
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 1

Regular Languages

Contents

• Finite Automata (FA or DFA)

• definitions, examples, designing, regular operations

• Non-deterministic Finite Automata (NFA)

• definitions, equivalence of NFAs and DFAs, closure under regular

operations

• Regular expressions

• definitions, equivalence with finite automata

• Non-regular Languages

• the pumping lemma for regular languages

Theory of Computation, Feodor F. Dragan, Kent State University 2

Regular expressions: definition
• An algebraic equivalent to finite automata.

• We can build complex languages from simple languages using operations on
languages.

• Let be an alphabet. The simple languages over are

• the empty language , which contains no word.

• for every symbol , the language {a}, which contains only the one-
letter word “a”.

• The regular operations on languages are (union), (concatenation), and
* (iteration).

• An expression that applies regular operations to simple languages is called a
regular expression (and the resulting language is a regular language; we will
see later why…).

• L(E) is the language defined by the regular expression E.

},...,{ 1 naa=Σ

∅

Σ

Σ∈a

U o

Formally, R is a regular expression if R is
1. a for some a in the alphabet (stands for a language {a}),
2. , standing for a language { },
3. , standing for the empty language,

4. , where are regular expressions,

5. , where are regular expressions,

6. , where is a regular expression.

Σ

ε ε

∅
)(21 RR U 21, RR

21, RR)(21 RR o

1R)(*

1R

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Notations
• When writing regular expressions, we use the following conventions:

• For simple languages of the form {a}, we write a (omitting braces).

• Parentheses are omitted according to the rule that iteration binds stronger
than concatenation, which binds stronger than union.

• The concatenation symbol is often omitted.

• We write for

• We write for (which is the language that contains only the empty word).

• For example, 01* stands for the expression

Σ

ε

o

....1 naa ∪∪

*
∅

ε∪ *).(}*))1({}0({ ∅∪o

Examples of expressions

0)1*10*0(

*)(

000

ΣΣ

ΣΣ … the language of all words that contain the substring 000

… the language of all words with an even number of letters

… the language of all words that contain an even number of 1’s

Note that concatenating the empty set to any set yields the empty set; ∅=∅*1

Theory of Computation, Feodor F. Dragan, Kent State University 4

Equivalence with Finite Automata

• Regular expressions and finite automata are equivalent in their
descriptive power.

• Any regular expression can be converted into a finite automaton
that recognizes the language it describes, and vice versa.

• We will prove the following result

Theorem. A language is recognizable by a FA if and only if some
regular expression describes it.

• This theorem has two directions. We state each direction as a
separate lemma.

Lemma 1. If a language is described by a regular expression, then it
is recognizable by a FA.

• We have a regular expression R describing some language A.

• We show how to convert R into an NFA recognizing A.

• We proved before that if an NFA recognizes A then a DFA recognizes A.

• To convert R into an NFA N, we consider the six cases in the formal
definition of regular expression.

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

Proof of Lemma 1 (6 cases)

henceaRLTheninasomeforaR },{)(..1 =Σ=

a

}){,,,},,({ 2121 qqqqN δΣ=

.),(

}{),(

1

21

aborqrforbr

qaq

≠≠∅=

=

δ

δ

henceRLThenR },{)(..2 εε ==
}){,,,},({ 111 qqqN δΣ=

.),(bandranyforbr ∅=δ

henceRLThenR ,)(..3 ∅=∅=
),,,},({ ∅Σ= qqN δ

.),(bandranyforbr ∅=δ

..6

..5

..4

*

1

21

21

RR

RRR

RRR

=

=

=

o

U
• in these cases we use the constructions given in the

proofs that the class of regular languages is closed under

the regular operations.

• We construct the NFA for R from NFAs for and

the appropriate closure construction.
21, RR

Theory of Computation, Feodor F. Dragan, Kent State University 6

Example 1
a

a

Building an NFA from the regular expression *)(aab ∪

b
b

ε
ab

a b

ε

aab∪
a b

a

ε

ε

ε

*)(aab ∪
a b

a

ε

ε

ε

ε

ε

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Example 2
a

a

Building an NFA from the regular expression

b
b

ba ∪

aba

b

a
ε

ε

ababa *)(∪

*)(ba ∪
b

a
ε

ε

ε

ε

ε
ε

a b a

ε

b

a
ε

ε

ε

ε

ε

ε

a b a

ε

ε

ε

ababa *)(∪

ε

Theory of Computation, Feodor F. Dragan, Kent State University 8

Equivalence with Finite Automata
•We are working on the proof of the following result

Theorem. A language is regular if and only if some regular
expression describes it.

• We have proved

Lemma 1. If a language is described by a regular expression, then it
is regular.

• For given regular expression R, describing some language A, we have shown
how to convert R into an NFA recognizing A.

• Now we will prove the other direction

Lemma 2. If a language is regular then it is described by a regular
expression.

• For a given regular language A, we need to write a regular expression R,
describing A.

• Since A is regular, it is accepted by a DFA.

• We will describe a procedure for converting DFAs into equivalent regular
expressions.

• We will define a new type of finite automaton, generalized NFA (GNFA).

• and show how to convert DFAs into GNFAs and then GNFAs into regular
expression.

5

Theory of Computation, Feodor F. Dragan, Kent State University 9

Generalized Non-deterministic Finite Automata

• Generalized non-deterministic finite automata are simply NFAs
wherein the transition arrows may have any regular expressions as
labels, instead of only members of the alphabet or .ε

•For convenience we require that GNFAs always have a form that meets the
following conditions.

• the start state has arrows going to every other state but no ingoing arrows.

• there is only one accepting state. It has ingoing arrows from every other state
but no outgoing arrows.

• moreover, the start state is not the same as the accept state.

• except for the start and accept states, one arrow goes from every state to
every other state and also from each state to itself.

qaccept

qstart

baab ∪

∅

b

b*

ab*

ab

aa

(aa)*

a*

Theory of Computation, Feodor F. Dragan, Kent State University 10

From DFAs to GNFAs

∅

• add a new state with an arrow to the old start state, a new accept state with
arrows from the old accept states.

• if any arrows have multiple labels (or if there are multiple arrows going between
the same two states in the same direction) replace each with a single arrow whose
label is the union of the previous labels.

• add arrows labeled between states that had no arrows.

ε ε

Formal definition of GNFAs
• A GNFA is a 5-tuple where),,,,,(acceptstart qqQ δΣ

accept

start

startaccept

q

q

qQqQ

Q

.5

.4

R}){(}){(:.3

.2

.1

→−×−

Σ

δ

is the finite set of states,

is the input alphabet,

is the transition function,

is the start state, and

is the accept state.

• A GNFA accepts a string w in if , where each is in
and a sequence of states exists such that

nwwww ,...,, 21=*Σ iw *Σ
nrrrr ,...,,, 210

.2

,.1 0 acceptnstart qrqr ==

For each i, we have , where ; in other words, is

the expression on the arrow from to .

)(ii RLw ∈),(1 iii rrR
−

= δ iR

1−ir ir

6

Theory of Computation, Feodor F. Dragan, Kent State University 11

From GNFAs to Regular Expressions.

Claim. For any GNFA G, G’ is equivalent to G.
rq

iq jq

Convert(G)

1. Let k be the number of states of GNFA G.

2. If k=2, then G must consist of a start state, an accept state, and a single arrow
connecting them and labeled with a regular expression R. Return the
expression R.

3. If k>2, select any state different from start and accept states and let G’
be the GNFA where

4. Compute Covert(G’) and return this value.

),,,',,'(
acceptstart

qqQ δΣ

And for any and any let

for).,(),,(),,(),,(4321 jijrrrri
qqRqqRqqRqqR δδδδ ====

4R

Qqr ∈

},{' rqQQ −=

}{'
accepti

qQq −∈ }{'
startj

qQq −∈

),()(*))((),(' 4321 RRRRqq
ji

∪=δ

2R

1R 3R

iq j
q

)()(*))((4321 RRRR ∪

Theory of Computation, Feodor F. Dragan, Kent State University 12

Proof of Claim.

Claim. For any GNFA G, G’ is equivalent to G.

rq

iq j
q

kii

acceptstart

wwwwRLw

qqqqq

...),(

,...

21

321

=∈

→→→→→

• We show that G and G’ recognize the same language

• Suppose G accepts an input w

• then there exists a sequence of states s.t.

• if none of them is , then G’ accepts w

since each of the new regular expressions labeling

arrows of G’ contains the old reg. expression as a part of union

• if does appear, removing each sequence of consecutive states

forms an accepting path in G’.
the states and bracketing a sequence have a new regular expression on the

arrow between them that describes all strings taking to via on G

• So, G’ accepts w.

• Suppose G’ accepts w

• as each arrow between any states and in G’ describes the collection

of strings taking to in G, either directly or via , G must also accept
w.

4R

rq

2R

1R 3R

iq j
q

)()(*))((4321 RRRR ∪

1R 2R kR
4R

3R

rq rq

iq j
q

iq j
q rq

rq
iq j

q

iq j
q

7

Theory of Computation, Feodor F. Dragan, Kent State University 13

Example

1 2

a b

s

a

a

bb

ε

ε ε

3

ab b

a
1 2

a

3

ab b

a

b

s
a

ε

ε
2

3

ab

b

baa ∪

aba ∪ s a

3

*)(baaa ∪

ε∪∪∪ *))((baaabababbaaa ∪∪ *)(

bbabbaaaba ∪∪∪ *))((

s a

)(baaa ∪∪)))(((ε∪∪∪ baaaba)*)((babbaaa ∪∪ *)*))(((bbabbaaaba ∪∪∪

