to a common face F ′′. Let, as above, v′ and v′′ be the neighbors of
v in F ′ and F ′′, and let t′ and t′′ be the neighbors of v′ and v′′ in F ′ and F ′′. Notice that
t′, t′′ ∈ I(v, x), therefore, if v′ 6= v′′, then v, v′, v′′, t′, t′′ belong to a common face by Lemma
4.9, yielding that v′ and v′′ are inner vertices of degree 2, a contradiction. So, let v′ = v′′,
and denote by F the face containing v′, t′, and t′′ and denote by z′ and z′′ the neighbors of
t′ and t′′ in F. Since z′, z′′ ∈ I(v′, x), again by Lemma 4.9, we infer that the neighbors s′ and
s′′ of t′ and t′′ in F ′ and F ′′, respectively, do not belong to I(v′, x), whence t′ and t′′ belong
to the projections of x on the faces F ′ and F ′′. This implies that F ′ has length 6 and F ′′

has length 6 or 7. Again consider an alternating cut {A′, B′} crossing the edges s′u′ and v′v,
where u′ is the common neighbor of s′ and u in F ′. Then s′, t′, t′′ ∈ Pr(x, Z(A′, B′)), and we
get a contradiction with the induction hypothesis. This shows that if the projection of x on
Z(A, B) contains two adjacent vertices, then it does not contain any other vertices.

Now suppose that Pr(x, Z(A, B)) = {u1, u2, . . . , uk} is a 2-path. To prove the lemma
in this case, it suffices to establish that d(ui, x) ≤ min{d(ui−1, x), d(ui+1, x)} for any i =
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2, . . . , k − 1. Suppose, by way of contradiction, that d(ui, x) > d(ui−1, x). Let F ′ be the face
containing the vertices ui−1 and ui, and let F ′′ be the face containing the vertices ui and
ui+1. Then F ′ and F ′′ must intersect along an edge uiy, otherwise we can show as before that
I(ui, x) contains at least four vertices at distance 2 from ui. Let t′ and t′′ be the neighbors of
y in F ′ and F ′′. Since t′, t′′ ∈ I(y, x), they belong to a common face F. Let z′ and z′′ be the
neighbors of t′ and t′′ in F. Since F is quasigated and d(t′, x) = d(t′′, x) one can easily conclude
that z′ and z′′ belong to I(y, x). On the other hand, since d(ui, x) = d(ui−1, x) + 1 and F ′ is
quasigated, either the vertex t′ does belong to the projection of x on F ′ or F ′ has length 6.
In the either case, the neighbor s′ of t′ in F ′ belongs to the interval I(t′, x) ⊂ I(y, x). Since
s′ is different from z′ and z′′, the interval I(y, x) contains three vertices at distance 2 from y,
a contradiction with Lemma 4.9. If F ′ has length 6, let s be the common neighbor of t′ and
ui−1. Consider an alternating cut {A′, B′} crossing the edges sui−1 and yui. Then we easily
see that the adjacent vertices s, t′, and a vertex of the face F ′′ belong to Pr(x, Z(A′, B′)),
contrary to what has been proven above. This completes the proof of the lemma. �

Lemma 4.13 Given a vertex x ∈ A \ ∂A and an alternating cut {A, B} of G, there exist
two (not necessarily distinct) neighbors ux and vx of x such that I(x, w) ∩ {ux, vx} 6= ∅
for any vertex w ∈ Pr(x, Z(A, B)). In particular, I(x, y) ∩ {ux, vx} 6= ∅ for any vertex
y ∈ B. Analogously, any vertex x ∈ ∂A has two neighbors ux, vx in Z(A, B) such that
I(x, y) ∩ {ux, vx} 6= ∅ for any vertex y ∈ B.

Proof. First suppose that x ∈ A \ ∂A. The result is obvious if Pr(x, Z(A, B)) consists of
one or two vertices (in particular, for (4,4)-graphs in view of Lemma 4.10): as ux and vx it
suffices to take any neighbors of x on shortest paths connecting x with the vertices from the
projection. Analogously, if x contains a neighbor ux ∈ I(x, u)∩I(x, v) (where u and v are the
end vertices of Pr(x, Z(A, B))), then from the properties of projections one concludes that
Pr(ux, Z(A, B)) = Pr(x, Z(A, B)) and that ux ∈ I(x, w) for any w ∈ Pr(x, Z(A, B)). So,
further assume that I(x, u)∩ I(x, v) = {x}, in particular, d(x, v) ≤ d(ux, v) for any neighbor
ux of x in I(x, u). Let v′ be the closest to v vertex of Pr(ux, Z(A, B)) (i.e., Pr(ux, Z(A, B)) ⊆
I(u, v′)) and let t be a neighbor of ux in I(ux, v′) ⊆ I(ux, v). If d(x, v) < d(ux, v), then denote
by F the face containing the vertices ux, t, x (see Lemma 4.9), otherwise if d(x, v) = d(ux, v),
then denote by F the face containing the edge xux and provided by Lemma 4.8. Let vx be
the neighbor of x in F different from ux.

First, suppose that G is a graph of type (3,6). By Lemma 4.11, Pr(x, Z(A, B)) = I(u, v)
and all its vertices have the same distance to x. Moreover Pr(ux, Z(A, B)) ⊆ Pr(x, Z(A, B))
and every vertex of Pr(ux, Z(A, B)) is closer to ux than to x, because ux is one step closer
to Z(A, B) than x. Suppose, by way of contradiction, that v′ is not adjacent to v (otherwise
we are done). Since v′ ∈ I(v, ux) and d(x, v) ≤ d(ux, v) we conclude that d(v′, v) = 2 and
x ∈ I(ux, v). The face F defined above and passing via ux, t, x will have length ≥ 4, otherwise
x and t are adjacent and ux /∈ I(x, v′). Since x, t ∈ I(ux, v) and F is quasigated, one can
easily conclude that vx ∈ I(x, v). We also assert that {ux, vx} ∩ I(x, w) 6= ∅, where w is the
common neighbor of v′ and v. Indeed, the vertex t is closer to w than the vertices ux and x,
therefore the distance from w to F is at most d(w, x)− 1, thus x /∈ I(x, w) ∩Pr(w, F ) and a
shortest path from x to w crossing this intersection will go via ux or vx.

Now, let G be a (6,3)-graph. By Lemma 4.12, we may assume that d(u, v) > 2 and that
Pr(x, Z(A, B)) consists of each second vertex of the subpath of ∂A comprised between u and
v. As in the case of (3,6)-graphs or applying Lemma 4.8 one concludes that x does not belong
to the projections of v and v′ on F. Moreover, vx belongs to a shortest path P between v and
x passing via Pr(v, F ). Now, one can easily see that for any other vertex w ∈ Pr(x, Z(A, B)),
every shortest path connecting w with x and intersecting Pr(w, F ) will pass via ux or via vx.
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The vertices w ∈ Pr(x, Z(A, B)) for which ux ∈ I(w, x) form a subchain of Pr(x, Z(A, B))
because if w′, w′′ ∈ Pr(x, Z(A, B)) have this property then every vertex of Pr(x, Z(A, B))
comprised between w′ and w′′ also will have this property (the same is true for the vertices
w ∈ Pr(x, Z(A, B)) for which vx ∈ I(w, x)).

Finally, notice that for a vertex y ∈ B any shortest (x, y)-path crosses Z(A, B), therefore
there will exist shortest paths which traverse Pr(x, Z(A, B)). From what has been proven
above we conclude that there exist shortest (x, y)-paths going via ux or vx.

Now suppose that x ∈ ∂A. Since any shortest path connecting x with a vertex of B crosses
the path ∂B, to establish the second assertion it suffices to show that x has two neighbors
ux, vx ∈ Z(A, B) such that I(x, z) ∩ {ux, vx} 6= ∅ for any vertex z ∈ ∂B. If x does not have
any neighbor in ∂B, then as ux and vx we will consider the two neighbors of x in ∂A. Now
suppose that x has precisely one neighbor in ∂B, say y, and let {A′, B′} and {A′′, B′′} be
the alternating cuts crossing the edge xy (i.e. {A, B} is one of these cuts); see Figure 3.
Let x′ and x′′ be the neighbors of x in ∂A, where x′ is between x and w and x′′ is between
u and x. For all vertices z ∈ (∂B′ \ L′) ∪ (∂B′′ \ P ′′) there is a shortest (x, z)-path going
via y; for all vertices z ∈ L′ there is a shortest (x, z)-path going via x′ and for all vertices
z ∈ P ′′ there is a shortest (x, z)-path going via x′′. Therefore we can set {ux, vx} := {x′, y}
if {A, B} = {A′, B′} and {ux, vx} := {x′′, y} if {A, B} = {A′′, B′′}. Finally, if x contains two
neighbors in ∂B, then they form a triangular face and from the definition of alternating cut
one concludes that there is a shortest path between x and any vertex of ∂B going via these
neighbors. For example, if in Figure 3 x is adjacent to q, then {A, B} = {A′, B′} and for any
vertex of L′ there is a shortest path to x going via q (for any other vertex of ∂B ′ there will
be a shortest path to x going via y). �

4.5 A distance property

Let v be an inner vertex of G and let u0, u1, . . . , uk−1 be the neighbors of v labeled coun-
terclockwise. Notice that the sets W (ui, v) and W (uj , v) are disjoint unless ui and uj are
consecutive or coincide. Indeed, if z ∈ W (ui, v) ∩ W (uj , v) and i 6= j, then ui, uj ∈ I(v, z),
therefore, by Lemma 4.9, x, ui and uj belong to a common face of G.

Lemma 4.14 If G is a (4,4)- or a (6,3)-graphs, x ∈ W (ui, v), y ∈ W (uj , v), and ui, uj

are not p-consecutive for p ≤ 2, then v ∈ I(x, y). Analogously, if G is a (3,6)-graph, x ∈
W (ui, v), y ∈ W (uj , v), and ui, uj are not p-consecutive for p ≤ 3, then v ∈ I(x, y).

Proof. First, by induction on d(y, uj), we will show that if y ∈ W (uj , v) and ui and
uj are not consecutive in a graph G of type (4,4) or (6,3), then v ∈ I(ui, y) (this covers
the assertion in the case x = ui). An analogous assertion holds for a (3,6)-graph provided
ui and uj are neither consecutive nor 2-consecutive. The result is obvious if y = uj . So,
assume y 6= uj and let y′ be a neighbor of y in I(y, uj). Since y′ ∈ W (uj , v), the induction
hypothesis yields v ∈ I(ui, y

′), therefore, y′ ∈ W (v, ui). If v /∈ I(ui, y), then y /∈ W (v, ui).
From Lemma 4.4 there exists an alternating cut {A, B} such that ui, y ∈ ∂A and v, y′ ∈ ∂B.
Moreover uj ∈ I(v, y′) ⊆ ∂B. This immediately implies that the vertices ui, v, uj belong to
a common face of Z(A, B), which is impossible because ui and uj are not consecutive. For
(3,6)-graphs either we get the same contradiction, or ui, v, and the neighbor z of ui in ∂A
constitute a triangular face of Z(A, B), while v, z, and uj belong to another face of Z(A, B),
from which we infer that ui and uj are 2-consecutive. This contradiction establishes the
required inclusion v ∈ I(ui, y).

Now we consider the general case x 6= ui. We may suppose, without loss of generality,
that I(x, y)∩W (ui, v) = {x}, otherwise we can use induction on d(x, ui). Let z be a neighbor
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of x in I(x, y). Since z /∈ W (ui, v), by Lemma 4.4, there exists an alternating cut {A, B}
crossing the edges uiv and xz. Let ui, x ∈ ∂A and v, z ∈ ∂B. Denote by ul the neighbor of v
in the convex path ∂B. Since ul and uj are not consecutive if G is a graph of type (4,4) or
(6,3), and ul and uj are not consecutive or 2-consecutive if G is a graph of type (3,6), from
the first part of this proof we obtain that v ∈ I(ul, y).

If the projection of y on Z(A, B) does not intersect the subpath of ∂B starting at ul,
passing via z, and ending at a vertex of ∂G, then v ∈ I(z, y) ⊂ I(x, y), and we are done.
On the other hand, if the whole projection Pr(y, Z(A, B)) is contained in this subpath of
∂B, then necessarily ul ∈ I(v, y). Since uj ∈ I(v, y), from Lemma 4.9 we conclude that ul

and uj are consecutive, i.e., ui and uj must be 2-consecutive. So, Pr(y, Z(A, B)) must have
vertices of ∂B on both sides of ul. This is impossible if G is a graph of type (4,4): by Lemma
4.10, Pr(y, Z(A, B)) will consist of two adjacent vertices v and ul, however v ∈ I(ul, y) as
noticed above. If G has type (6,3), then from Lemma 4.12 and the distance constraints
between the vertices y, v, ul we infer that v and the second neighbor t of ul in ∂B belong
to Pr(y, Z(A, B)). However this is not possible because v, ul, and t belong to the same face
of Z(A, B) and this face must be quasigated by Lemma 4.7. Finally, if G is a (3,6)-graph,
then Lemma 4.11 implies that both v and ul belong to Pr(y, Z(A, B)), which is impossible
because v ∈ I(ul, y) by what has been shown above. This contradiction completes the proof.
�

4.6 Partition into cones

Let v be a median vertex of G (which we assume to be an inner vertex) and let N(v) =
{u0, . . . , uk−1} be the set of neighbors of v ordered counterclockwise around v. Every edge
vui is crossed by two alternating cuts {A′

i, B
′
i} and {A′′

i , B′′
i }. Recall that we have chosen

an orientation of these cuts such that v is on the left border. Moreover, we suppose that
{A′

i, B
′
i} is the cut for which the last turn before uiv (if it exists) is to the right and thus the

next turn after uiv is to the left. For each neighbor ui of v, define the cone with apex ui as
Cv(ui) := B′

i∩A′
i+1(mod k). Let Γi be the closed walk which starts at ui follows ∂B′

i backward

(with respect to the orientation of the cut {A′
i, B

′
i}) until a boundary vertex bi ∈ ∂G ∩ ∂B′

i,
traverses the boundary ∂G counterclockwise until it meets a vertex ai in ∂A′

i+1 ∩ ∂G and
then goes back to ui following the subpath of ∂A′

i+1 comprised between ai and ui. From the
definition of Cv(ui) and Lemma 4.4 it follows that the cone Cv(ui) consists of all vertices of
G lying on Γi or inside the region bounded by Γi (see Figure 4).

Lemma 4.15 Cv(ui) consists of all vertices x such that I(v, x)∩N(v) equals {ui} or {ui−1, ui}.
In particular, together with {v} the cones Cv(ui) (i = 0, . . . , k − 1) constitute a partition of
the vertex set of G, each set containing at most n/2 vertices.

Proof. We first show that for a vertex x ∈ Cv(ui) any shortest (x, v)-path goes via ui or
ui−1. Let yz be the first edge on this path such that y ∈ Cv(ui) and z /∈ Cv(ui). Then, either
y ∈ ∂A′

i+1 and z ∈ ∂B′
i+1 or y ∈ ∂B′

i and z ∈ ∂A′
i. In the first case, since ui is located on

the subpath of the convex path ∂A′
i+1 between y and v, the unique shortest (y, v)-path is a

subpath of ∂A′
i+1 which traverses ui. In the second case, analogously, either z = v or ui−1 is

located on the subpath of the convex path ∂A′
i between z and v (z and ui−1 may coincide).

Therefore, the unique shortest (z, v)-path goes via ui−1. Hence no shortest (x, v)-path goes
via a neighbor of v different from ui and ui−1. Conversely, let x be a vertex of G such that
I(x, v) ∩ N(v) equals {ui} or {ui−1, ui}. Pick a shortest (x, v)-path which goes via ui. Pick
the first edge yz on this path such that z /∈ Cv(ui) and y ∈ Cv(ui). If y ∈ ∂B′

i and z ∈ ∂A′
i,

we obtain a contradiction with the convexity of ∂A′
i because z, v ∈ ∂A′

i while a shortest
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Figure 4: The cone Cv(ui)

path joining them leaves ∂A′
i. Otherwise, we have z ∈ ∂B′

i+1 and y ∈ ∂A′
i+1. By Lemma

4.4, z belongs to W (ui+1, v), hence there is a shortest (z, v)-path which goes via ui+1, in
contradiction with the choice of x. �

Two cones Cv(ui) and Cv(uj) are called p-neighboring if min{|i − j|, k − |i − j|} = p.

Lemma 4.16 If x ∈ Cv(ui) and y ∈ Cv(uj) and the cones Cv(ui) and Cv(uj) are not p-
neighboring for p ≤ 2, then d(x, y) = d(x, v)+d(v, y). For squaregraphs, a similar result holds
with p ≤ 1.

Proof. For graphs of type (4,4) or (6,3) the result directly follows from Lemma 4.14
because Cv(ui) ⊆ W (ui, v) and Cv(uj) ⊆ W (uj , v) by Lemma 4.15. The same argument can
be applied for (3,6)-graphs except for the case when ui and uj are 3-consecutive. Let ul be as
in the proof of Lemma 4.14. Following the same proof we will obtain the required property
d(x, y) = d(x, v)+d(x, y) except the case when v, ul ∈ Pr(y, Z(A, B)). Then d(y, v) = d(y, ul).
Consider the face F /∈ Z(A, B) containing the edge vul and provided by Lemma 4.8. Then
the neighbor ur 6= ul of v in F belongs to the interval I(v, y). Since uj also belongs to I(v, y),
from Lemma 4.9 we infer that ur and uj are consecutive. In the partition into cones, y will
belong to the cone Cv(ur), which is 2-neighboring with Cv(ui), and not to Cv(uj).

Finally, if G is a squaregraph and Cv(ui) and Cv(uj) are 2-neighboring, however v /∈
I(x, y), then I(v, x) and I(v, y) will not intersect only in v. Let ul be a neighbor of v in this
intersection. By Lemma 4.9, we conclude that ul is consecutive to ui and uj . From Lemma
4.15 we deduce that one of the vertices x or y must belong to the cone Cv(ul), in contradiction
with our assumption. �

5 Distance queries and routing

In this section, we describe in details the distance and routing labeling schemes in a graph
G of type (4,4),(3,6), and (6,3).
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5.1 Distance between two paths of a zone

Here we describe a subroutine for reporting in constant time the distance between two paths
P ⊆ ∂A and Q ⊆ ∂B of the zone Z(A, B) of an alternating cut {A, B}. For this, first we
present a labeling of the vertices of Z(A, B) which allows to compute the distance between
any two vertices p ∈ ∂A and q ∈ ∂B in O(1) time. Pick an edge ab ∈ E(A, B) ∩ ∂G,
where a ∈ ∂A, b ∈ ∂B, and ∂A is the left border line of Z(A, B). Suppose, without loss
of generality, that the last turn (if it exists) of E(A, B) before the edge ab is to the right
(the other case being analogous). Then for every edge a′b′ ∈ Z(A, B) with a′ ∈ A and
b′ ∈ B either d(a, a′) = d(b, b′) or d(a, a′) = d(b, b′) + 1 holds. We say that the edge a′b′

is horizontal in the first case and inclined in the second case. For a vertex b′ ∈ ∂B define
α1(b

′) := min{d(a′, a) − d(b′, b) : a′b′ ∈ E(A, B)} and α2(b
′) := max{d(a′, a) − d(b′, b) :

a′b′ ∈ E(A, B)}. If G is of type (4, 4) or (6, 3), then b′ has a unique neighbor in ∂A and
thus α1(b

′) = α2(b
′) ∈ {0, 1}. On the other hand, if G is of type (3, 6) and b′ belongs to a

triangular face of the zone Z(A, B), then we may have α1(b
′) = 0 and α2(b

′) = 1. We say
that a vertex a′ ∈ ∂A is above vertex p ∈ ∂A if it belongs to the subpath of ∂A comprised
between p and a, and below p otherwise (we employ the same terminology for vertex q ∈ ∂B
and the vertices b′ ∈ ∂B). By convention, p is above and below itself. Let r(p) be the first
vertex above p which is incident to an inclined edge of E(A, B) and let s(p) be the first
vertex below p which is incident to a horizontal edge of E(A, B) (if such vertices do not exist,
then set r(p) := a and let s(p) be the second end vertex of ∂A). Let above(p) and below(p)
be the first vertices above and below p which are incident to edges of E(A, B) (notice that
above(p) = p = below(p) if p has a neighbor in ∂B). Let also Above(p) (with capital A)
be the first vertex strictly above p which is incident to an edge of E(A, B) (if p = a we set
Above(p) := p). Clearly, unless p = a, Above(p) 6= p holds. Analogously define above(q),
Above(q) and below(q) for the vertices q ∈ ∂B.

We say that a vertex p ∈ ∂A is above a vertex q ∈ ∂B if d(a, below(p)) ≤ d(b, above(q)) +
α2(above(q)) (in a similar, way we say q is above p if d(b, below(q)) + α1(below(q)) ≤
d(a, above(p))).

Using the labels defined above, we can recognize in O(1) time if two vertices p′, p′′ ∈ ∂A
belong to a common face of Z(A, B): this holds if and only if

d(a, Above(p′)) = d(a, Above(p′′)) or d(a, below(p′)) = d(a, p′) = d(a, Above(p′′))

(a similar test can be applied to the vertices q′, q′′ ∈ ∂B). Analogously, one can test in O(1)
time if two vertices p ∈ ∂A and q ∈ ∂B belong to a common face of Z(A, B). This happens
if and only if at least one of the equalities

(p = a and q = b) or d(a, Above(p)) = d(b, Above(q)) + α2(Above(q)) or

d(a, below(p)) = d(a, p) = d(b, Above(q)) + α2(Above(q)) or

d(b, below(q)) = d(b, q) = d(a, Above(p)) − α2(above(q)) or

d(a, Above(p)) = d(a, p) − 1 = d(b, q) = d(b, below(q))

holds. We call this the common face test. A formal description of this procedure is given
below.

If two vertices p ∈ ∂A and q ∈ ∂B are such that p is above q or q is above p then, a simple
case analysis shows that the distance between two vertices p and q can be computed via the
formula (see Figure 5)

d(p, q) = |d(p, a) − d(q, b)| + ε, (1)
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a b

p

s(p)

r(p)

ε = 0

ε = 1

ε = 2

ε = 1

Figure 5: Illustration for formula (1)

where

ε =







0 if d(q, b) < d(r(p), a),
1 if d(r(p), a) ≤ d(q, b) < d(p, a) or d(s(p), a) ≤ d(q, b),
2 if d(p, a) ≤ d(q, b) < d(s(p), a).

Otherwise, one can see that p and q belong to a common face of Z(A, B) and that d(p, q) is
the minimum of

d(a, p) − d(a, above(p)) + 1 + d(b, q) − d(b, above(q)) (2)

and

d(a, below(p)) − d(a, p) + 1 + d(b, below(q)) − d(b, q). (3)

Therefore, we can retrieve d(p, q) in O(1) time from the label

1 2 3 4 5 6 7

Bp := (1, d(p, a), d(above(p), a), d(below(p), a), d(s(p), a), d(r(p), a), d(Above(p), a))

of p ∈ ∂A and the label

1 2 3 4 5 6 7

Bq := (0, d(q, b), d(above(q), b), d(below(q), b), α2(above(q)), α1(below(q)), d(Above(q), b),

8

α2(Above(q)))

of q ∈ ∂B (see function distance vertices(Bp, Bq) below). The first entry in Bp (and in Bq)
is a bit that indicates that the last turn (if it exists) of E(A, B), before the edge ab, is to
the right. If the last turn is to the left, we need to interchange the roles of p and q in the
consideration.

Notice also that d(p′, p′′) = |d(a, p′) − d(a, p′′)| for any two vertices p′, p′′ ∈ ∂A and
d(q′, q′′) = |d(b, q′) − d(b, q′′)| for any two vertices q′, q′′ ∈ ∂B.
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Figure 6: Cases (i)-(iv)

function distance vertices(Bp, Bq)

if Bp(1) = 0 then /* rename inputs */ set C := Bp, Bp := Bq, Bq := C

if Bp(4) ≤ Bq(3) + Bq(5) or Bq(4) + Bq(6) ≤ Bp(3) then
if Bq(2) < Bp(6) then set ε := 0
if Bp(6) ≤ Bq(2) < Bp(2) or Bp(5) ≤ Bq(2) then set ε := 1
if Bp(2) ≤ Bq(2) < Bp(5) then set ε := 2
return |Bp(2) − Bq(2)| + ε.

else
return min{Bp(2) − Bp(3) + 1 + Bq(2) − Bq(3), Bp(4) − Bp(2) + 1 + Bq(4) − Bq(2)}

function common face test(Bp, Bq, flag)

do case
case flag = 0 /* i.e., p and q are on the same side of the zone */

if Bp(7) = Bq(7) or Bp(4) = Bp(2) = Bq(7) then return true
else return false

case flag = 1 /* i.e., p and q are on different sides of the zone */
if Bp(1) = 0 then /* rename inputs */ set C := Bp, Bp := Bq , Bq := C

if Bp(2) = Bq(2) = 0 or Bp(7) = Bq(7) + Bq(8) or Bp(4) = Bp(2) = Bq(7) + Bq(8) or
Bq(4) = Bq(2) = Bp(7) + Bq(5) or Bp(7) = Bp(2) − 1 = Bq(2) = Bq(4) then return true

else return false
end case.

Now we will adjust this labeling scheme in order to compute the distance d(P, Q) :=
min {d(p, q) : p ∈ P, q ∈ Q} between two paths P ⊆ ∂A and Q ⊆ ∂B. Let p′, p′′ be
the end vertices of P and let q′, q′′ be the end vertices of Q, such that d(p′, a) ≤ d(p′′, a)
and d(q′, b) ≤ d(q′′, b). We distinguish between four complementary cases depending of the
reciprocal location of P and Q; see Figure 6 for an illustration: (i) one path is above another;
(ii) one path is contained in a face of Z(A, B) and the second path intersects this face; (iii)
there is a unique face F of Z(A, B) intersecting both paths P, Q and neither of these paths
is contained in F ; (iv) several faces of Z(A, B) intersect both paths P and Q.

We say that path P is above Q if p′′ is above q′. In this case, d(P, Q) = d(p′′, q′).
Analogously, Q is above P if q′′ is above p′. Then d(P, Q) = d(p′, q′′). This settles case (i),
therefore further we may suppose that neither P is above Q nor Q is above P .
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Applying the common face test, we can check in constant time if any pair of the vertices
p′, p′′, q′, q′′ belong to a common face of Z(A, B). Suppose this test returned that p′ and p′′

belong to a common face, say F. If q′ and q′′ also belong to a common face (which cannot be
other than F ), then

d(P, Q) = min{d(p′, q′), d(p′′, q′′)}. (4)

If q′ ∈ F and q′′ /∈ F (employing the common face test for p′, q′ and p′, q′′), then

d(P, Q) = min{d(p′, q′), d(p′′, below(p′′)) + 1}, (5)

because the neighbor of below(p′′) in ∂B will be a vertex of Q (a similar formula holds if
q′′ ∈ F and q′ does not belong to F ). Finally, if both vertices q′ and q′′ are outside F, then

d(P, Q) = min{d(p′, above(p′)) + 1, d(p′′, below(p′′)) + 1}. (6)

This completes the analysis of case (ii), so further we may assume that neither of the paths
P and Q is entirely contained in a face of Z(A, B).

The case (iii) arises if and only if only one of the pair of vertices p′, q′′ and p′′, q′ belongs
to a common face of Z(A, B) and this again can be detected by the common face test. In the
first case,

d(P, Q) = min{d(p′, above(p′)) + 1, d(q′′, below(q′′)) + 1}. (7)

In the second case,

d(P, Q) = min{d(q′, above(q′)) + 1, d(p′′, below(p′′)) + 1}. (8)

Finally, if no condition of cases (i)-(iii) is satisfied, then several faces of Z(A, B) intersect
both paths P and Q. Then obviously there is an edge of E(A, B) with one end in P and
another end in Q, yielding d(P, Q) = 1.

Summarizing, we conclude that from the labels Bp′ , Bp′′ , Bq′ , and Bq′′ of the end vertices
of the paths P ⊆ ∂A and Q ⊆ ∂B we can compute the distance d(P, Q) in O(1) time. We
call this subroutine distance paths.

function distance paths(Bp′ , Bp′′ , Bq′ , Bq′′ )
if Bp′ (1) = 0 then /* rename inputs */ set C := Bp′ , Bp′ := Bq′ , Bq′ := C

and C := Bp′′ , Bp′′ := Bq′′ , Bq′′ := C

if Bp′′ (4) ≤ Bq′ (3) + Bq′ (5) then return distance vertices(Bp′′ , Bq′)
if Bq′′ (4) + Bq′′ (6) ≤ Bp′ (3) then return distance vertices(Bp′ , Bq′′ )
if common face test(Bp′ , Bp′′ , 0) then

if common face test(Bq′ , Bq′′ , 0) then
return min{distance vertices(Bp′ , Bq′ ), distance vertices(Bp′′ , Bq′′ )}

if common face test(Bp′ , Bq′ , 1) and not(common face test(Bp′ , Bq′′ , 1)) then
return min{distance vertices(Bp′ , Bq′ ), Bp′′ (4) − Bp′′ (2) + 1}

if not(common face test(Bp′ , Bq′ , 1)) and common face test(Bp′ , Bq′′ , 1) then
return min{distance vertices(Bp′′ , Bq′′ ), Bp′(2) − Bp′ (3) + 1}

else return min{Bp′ (2) − Bp′(3) + 1, Bp′′ (4) − Bp′′ (2) + 1}
if common face test(Bq′ , Bq′′ , 0) then

if common face test(Bp′ , Bq′ , 1) then
return min{distance vertices(Bp′ , Bq′ ), Bq′′ (4) − Bq′′ (2) + 1}

if common face test(Bp′′ , Bq′ , 1) then
return min{distance vertices(Bp′′ , Bq′′ ), Bq′ (2) − Bq′(3) + 1}
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else return min{Bq′ (2) − Bq′ (3) + 1, Bq′′ (4) − Bq′′ (2) + 1}
if common face test(Bp′ , Bq′′ , 1) then

return min{Bp′ (2) − Bp′ (3) + 1, Bq′′ (4) − Bq′′ (2) + 1}
if common face test(Bp′′ , Bq′ , 1) then

return min{Bp′′ (4) − Bp′′ (2) + 1, Bq′ (2) − Bq′ (3) + 1}
else return 1.

5.2 Computing the distance between x ∈ A and y ∈ B

In this subsection, we establish how to compute in constant time the distance d(x, y) between
two vertices x ∈ A and y ∈ B, where {A, B} is an alternating cut with the zone Z(A, B).
We will use the short-hands P := Pr(x, Z(A, B)) and Q := Pr(y, Z(A, B)). Recall also that
for a vertex p and a subset S of G, the distance from p to S is d(x, S) = min{d(x, s) : s ∈ S}.

If G is a (4,4)- or a (3,6)-graph, then P and Q are paths and function distance paths
applied to these paths will return d(P, Q). Now, d(x, y) can be computed using the formula
d(x, y) = d(x, Z(A, B)) + d(P, Q) + d(y, Z(A, B)) whose correctness is provided by Lemmata
4.10 and 4.11. In view of previous results, in order to implement this formula in constant
time, it suffices to keep at x the distance d(x, Z(A, B)) = d(x, P ), the labels Bp′ , Bp′′ of the
end vertices p′, p′′ of P and at y the distance d(y, Z(A, B)) = d(y, Q) and the labels Bq′ , Bq′′

of the end vertices q′, q′′ of Q.
Now suppose that G is a (6,3)-graph, and let P and Q be the path-completions of the

projections P and Q (which are the subpaths of ∂A and ∂B spanned by the end vertices
p′, p′′ and q′, q′′ of P and Q). From Lemma 4.12 we know that d(x, Z(A, B)) is either equal to
max{d(x, p′), d(x, p′′)} − 1 or d(x, Z(A, B)) = d(x, p′) = d(x, p′′) (an analogous relationship
holds for d(y, Z(A, B)), d(y, q′), and d(y, q′′)).

We apply to P and Q considerations of the previous subsection in order to specify the
reciprocal location of the paths P , Q. In case (i), d(P, Q) = d(P , Q) and is realized by one
of the pairs p′, q′′ or p′′, q′; consequently d(x, y) = d(x, p′) + d(p′, q′′) + d(q′′, y) or d(x, y) =
d(x, p′′) + d(p′′, q′) + d(q′, y), respectively. In case (ii), we may assume that P belongs to a
face F of Z(A, B), i.e., P consists of one or two adjacent vertices. If Q belongs to the same
face of Z(A, B), then

d(x, y) = d(x, Z(A, B)) + min{d(p′, q′), d(p′′, q′′)} + d(y, Z(A, B)).

If q′ ∈ F and q′′ /∈ F, then, in view of Lemma 4.12, we obtain

d(x, y) = d(x, p′) + min{d(p′, q′) + d(y, q′), d(p′′, below(p′′)) + 2 + d(y, Z(A, B))}

(a similar formula holds if q′ /∈ F and q′′ ∈ F ). Finally, if q′, q′′ /∈ F, then

d(x, y) = min{d(x, p′) + d(p′, above(p′)) + 2, d(x, p′′) + d(p′′, below(p′′)) + 2}+ d(y, Z(A, B)).

In case (iii), exactly one of the pairs p′, q′′ and p′′, q′ belongs to a common face of Z(A, B).
Thus, P and Q consist of three or more vertices each; see Lemma 4.12. In the first case
d(x, y) is the minimum of

d(x, p′) + d(p′, above(p′)) + 2 + d(y, Z(A, B))

and
d(y, q′′) + d(q′′, below(q′′)) + 2 + d(x, Z(A, B)),

26



i.e., either there is a shortest (x, y)-path passing via p′ and the next to q′′ vertex of Q or
there exists a shortest (x, y)-path passing via the next to p′ vertex of P and q′′. In the second
case, d(x, y) is the minimum of

d(y, q′) + d(q′, above(q′)) + 2 + d(x, Z(A, B))

and
d(x, p′′) + d(p′′, below(p′′)) + 2 + d(y, Z(A, B)).

Finally, in case (iv) we have d(P, Q) = 3, whence d(x, y) = d(x, Z(A, B))+3+d(y, Z(A, B)).
Therefore, in order to compute d(x, y) we should keep at x the distances d(x, p′), d(x, Z(A, B)),
d(x, p′′) (some of them can be equal) and the labels Bp′ , Bp′′ and at y we should keep the
distances d(y, q′), d(y, Z(A, B)), d(y, q′′) and the labels Bq′ , Bq′′ .

Summarizing all discussions of this subsection, for (4,4),(3,6) and (6,3)-graphs, we can
retrieve d(x, y) in O(1) time from the label

1 2 3 4 5

Dx := (d(x, p′), d(x,Z(A, B)), d(x, p′′), Bp′ , Bp′′ )

of x ∈ A and the label

1 2 3 4 5

Dy := (d(y, q′), d(y,Z(A, B)), d(y, q′′), Bq′ , Bq′′ )

of y ∈ B (see function distance (3,6)∨(4,4)-graphs(Dx, Dy) and distance (6,3)-graphs(Dx, Dy)
defined below).

function distance (3,6)∨(4,4)-graphs(Dx, Dy)

return Dx(2)+ distance paths(Dx(4), Dx(5), Dy(4), Dy(5)) + Dy(2)

function distance (6,3)-graphs(Dx, Dy)

if Bp′ (1) = 0 then /* rename inputs */ Dx ↔ Dy,

extract B′

p and B′′

p from Dx

extract B′

q and B′′

q from Dy

if Bp′′ (4) ≤ Bq′ (3) + Bq′ (5) then return Dx(3)+distance vertices(Bp′′ , Bq′ )+Dy(1)
if Bq′′ (4) + Bq′′ (6) ≤ Bp′ (3) then return Dx(1)+distance vertices(Bp′ , Bq′′ )+Dy(3)
if common face test(Bp′ , Bp′′ , 0) then

if common face test(Bq′ , Bq′′ , 0) then return
Dx(2) + min{distance vertices(Bp′ , Bq′ ), distance vertices(Bp′′ , Bq′′ )} + Dy(2)

if common face test(Bp′ , Bq′ , 1) and not(common face test(Bp′ , Bq′′ , 1)) then return
Dx(1) + min{distance vertices(Bp′ , Bq′ )+Dy(1), Bp′′ (4) − Bp′′ (2) + 2 + Dy(2)}

if not(common face test(Bp′ , Bq′ , 1)) and common face test(Bp′ , Bq′′ , 1) then return
Dx(1) + min{distance vertices(Bp′′ , Bq′′ )+Dy(3), Bp′ (2) − Bp′ (3) + 2 + Dy(2)}

else return min{Dx(1) + Bp′ (2) − Bp′ (3) + 2, Dx(3) + Bp′′ (4) − Bp′′ (2) + 2} + Dy(2)
if common face test(Bq′ , Bq′′ , 0) then

if common face test(Bp′ , Bq′ , 1) then return
Dy(1) + min{distance vertices(Bp′ , Bq′ )+Dx(1), Bq′′ (4) − Bq′′ (2) + 2 + Dx(2)}

if common face test(Bp′′ , Bq′ , 1) then return
Dy(1) + min{distance vertices(Bp′′ , Bq′′ )+Dx(3), Bq′ (2) − Bq′ (3) + 2 + Dx(2)}

else return min{Dy(1) + Bq′ (2) − Bq′ (3) + 2, Dy(3) + Bq′′ (4) − Bq′′ (2) + 2} + Dx(2)
if common face test(Bp′ , Bq′′ , 1) then return

min{Dx(1) + Bp′(2) − Bp′ (3) + Dy(2), Dx(2) + Bq′′ (4) − Bq′′ (2) + Dy(3)} + 2
if common face test(Bp′′ , Bq′ , 1) then return

min{Dx(3) + Bp′′ (4) − Bp′′ (2) + Dy(2), Dy(1) + Bq′ (2) − Bq′ (3) + Dx(2)} + 2
else return Dx(2) + 3 + Dy(2).
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In what follows, the generic name distance graphs(Dx, Dy) will refer to the function dis-
tance (3,6)∨(4,4)-graphs(Dx, Dy) in the case of (4,4)-graphs and (3,6)-graphs and to the
function distance (6,3)-graphs(Dx, Dy) in the case of (6,3)-graphs.

5.3 Distance decoder

Here we explain how, using the decomposition tree T (G), one can find the distance between
any two vertices of G. First, we will describe the labels of vertices of G.

Let v be a median vertex of G (which we assume to be an inner vertex), and let
u0, . . . , uk−1 be its neighbors in counterclockwise order around v. Recall that the cones
Cv(ui), i ∈ {0, . . . , k − 1} of G were defined as follows: Cv(ui) = B′

i ∩ A′
i+1(mod k). Each

vertex y ∈ V \ Cv(ui) is separated from a vertex x ∈ Cv(ui) by zone Z(A′
i, B

′
i) or by zone

Z(A′
i+1, B

′
i+1). From previous results we know that, if two vertices x and y lie in two 1-

neighboring or 2-neighboring cones, then d(x, y) is realized via their projections on the zone
separating these cones, and if x and y belong to p-neighboring cones with p > 2, then d(x, y)
is realized via v. For any vertex x ∈ Cv(ui) and index j = i, i + 1, i + 2 (mod k), let Dj

x

be the distance label of x with respect to the cut {A′
j , B

′
j} (Dx was defined in the previous

subsection with respect to an arbitrary cut {A, B}). Let also Gi be a subgraph of G induced
by Cv(ui) (i ∈ {0, . . . , k − 1}).

Assume that a decomposition tree T (G) of G and its NCA-depth labeling scheme are
given. For a vertex x of G, let S(x) be the deepest node of T (G) containing x and Ax be the
label of S(x) in the NCA-depth labeling scheme. Let also S0, S1, . . . , Sh be the nodes of the
path of T (G) from the root (G, v) (which is S0) to the node S(x) = Sh.

In the distance labeling scheme for (4,4)-,(3,6)- and (6,3)-graphs, the label L(x) will be
the concatenation of Ax, and h + 1 tuples τx

0 , τx
1 , . . . , τx

h where τx
q (q ∈ {0, . . . , h}) is defined

as follows. Let Sq be a node (Gq , vq) of T (G). Assume that x belongs to a cone Cvq
(ui) of

Gq for some i ∈ {0, ..., δGq
(vq) − 1}. Then,

1 2 3 4 5 6

τx
q := (i, δGq

(vq), dGq
(x, vq), Di

x, Di+1
x , Di+2

x )

where zones and projections are considered in graph Gq. If x = vq, we set τ
vq

q := (δGq
(vq),

δGq
(vq), 0, 0, 0, 0).

Since the depth of T (G) is O(log n), L(x) is of length O(log2 n) bits for any x ∈ V . Note
that computation of those tuples can be incorporated into the algorithm of building T (G),
leading to an O(n2 log n) time computation of all labels L(x), x ∈ V (for a graph Gq , the
paths Pr(x, Z(A′

j , B
′
j)) (j = i, i + 1, i + 2) and corresponding distances can be computed by

running Bread-First-Searches from vq and Z(A′
j , B

′
j) (j = i, i + 1, i + 2)).

Algorithm DISTANCE DECODER: Distance decoder for (4,4),(3,6) and (6,3)-graphs.

Input: two labels L(x) = Ax ◦ τx
0 ◦ τx

1 ◦ · · · ◦ τx
h and L(y) = Ay ◦ τ

y
0 ◦ τ

y
1 ◦ · · · ◦ τy

q .

Output: d(x, y), the distance between x and y in G.

Method:

use Ax and Ay to find the depth l in T (G) of
the nearest common ancestor of S(x) and S(y);

extract from L(x) and L(y) the tuples τx
l and τ

y
l ;

if τx
l (1) = τx

l (2) then output τ
y
l (3) and stop; /* x = vq */

if τ
y
l (1) = τ

y
l (2) then output τx

l (3) and stop; /* y = vq */
/* if the cones are 1-neighboring */
if (τx

l (1) = τ
y
l (1) − 1 or τ

y
l (1) = 0 and τx

l (1) = τx
l (2) − 1) then output

distance graphs(τx
l (5), τy

l (4)) and stop;
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if (τy
l (1) = τx

l (1) − 1 or τx
l (1) = 0 and τ

y
l (1) = τx

l (2) − 1) then output
distance graphs(τy

l (5), τx
l (4)) and stop;

/* if the cones are 2-neighboring */
if (τx

l (1) = τ
y
l (1) − 2 or τ

y
l (1) = 0 and τx

l (1) = τx
l (2) − 2 or

τ
y
l (1) = 1 and τx

l (1) = τx
l (2) − 1) then output

distance graphs(τx
l (6), τy

l (4)) and stop;
if (τy

l (1) = τx
l (1) − 2 or τx

l (1) = 0 and τ
y
l (1) = τx

l (2) − 2 or
τx

l (1) = 1 and τ
y
l (1) = τx

l (2) − 1) then output
distance graphs(τy

l (6), τx
l (4)) and stop;

else output τx
l (3) + τ

y
l (3).

5.4 Routing from x ∈ A to y ∈ B

From Lemma 4.13 we know that any vertex x ∈ A contains one or two neighbors vx and ux

such that I(x, y) ∩ {vx, ux} 6= ∅ for any vertex y ∈ B. Thus the message from x should be
forwarded to that of these neighbors which is closer to y. If x ∈ A \ ∂A, then ux, vx ∈ A
and this decision can be taken in O(1) time by decoding the distances d(y, vx) and d(y, ux).
Define help(vx) to be equal to 1 if x and vx are separated by the cut {A, B} and 0 otherwise
(help(ux), help(vy), help(uy) are defined analogously). Then, in this case we can make a
routing decision in O(1) time from the label

1 2 3 4 5 6 7

Rx := (Dx, Dvx
, Dux

, port(x, vx), port(x, ux), help(vx), help(ux))

of x and the label Dy of y ∈ B (vice versa, to route from y ∈ B \ ∂B to x ∈ A we need the
label

1 2 3 4 5 6 7

Ry := (Dy, Dvy
, Duy

, port(y, vy), port(y, uy), help(vy), help(uy))

of y and the label Dx of x).
We assert that the same labels Rx and Ry suffice for the routing decision in case x ∈ ∂A.

By second assertion of Lemma 4.13, the neighbors ux and vx of x either both are vertices of
∂A, or one of them belong to ∂A and another to ∂B, or both are vertices of ∂B. In the first
case, both distances d(ux, y) and d(vx, y) can be decoded as before. In the second case only
the distance from y to the vertex of ∂A can be decoded using Rx and Ry, say d(ux, y). If
d(x, y) = d(ux, y)+1, then the message is forwarded to ux, otherwise it is sent to vx. Finally,
if ux, vx ∈ ∂B, then G is a (3,6)-graph and the routing decision can be taken by employing the
items d(b, q′), d(b, q′′) of Dy (here q′ and q′′ are the end vertices of Pr(y, Z(A, B)). Namely, if
ux is above vx, then the message is forwarded to ux if d(b, q′′) ≤ d(b, ux) and to vx otherwise.

function routing decision(Rx, Ry)

if Rx(6) 6= 1 then
if distance graphs(Rx(1), Ry(1)) = distance graphs(Rx(2), Ry(1)) + 1 then output Rx(4)
else output Rx(5)

else if Rx(7) 6= 1 then
if distance graphs(Rx(1), Ry(1)) = distance graphs(Rx(3), Ry(1)) + 1 then output Rx(5)
else output Rx(4)

else extract Bq′′ from Ry(1)
extract Bux from Rx(3)
if Bq′′ (2) ≤ Bux(2) then output Rx(5) else output Rx(4)
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5.5 Routing decision

Here we explain how, using the decomposition tree T (G), one can rout between any two
vertices of G. The method is very similar to the one we used for distance decoding.

Let again v be a median vertex of G and u0, . . . , uk−1 be its neighbors in counterclockwise
order around v. For any vertex x ∈ Cv(ui) and index j = i, i + 1, i + 2 (mod k), denote by
Rj

x the routing label of x with respect to the cut {A′
j , B

′
j} (Rx was defined in the previous

subsection with respect to an arbitrary cut {A, B}). Let S(x) be the deepest node of the
decomposition tree T (G) of G containing x and Ax be the label of S(x) in the NCA-depth
labeling scheme of T (G). Let also S0, S1, . . . , Sh be the nodes of the path of T (G) from the
root (G, v) (which is S0) to the node S(x) = Sh. Denote as before by Gi a subgraph of G
induced by Cv(ui) (i ∈ {0, . . . , k − 1}).

In the routing labeling scheme for (4,4)-,(3,6)- and (6,3)-graphs, the label L(x) will be
the concatenation of Ax, and h + 1 tuples µx

0 , µx
1 , . . . , µx

h where µx
q (q ∈ {0, . . . , h}) is defined

as follows. Let Sq be a node (Gq , vq) of T (G). Assume that x belongs to a cone Cvq
(ui) of

Gq for some i ∈ {0, ..., δGq
(vq) − 1}. Then,

1 2 3 4 5 6 7

µx
q := (i, δGq

(vq), portGq
(x, vq), Ri

x, Ri+1
x , Ri+2

x , portGq
(vq , x)).

If x = vq , we set µ
vq

q := (δGq
(vq), δGq

(vq), 0, 0, 0, 0, 0).

Clearly, again L(x) is of length O(log2 n) bits for any x ∈ V and computation of those
tuples can be incorporated into the algorithm for building T (G), leading to an O(n2 log n)
time computation of all labels L(x), x ∈ V (for a vertex x of a graph Gq , the special neighbors
vj

x and uj
x can be computed by running Bread-First-Searches from Z(A′

j , B
′
j) (j = i, i+1, i+

2)).

Algorithm ROUTING DECISION: Routing decision for (4,4),(3,6) and (6,3)-graphs.

Input: two labels L(x) = Ax ◦ µx
0 ◦ µx

1 ◦ · · · ◦ µx
h and L(y) = Ay ◦ µ

y
0 ◦ µ

y
1 ◦ · · · ◦ µy

q .

Output: portG(x, y), the output port number of the first edge on a shortest path from x to y in G.

Method:

use Ax and Ay to find the depth l in T (G) of
the nearest common ancestor of S(x) and S(y);

extract from L(x) and L(y) the tuples µx
l and µ

y
l ;

if µx
l (1) = µx

l (2) then output µ
y
l (7) and stop; /* x = vq */

if µ
y
l (1) = µ

y
l (2) then output µx

l (3) and stop; /* y = vq */
/* if the cones are 1-neighboring */
if (µx

l (1) = µ
y
l (1) − 1 or µ

y
l (1) = 0 and µx

l (1) = µx
l (2) − 1) then output

routing decision(µx
l (5), µy

l (4)) and stop;
if (µy

l (1) = µx
l (1) − 1 or µx

l (1) = 0 and µ
y
l (1) = µx

l (2) − 1) then output
routing decision(µx

l (4), µy
l (5)) and stop;

/* if the cones are 2-neighboring */
if (µx

l (1) = µ
y
l (1) − 2 or µ

y
l (1) = 0 and µx

l (1) = µx
l (2) − 2 or

µ
y
l (1) = 1 and µx

l (1) = µx
l (2) − 1) then output

routing decision(µx
l (6), µy

l (4)) and stop;
if (µy

l (1) = µx
l (1) − 2 or µx

l (1) = 0 and µ
y
l (1) = µx

l (2) − 2 or
µx

l (1) = 1 and µ
y
l (1) = µx

l (2) − 1) then output
routing decision(µx

l (4), µy
l (6)) and stop;

else output µx
l (3).
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5.6 Squaregraphs, cellular graphs, and trigraphs

In this subsection we point out that for three special subclasses of (4,4)- and (3,6)-graphs,
namely planar cellular graphs, squaregraphs and trigraphs, the described labeling schemes can
be greatly simplified based on additional geometric properties these classes possess. Recall
that a squaregraph is a (4,4)-graph in which all inner faces are quadrangles, a planar cellular
graph is a bipartite (4,4)-graph, and a trigraph is a (3,6)-graph in which all inner faces have
length 3.

The following additional properties of those graphs are of use.

(i) In bipartite (3,6)-,(4,4)-, or (6,3)-graphs, the two alternating cuts crossing an edge uv
of G coincide and have the form {W (v, u), W (u, v)}. Since all faces are of even length,
there are no turns in cuts and, therefore, all cut edges are horizontal in zones.

Hence, no α-entries and no r(p)-, s(p)-entries will appear in Bp and Bq labels, simpli-
fying the labels and the functions.

(ii) In cellular graphs, in particular, in squaregraphs, the zones are gated, i.e., the projection
of each vertex x to a zone Z(A, B) is a singleton.

Hence, p′ = p′′ and, therefore, only one out of the first three entries and only one
out of the last two entries in the Dx labels will remain. Furthermore, vx = ux and,
hence, the entries Dux

, port(x, ux) and help(ux) in the routing labels Rx will disappear.
This all will simplify the labels as well as the functions (e.g., function distance paths is
not needed). For squaregraphs, even help(vx) entry can be omitted since each vertex
x ∈ ∂A has one (and only one) neighbor in B, which is vx. Thus, for squaregraphs, the
distance between any vertices x ∈ A and y ∈ B can be computed using the formula

d(x, y) = d(x, p′) + d(y, q′) + 1 + |d(p′, a) − d(q′, b)|,
and, therefore, algorithms DISTANCE DECODER and ROUTING DECISION can be
implemented without any auxiliary functions.

(iii) For squaregraphs, a stronger version of Lemma 4.16 holds: If x ∈ Cv(ui) and y ∈ Cv(uj)
and the cones Cv(ui) and Cv(uj) are not 1-neighboring, then d(x, y) = d(x, v)+d(v, y).

Thus, in tuples τx
q and µx

q , the entries Di+2
x and Ri+2

x will disappear. Also, the al-
gorithms DISTANCE DECODER and ROUTING DECISION will be further simpli-
fied since the case of 2-neighboring cones will be omitted.

(iv) In trigraphs each vertex of a zone has two twins (except maybe the boundary vertices),
thus the definition of ε in formula (1) can be simplifed as follows

ε =

{

0 if d(q, b) < d(p, a),
1 otherwise,

and the distance between two paths P ⊆ ∂A and Q ⊆ ∂B with end-vertices p′, p′′ and
q′, q′′ is given by

d(P, Q) =







d(p′′, q′) if P is above Q,
d(p′, q′′) if Q is above P,
1 otherwise.

Therefore, only the first two entries of labels Bp and Bq are necessary. Moreover,
using the simplified formula given above, one can avoid the auxiliary functions dis-
tance vertices, distance paths and the algorithms DISTANCE DECODER and ROUT-
ING DECISION can be implemented directly.
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(v) In squaregraphs and trigraphs, a median vertex can be found in linear time [16].

Hence, we need only O(n log n) time for construction of a decomposition tree T (G)
and computation of all labels L(x), x ∈ V . In each level of recursion, we need to find
median vertices of current subgraphs, construct the corresponding cones and compute
(1/ log n)th part of each label L(x). This can be done in O(n) total time for both
squaregraphs and trigraphs. Since the recursion depth is O(log n), we get our O(n log n)
time bound.

We have described the resulting simplified distance and routing labeling schemes in details
for squaregraphs in the conference version of this paper.

6 Main result

From the properties of (4,4)-,(3,6)-, and (6,3)-graphs and the labeling schemes described in
Sections 3 and 5, we deduce the main contribution of this paper.

Theorem 6.1 The family of graphs of type (4,4),(3,6), and (6,3) with at most n vertices
admits distance and routing labeling schemes with labels of size O(log2 n) bits and a constant
time distance decoder and routing decision. Moreover, the schemes are constructable in time
O(n2 log n), and in O(n log n) time for squaregraphs and trigraphs.
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