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CHAPTER  1

Regular Languages

Contents

• Finite Automata (FA or DFA)

• definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)

• definitions, equivalence of NFAs and DFAs, closure under regular 

operations

• Regular expressions

• definitions, equivalence with finite automata

• Non-regular Languages

• the pumping lemma for regular languages
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Regular expressions: definition
• An algebraic equivalent to finite automata. 

• We can build complex languages from simple languages using operations on 
languages. 

• Let                          be an alphabet. The simple languages over     are  

• the empty language     , which contains no word.

• for every symbol         , the language {a}, which contains only the one-
letter word “a”.

• The regular operations on languages are      (union),     (concatenation), and     
* (iteration). 

• An expression that applies regular operations to simple languages is called a 
regular expression (and the resulting language is a regular language; we will 
see later why…).

• L(E) is the language defined by the regular expression E. 
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Formally, R is a regular expression if R is 
1. a for some a in the alphabet      (stands for a language {a}), 
2. , standing for a language {  },
3. , standing for the empty language,

4. , where             are regular expressions,

5. , where             are regular expressions,

6. , where        is a regular expression.

Σ

ε ε

∅
)( 21 RR U 21, RR

21, RR)( 21 RR o

1R)( *

1R



2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Notations
• When writing regular expressions, we use the following conventions: 

• For simple languages of the form {a}, we write a (omitting braces).

• Parentheses are omitted according to the rule that iteration binds stronger 
than concatenation, which binds stronger than union.

• The concatenation symbol    is often omitted.

• We write     for    

• We write    for     (which is the language that contains only the empty word).

• For example, 01*       stands for the expression  
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Examples of expressions 

*0*)1*10*0(

*)(

*000*

ΣΣ

ΣΣ … the language of all words that contain the substring 000

… the language of all words with an even number of letters

… the language of all words that contain an even number of 1’s

Note that concatenating the empty set to any set yields the empty set; ∅=∅*1
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Equivalence with Finite Automata

• Regular expressions and finite automata are equivalent in their 
descriptive power. 

• Any regular expression can be converted into a finite automaton 
that recognizes the language it describes, and vice versa. 

• We will prove the following result

Theorem. A language is recognizable by a FA if and only if some 
regular expression describes it. 

• This theorem has two directions. We state each direction as a 
separate lemma.

Lemma 1. If a language is described by a regular expression, then it 
is recognizable by a FA.

• We have a regular expression R describing some language A.

• We show how to convert R into an NFA recognizing A.

• We proved before that if an NFA recognizes A then a DFA recognizes A.

• To convert R into an NFA  N, we consider the six cases in the formal 
definition of regular expression.  
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Proof of Lemma 1 (6 cases)
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• in these cases we use the constructions given in the 

proofs that the class of regular languages is closed under 

the regular operations. 

• We construct the NFA for R from NFAs for              and 

the appropriate closure construction.
21, RR

Theory of Computation, Feodor F. Dragan, Kent State University 6

Example 1
a

a

Building an NFA from the regular expression *)( aab ∪
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Example 2
a

a

Building an NFA from the regular expression 
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Equivalence with Finite Automata
•We are working on the proof of the following result

Theorem. A language is regular if and only if some regular 
expression describes it. 

• We have proved

Lemma 1. If a language is described by a regular expression, then it 
is regular.

• For given regular expression R, describing some language A, we have shown     
how to convert R into an NFA recognizing A.

• Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular 
expression.

• For a given regular language A, we need to write a regular expression R,
describing A. 

• Since A is regular, it is accepted by a DFA. 

• We will describe a procedure for converting DFAs into equivalent regular 
expressions.

• We will define a new type of finite automaton, generalized NFA (GNFA).

• and show how to convert DFAs into GNFAs and then GNFAs into regular 
expression. 
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Generalized Non-deterministic Finite Automata

• Generalized non-deterministic finite automata are  simply NFAs 
wherein the transition arrows may have any regular expressions as 
labels, instead of only members of the alphabet or   .ε

•For convenience we require that GNFAs always have a form that meets the 
following conditions. 

• the start state has arrows going to every other state but no ingoing arrows. 

• there is only one accepting state. It has ingoing arrows from every other state 
but no outgoing arrows. 

• moreover, the start state is not the same as the accept state.  

• except for the start and accept states, one arrow goes from every state to 
every other state and also from each state to itself. 
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qstart

baab ∪

∅

b

b*

ab*

ab

aa

(aa)*

a*
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From DFAs to GNFAs 

∅

• add a new state with an     arrow to the old start state, a new accept state with       
arrows from the old accept states. 

• if any arrows have multiple labels (or if there are multiple arrows going between 
the same two states in the same direction) replace each with a single arrow whose 
label is the union of the previous labels.

• add arrows labeled      between states that had no arrows. 

ε ε

Formal definition of GNFAs
• A GNFA is a 5-tuple                                       where  ),,,,,( acceptstart qqQ δΣ
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is the finite set of states,

is the input alphabet,

is the transition function,

is the start state, and 

is the accept state.

• A GNFA accepts a string w in        if                              , where each       is in     
and a sequence of states                        exists such that 
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the expression on the arrow from          to      .
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From GNFAs to Regular Expressions.  

Claim. For any GNFA G, G’ is equivalent to G. 
rq

iq jq

Convert(G)

1. Let k be the number of states of GNFA G. 

2. If k=2, then G must consist of a start state, an accept state, and a single arrow 
connecting them and labeled with a regular expression R. Return the 
expression R.

3. If k>2, select any state               different from start and accept states and let G’ 
be the GNFA                                        where    

4. Compute Covert(G’) and return this value.    
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Proof of Claim.  

Claim. For any GNFA G, G’ is equivalent to G. 
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• We show that G and G’ recognize the same language

• Suppose G accepts an input w

• then there exists a sequence  of states s.t.

• if none of them is    , then G’ accepts w

since each of the new regular expressions labeling 

arrows of G’ contains the old reg. expression as a part of union

• if      does appear, removing each sequence of consecutive        states 

forms an accepting path in G’.
the states      and       bracketing a sequence have a new regular expression on the 

arrow between them that describes all strings taking      to      via      on G 

• So, G’ accepts w.

• Suppose G’ accepts w 

• as each arrow between any states      and      in G’ describes the collection 

of strings taking     to     in G, either directly or via      , G must also accept       
w.
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