CHAPTER 1 Regular Languages

Contents

- Finite Automata (FA or DFA)
- definitions, examples, designing, regular operations
- Non-deterministic Finite Automata (NFA)
- definitions, equivalence of NFAs and DFAs, closure under regular operations
- Regular expressions
- definitions, equivalence with finite automata
- Non-regular Languages
- the pumping lemma for regular languages

Regular expressions: definition

- An algebraic equivalent to finite automata.
- We can build complex languages from simple languages using operations on languages.
- Let $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ be an alphabet. The simple languages over Σ are
- the empty language \varnothing, which contains no word.
- for every symbol $a \in \Sigma$, the language $\{a\}$, which contains only the oneletter word " a ".
- The regular operations on languages are \cup (union), o(concatenation), and * (iteration).
- An expression that applies regular operations to simple languages is called a regular expression (and the resulting language is a regular language; we will see later why...).
- $L(E)$ is the language defined by the regular expression E.

Formally, R is a regular expression if R is

1. a for some a in the alphabet Σ (stands for a language $\{a\}$),
2. ε, standing for a language $\{\varepsilon\}$,
3. \varnothing, standing for the empty language,
4. $\left(R_{1} \cup R_{2}\right)$, where R_{1}, R_{2} are regular expressions,
5. ($R_{1} \circ R_{2}$), where R_{1}, R_{2} are regular expressions,
6. (R_{1}^{*}), where R_{1} is a regular expression.

Notations

- When writing regular expressions, we use the following conventions:
- For simple languages of the form $\{a\}$, we write a (omitting braces).
- Parentheses are omitted according to the rule that iteration binds stronger than concatenation, which binds stronger than union.
- The concatenation symbol \circ is often omitted.
- We write Σ for $a_{1} \cup \ldots \cup a_{n}$.
- We write ε for \varnothing^{*} (which is the language that contains only the empty word).
- For example, $01^{*} \cup \mathcal{E}$ stands for the expression $\left(\{0\} \circ\left(\{1\}^{*}\right)\right) \cup\left(\varnothing^{*}\right)$.

Examples of expressions

$\Sigma * 000 \Sigma * \quad \ldots$ the language of all words that contain the substring 000
$(\Sigma \Sigma)^{*} \quad \ldots$ the language of all words with an even number of letters
$(0 * 10 * 1) * 0 * \quad \ldots$ the language of all words that contain an even number of 1 's
Note that concatenating the empty set to any set yields the empty set; $1 * \varnothing=\varnothing$

Equivalence with Finite Automata

- Regular expressions and finite automata are equivalent in their descriptive power.
- Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.
- We will prove the following result

Theorem. A language is recognizable by a FA if and only if some regular expression describes it.

- This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is described by a regular expression, then it is recognizable by a FA.

- We have a regular expression R describing some language A.
- We show how to convert R into an NFA recognizing A.
- We proved before that if an NFA recognizes A then a DFA recognizes A.
- To convert R into an NFA N, we consider the six cases in the formal definition of regular expression.

Proof of Lemma 1 (6 cases)

1. $R=a$ for some a in Σ. Then $L(R)=\{a\}$, hence

$$
\begin{aligned}
& N=\left(\left\{q_{1}, q_{2}\right\}, \Sigma, \delta, q_{1},\left\{q_{2}\right\}\right) \\
& \delta\left(q_{1}, a\right)=\left\{q_{2}\right\} \\
& \delta(r, b)=\varnothing \text { for } r \neq q_{1} \text { or } b \neq a .
\end{aligned}
$$

2. $R=\varepsilon$. Then $L(R)=\{\varepsilon\}$, hence

$$
\begin{gathered}
N=\left(\left\{q_{1}\right\}, \Sigma, \boldsymbol{\delta}, q_{1},\left\{q_{1}\right\}\right) \\
\delta(r, b)=\varnothing \text { for any } r \text { and } b .
\end{gathered}
$$

3. $R=\varnothing$. Then $L(R)=\varnothing$, hence

$$
\begin{gathered}
N=(\{q\}, \Sigma, \delta, q, \varnothing) \\
\delta(r, b)=\varnothing \text { for any } r \text { and } b .
\end{gathered}
$$

4. $R=R_{1} \cup R_{2}$.

- in these cases we use the constructions given in the

5. $R=R_{1} \circ R_{2}$.
6. $R=R_{1}^{*}$. proofs that the class of regular languages is closed under the regular operations.

- We construct the NFA for \boldsymbol{R} from NFAs for R_{1}, R_{2} and the appropriate closure construction.

Example 1

a

b

$a b$

$a b \cup a$
$(a b \cup a)^{*}$

Building an NFA from the regular expression $(a b \cup a)$ *

Example 2

a

$a b a$

Building an NFA from the regular expression $(a \cup b) * a b a$

Equivalence with Finite Automata

-We are working on the proof of the following result
Theorem. A language is regular if and only if some regular expression describes it.

- We have proved

Lemma 1. If a language is described by a regular expression, then it is regular.

- For given regular expression R, describing some language A, we have shown how to convert R into an NFA recognizing A.
- Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular expression.

- For a given regular language A, we need to write a regular expression R, describing A.
- Since A is regular, it is accepted by a DFA.
- We will describe a procedure for converting DFAs into equivalent regular expressions.
- We will define a new type of finite automaton, generalized NFA (GNFA).
- and show how to convert DFAs into GNFAs and then GNFAs into regular expression.
Theory of Computation, Feodor F. Dragan, Kent State University

Generalized Non-deterministic Finite Automata

- Generalized non-deterministic finite automata are simply NFAs wherein the transition arrows may have any regular expressions as labels, instead of only members of the alphabet or ε.

-For convenience we require that GNFAs always have a form that meets the following conditions.
- the start state has arrows going to every other state but no ingoing arrows.
- there is only one accepting state. It has ingoing arrows from every other state but no outgoing arrows.
- moreover, the start state is not the same as the accept state.
- except for the start and accept states, one arrow goes from every state to every other state and also from each state to itself.

Formal definition of GNFAs

- A GNFA is a 5-tuple $\left(Q, \Sigma, \delta, q_{\text {start }}, q_{\text {accept }}\right)$, where

1. Q is the finite set of states,
2. Σ is the input alphabet,
3. $\delta:\left(Q-\left\{q_{\text {accept }}\right\}\right) \times\left(Q-\left\{q_{\text {start }}\right\}\right) \rightarrow \mathrm{R}$ is the transition function,
4. $q_{\text {start }}$ is the start state, and
5. $q_{\text {accept }}$ is the accept state.

- A GNFA accepts a string w in $\Sigma *$ if $w=w_{1}, w_{2}, \ldots, w_{n}$, where each w_{i} is in $\Sigma *$ and a sequence of states $r_{0}, r_{1}, r_{2}, \ldots, r_{n}$ exists such that

1. $r_{0}=q_{\text {start }}, r_{n}=q_{\text {accept }}$
2. For each i, we have $w_{i} \in L\left(R_{i}\right)$, where $R_{i}=\delta\left(r_{i-1}, r_{i}\right)$; in other words, R_{i} is the expression on the arrow from r_{i-1} to r_{i}.

From DFAs to GNFAs

- add a new state with an \mathcal{E} arrow to the old start state, a new accept state with \mathcal{E} arrows from the old accept states.
- if any arrows have multiple labels (or if there are multiple arrows going between the same two states in the same direction) replace each with a single arrow whose label is the union of the previous labels.
- add arrows labeled \varnothing between states that had no arrows.

From GNFAs to Regular Expressions.

Convert(G)

1. Let k be the number of states of GNFA G.
2. If $k=2$, then G must consist of a start state, an accept state, and a single arrow connecting them and labeled with a regular expression R. Return the expression R.
3. If $k>2$, select any state $q_{r} \in Q$ different from start and accept states and let G' be the GNFA ($\left.Q^{\prime}, \Sigma, \delta^{\prime}, \stackrel{q}{q}_{\text {start }}, q_{\text {accept }}\right)$, where

$$
Q^{\prime}=Q-\left\{q_{r}\right\}
$$

And for any $q_{i} \in Q^{\prime}-\left\{q_{\text {accept }}\right\}$ and any $q_{j} \in Q^{\prime}-\left\{q_{\text {start }}\right\}$ let

$$
\delta^{\prime}\left(q_{i}, q_{j}\right)=\left(R_{1}\right)\left(R_{2}\right) *\left(R_{3}\right) \cup\left(R_{4}\right)
$$

for $R_{1}=\delta\left(q_{i}, q_{r}\right), R_{2}=\delta\left(q_{r}, q_{r}\right), R_{3}=\delta\left(q_{r}, q_{j}\right), R_{4}=\delta\left(q_{i}, q_{j}\right)$.
4. Compute $\operatorname{Covert}\left(\boldsymbol{G}^{\prime}\right)$ and return this value.

Claim. For any GNFA G, G^{\prime} is equivalent to G.

Proof of Claim.

Claim. For any GNFA G, G^{\prime} is equivalent to G.

- We show that G and G ' recognize the same language
- Suppose G accepts an input w
- then there exists a sequence of states s.t.

$$
\begin{aligned}
& \quad R_{1} \xrightarrow{R_{2}} q_{1} \xrightarrow{R_{3}} q_{3} \xrightarrow{R_{4}} \ldots \xrightarrow{R_{k}} q_{\text {accept }}, \\
& q_{\text {start }}, \\
& w_{i} \in L\left(R_{i}\right), w=w_{1} w_{2} \ldots w_{k}
\end{aligned}
$$

- if none of them is q_{r}, then G^{\prime} accepts w since each of the new regular expressions labeling
 arrows of G ' contains the old reg. expression as a part of union
- if q_{r} does appear, removing each sequence of consecutive q_{r} states forms an accepting path in G^{\prime}.
the states q_{i} and q_{j} bracketing a sequence have a new regular expression on the arrow between them that describes all strings taking q_{i} to q_{j} via q_{r} on G
- So, G^{\prime} accepts w.
- Suppose G^{\prime} accepts w
- as each arrow between any states q_{i} and q_{j} in G^{\prime} describes the collection $w_{\text {. }}$ of strings taking q_{i} to q_{j} in G, either directly or via q_{r}, G must also accept

