

Regular expressions: definition • An algebraic equivalent to finite automata. • We can build complex languages from simple languages using operations on languages. • Let $\Sigma = \{a_1, ..., a_n\}$ be an alphabet. The simple languages over Σ are • the empty language \emptyset , which contains no word. • for every symbol $a \in \Sigma$, the language $\{a\}$, which contains only the one-letter word "a". • The regular operations on languages are U (union), o (concatenation), and * (iteration). • An expression that applies regular operations to simple languages is called a *regular expression* (and the resulting language is a regular language; we will see later why...). • *L(E)* is the language defined by the regular expression *E*. Formally, *R* is a *regular expression* if *R* is *1. a* for some *a* in the alphabet Σ (stands for a language *(a)*), 2. ε , standing for a language { ε }, 3. Ø, standing for the empty language, 4. $(R_1 \cup R_2)$, where R_1, R_2 are regular expressions, 5. $(R_1 \circ R_2)$, where R_1, R_2 are regular expressions, (R_1^*) , where R_1 is a regular expression. 6. Theory of Computation, Feodor F. Dragan, Kent State University

Equivalence with Finite Automata

• Regular expressions and finite automata are equivalent in their descriptive power.

• Any regular expression can be converted into a finite automaton that recognizes the language it describes, and vice versa.

• We will prove the following result

Theorem. A language is recognizable by a FA if and only if some regular expression describes it.

• This theorem has two directions. We state each direction as a separate lemma.

Lemma 1. If a language is described by a regular expression, then it is recognizable by a FA.

- We have a regular expression *R* describing some language *A*.
- We show how to convert *R* into an NFA recognizing *A*.
- We proved before that if an NFA recognizes A then a DFA recognizes A.

• To convert *R* into an NFA *N*, we consider the six cases in the formal definition of regular expression.

Theory of Computation, Feodor F. Dragan, Kent State University

Equivalence with Finite Automata •We are working on the proof of the following result *Theorem.* A language is regular if and only if some regular expression describes it. • We have proved *Lemma 1.* If a language is described by a regular expression, then it is regular. • For given regular expression *R*, describing some language *A*, we have shown how to convert *R* into an NFA recognizing *A*. Now we will prove the other direction Lemma 2. If a language is regular then it is described by a regular expression. • For a given regular language A, we need to write a regular expression R, describing A. • Since A is regular, it is accepted by a DFA. • We will describe a procedure for converting DFAs into equivalent regular expressions. • We will define a new type of finite automaton, generalized NFA (GNFA). • and show how to convert DFAs into GNFAs and then GNFAs into regular expression. Theory of Computation, Feodor F. Dragan, Kent State University

