CHAPTER 1
Regular Languages

Contents

* Finite Automata (FA or DFA)

* definitions, examples, designing, regular operations
* Non-deterministic Finite Automata (NFA)

¢ definitions, equivalence of NFAs and DFAs, closure under
regular operations

* Regular expressions
e definitions, equivalence with finite automata
* Non-regular Languages

® the pumping lemma for regular languages

Automata & Formal Languages, Feodor F. Dragan, Kent State University 1

Non-determinism

* So far in our discussion, every step of a computations follows in a unique
way from the preceding step.

* When the machine is in a given state and reads the next input symbol,
we know what the next state will be — it is determined. We call this
deterministic computation.

* In a non-deterministic machine, several choices may exist for the next state
at any point.

0,1
O —O—@
1 2 3 @@
‘@) @ @@
1 0.1 01
A deterministic FA (DFA) M, A non-deterministic FA (NFA) N,

® Non-determinism is a generalization of determinism, so every DFA is automatically a NFA.
* The difference: - every state of a DFA has exactly one exiting arrow for each symbol
- in a NFA a state may have 0, 1, or many exiting arrows for each symbol
- a NFA may have arrows with the label &

Automata & Formal Languages, Feodor F. Dragan, Kent State University 2

How does an NFA compute?

® After reading the symbol, the machine splits into multiple copies of itself
and follows all the possibilities in parallel.

» Each copy takes one of the possible ways to proceed and continues as
before.

o If there are subsequent choices, the machine splits again.

e If the next input symbol doesn’t apﬁ)ear on any of the arrows exiting the state
occupied by a copy of the machine, that copy dies.

* If any one of these copies of the machine is in an accept state at the end of
the input, the NFA accepts the input string.

e If a state with an € symbol on an exiting arrow is encountered, the machine
(w/o reading any input) splits into multiple copies, one following each of the
exiting arrow with € and one staying at current state.

0,1 Non-determinism may be viewed

= as a kind of parallel computation
1 /—2\ /_3\ AD wherein several “processes’” can be
q @ W P
1

0, & running concurrently.

0,1
A non-deterministic FA (NFA) N, (Run for inputs 11, 101)

Automata & Formal Languages, Feodor F. Dragan, Kent State University 3

Tree of Possibilities

* A way. to think of a non-deterministic computation is as a tree of
possibilities.

* The root corresponds to the start of the computation

* Every branching point in the tree corresponds to a point in the
computation at which the machine has multiple choices

* The machine accepts if at least one of the computation branches

ends in an accept state. . @ symbol read
0,1
@@

NFA N, (inputis 010110)

Automata & Formal Languages, Feodor F. Dragan, Kent State University

NFA vs. DFA

* NFAs are useful in several aspects.
* Every NFA can be converted into an equivalent DFA (construction later).
* Constructing NFAs is sometimes easier than directly constructing DFAs.
* An NFA may be much smaller than its deterministic counterpart.
* Its functioning may be easier to understand.

* We will use non-determinism in more powerful computational models.
e Example.

Mﬁ@

NFA N,

T
DFA M,

They recognize the same language A={all strings over
{0,1} containing a 1 in the third position from the end}

Automata & Formal Languages, Feodor F. Dragan, Kent State University 5

Formal Definition of NFAs

* A non-deterministic finite automaton (NFA) is specified by a 5-
tuple (Q,%,6,q,,F) » Where

0 is a finite set of states,

)Y is a finite alphabet, ‘ Is a collection of all subsets of Q ‘
5:0x%, < P(Q)" Ts the transition function,

q,€ 0 is the initial state, I, =XU{e}

FcoO is the set of final states.

| 0 [E

o al {ql} |{ql.q2}| @
q2 {q3}) {q3
q3 %) {q4] g

e For NFA N, we have

0=1{ql,q2,43,q4} q4 {q4} | {q4}
£ ={0,1} 0,1
g0 =91 -
1 0, €
0,1
NFA N,

Automata & Formal Languages, Feodor F. Dragan, Kent State University 6

Acceptance of Strings and the Language of NFA
e Let N= (Q,%,6,q,,F) beaNFA

* N accepts w if we can write w as w= w,,w,,...,w,, Where each w,
is a member of X, and a sequence of states TorFisFysen b, EXISES 1N
O with the following three conditions:

1. 7y =g,
2. r,€d(r,w,) fori=0,..n-1, and
3. reF

* If L is a set of strings that N accepts, we say that L is the language
of N and write L=L(N).

* We say N recognizes L or N accepts L.

e In this example, N, recognizes the strings @
a, baba, baa, a ‘ ’V a N,
but doesn’t accept the strings

b, bb, babba. @ @
a,b

Automata & Formal Languages, Feodor F. Dragan, Kent State University

Subset Construction

* For every NFA there is an equivalent (accepts the same language) DFA.
* But the DFA can have exponentially many states.
+ LetN=(Qy,Z,0y,9,, Fy) bean NFA.

e The equivalent DFA constructed by the subset construction is

DZ(QD’Z’éD’qOD’FD)'
e For RcQ, , we define

E(R)={ g: q can be reached from R by traveling along 0 or more € arrows;.

e Then,
1. 0, =P(Qy), (=the set of subsets of Oy),
2.ForRe 0, and aex let 6,(R,a)=E, 0y (r.a)),

3. qop =E({gqo})
4. F,={Re Q,:R contains an accept state of N}.

Automata & Formal Languages, Feodor F. Dragan, Kent State University

Example And The Theorem

We have proved by construction that
Theorem. Every NFA has an equivalent DFA.

Corollary. A language is regular if and only if some NFA recognizes it.

Automata & Formal Languages, Feodor F. Dragan, Kent State University 9

We have seen that for any NFA there exists an equivalent DFA. Hence
A language is regular if and only if some NFA recognizes it.

We will show today that regular languages are closed under regular
operations.

Regular Operations (again)

* Let L1 and L2 be languages. We defined the regular operations
union, concatenation, and star as follows.

e Union: LIuL2={w: we L1 or we L2}.

e Concatenation: LloL2={wv: we Ll and ve L2}.

* Star: L1*={w1w2...wk: k20 and each w,e Ll}.

* Example: Let the alphabet ¥ be the standard 26 letters {a,b,...,z}.
e IfLI={good, bad} and L2= {boy, girl}, then
L1y L2 = {good, bad, boy, girl}.
Llo L2 = {goodboy, badboy, goodgirl, badgirl }.

o __ { £, good, bad, goodgood, badgood, badbad, goodbad,
Ll = go%dgoodgood, goodgoodbad, goodbadbad, ...}

Automata & Formal Languages, Feodor F. Dragan, Kent State University 10

Th.1 The class of regular languages is closed under the
union operation.

* We have regular languages L/ and L2 and want to prove that L/ |J L2 is regular.

* The idea is to take two NFAs N/ and N2 for L1 and L2, and combine them into
one new NFA N.

» N must accept its input if either N1 or N2 accepts this input

» N will have a new state that branches to the start states of the old machines N7, N2
with ¢ arrows

* In this way N non-deterministically guesses which of the two machines accepts the
mput

* If one of them accepts the input then N will accept it, too

N1=(Q,.X.6,.9,,F) Q={4,}UQ UQ,

recognizes L1 F=FUF, N =(Q.Z%,8,q,, F) recognizes L1JL2
q, is the start state
~04 @ < —o
° 51(q’a) q€e Q1 e P4 OO
6,(q,a) qeQ
8(q,a)=4"2"" ,
~0 O@@ (Z Q) {9,,9,} q=q,and a=¢ A'O\g 5 @
OOQ @ qe): %] q=q, and a#¢& \OO©
- 0% ©

N2=(0,,%,8,,q,,F,) recognizes L2

Automata & Formal Languages, Feodor F. Dragan, Kent State University 11

Th.2 The class of regular languages is closed under the
concatenation operation.

* We have regular languages L/ and L2 and want to prove that L10L2 is regular.

* The idea is to take two NFAs N/ and N2 for L1 and L2, and combine them into a
new NFA N.

» N accepts when the input can be split into two parts, the first accepted by N/ and
the second by N2

* We can think of N as non-deterministically guessing where to make the split

N1=(Q,,%,6,,4,,F) recognizes LI N2=(0,.%,6,.9,,F,) recognizes L2
@]
0, o© ~0 o@@
o 0P ©
l Y
Q=Q1UQ2 ae X,
F, ji;thle set of = Q\g:ﬁo © 6,(q,a) g€ 0,.9¢ F
nal states | T 0 J (q, eF,a+¢€
% b % O——= | O@@ é(q,a)= 1(94) 15y o
q, is the start & 00 6,(g.a)V{q,} qe F.a=¢
state 6,(q,a) q€ 0O,

N=(0,%,8,q,,F,) recognizes L1 oL2

Automata & Formal Languages, Feodor F. Dragan, Kent State University 12

Th.3 The class of regular languages is closed under the
star operation.

* We have regular language L/ and want to prove that LI * is regular.
* We take an NFA N/ for L/, and modify it to recognize L1 *.

* The resulting NFA N accepts its input if it can be broken into several pieces and
NI accepts each piece.

* Nis like NI with additional £ arrows returning to the start state from the accept
state.

.L}I}k addition we must modify N so that it accepts&, which always is a member of

Q:{qO}UQI . o
N1=(0,.%,6,,q,,F) F={qUF, N=(Q,2,§,qO,F)recogmzesLJ
recognizes L1 q, s the start state
>
6,(q,a) g€ 0, q¢ k| €
-0 0@ e qcRare | g b O
© 8(gq.a)=16,(q.a){q,} gqe F,a=¢ 0 ©
{a,} q=4q,,a=¢ 3
qeQ B
gex, %) q=4q,,a* &€

Automata & Formal Languages, Feodor F. Dragan, Kent State University 13

