CHAPTER 1
Regular Languages

Contents

* Finite Automata (FA or DFA)

* definitions, examples, designing, regular operations
* Non-deterministic Finite Automata (NFA)

e definitions, equivalence of NFAs and DFAs, closure under regular
operations

* Regular expressions
e definitions, equivalence with finite automata
* Non-regular Languages

¢ the pumping lemma for regular languages

Theory of Computation, Feodor F. Dragan, Kent State University 1

Non-regular Languages

* To understand the power of finite automata we must also
understand their limitation.

* We will show that certain languages cannot be recognized by any
finite automaton.

 Try to build an automaton that recognizes the language
L={0"1": n=m}.

 The automaton starts by seeing O inputs.

e It has to remember the exact number of 0 inputs, since it will later check that
number against the number of 1 inputs.

* But the number of 0 inputs can be arbitrary large.

¢ Intuitively, no finite number of states can remember the exact number of 0
inputs.

* We conclude that this language is not regular.

* The Pumping Lemma for regular languages formalize this argument.

Theory of Computation, Feodor F. Dragan, Kent State University 2

Pumping Lemma

Lemma. For any regular language L,
there exists a number P21 such that
for every word we L with at least p letters
there exist x, y, z with w = xyz and ly|>0 and Ixyl < p such that
for every number ; >0, xy'ze L.

* We call p the pumping number of L, and xyz the pumping decomposition of w.

Proof

*® Consider a regular language L.

* L is accepted by some finite automaton M.

* Let p be the number of states of M.

* Now consider a word in L with at least p letters.

* Then w is accepted by M along some path that contains a loop.

* We can construct other paths of M by going through the loop 0,1,2, ... times.

* These paths also accept words in L.

* In other words, any accepting word w of length at least p can be “pumped “ to
find infinitely many other accepted words.

Theory of Computation, Feodor F. Dragan, Kent State University

How to prove that a language is not regular?

* Suppose we want to prove that a language L is not regular.

* We can do this by showing that the pumping lemma does not hold for L; that is,
we prove the negation of the pumping lemma:

for any number p >1

there exists a word we L with at least p letters such that
for all x, y, z with w = xyz and ly|>0 and Ixyl <p

there exists a number i>0such that xy'ze L.

*We have to consider all possibilities for the pumping number p,

» all possibilities for the pumping decomposition x,y,z (often by case analysis).
* But we are free to choose a single word w,

e and a single iteration number i.

* Choosing a suitable w is usually the crux of the proof (one needs a bit of creative thinking)

* For i, we can typically choose i=0 or i=2.

e Example: L={0"1": n=m} isnotregular.

* Choose any pumping number p (we know only that p >21). Choose y = ¢”1”.
e Consider any pumping decomposition w=xyz (ly|>0 and lxyl < p).

e Hence x=0° and y=0" and z=0"""1", forp>1.

* Choose i=2. Sincep >1, xy*z=0""1" isnotin L.

Theory of Computation, Feodor F. Dragan, Kent State University

More Examples

Example2: L, ={xx: xe{0,1}*} isnotregular.

Choose any pumping number p (we know only that p 21).
Choose y=10"10".
Consider any pumping decomposition w=xyz (Iy|>0 and lxyl < p).
There are two possibilities;
a) x=10 and y=0’ and Z =0""""10", forb>1.
b) x=¢ andy=10" and z=0""10".
e Choose i=2. We need to show that xy*zisnotinL,.
a) xy?z=107"107, whichisnotin L, ,since b1
b) xy*z =10°10°107, which is not in L, > since it contains three 1’s.

Example 3: L= {1"2 : n>0} isnotregular

Choose any pumping number p (we know only that p 21,

Choose w=1".

Consider any pumping decomposition w=xyz (ly|>0 and Ixyl < p).

Hence, x=1° and y=1" and ;= 1Pt for p>1 and g+bH< p.

Choose i=2. We need to show that xy’z=1""" isnotinL, , i.e., p’+b isnota
square.

° Indeed, b>1= p’+b>p’. a+b<p=p’+b<p’+p<(p+1).

Theory of Computation, Feodor F. Dragan, Kent State University 5

Proving (non)regularity.

* To prove that a language L is regular, there are essentially two
options:

1. Find a finite automaton (or regular expression) that defines L.

2. Show that L can be built from simpler regular languages using operations
that are known to preserve regularity (i.e., U, N, o, ¥).

* To prove that a language L is not regular, there are again two
options:

1. Show that the negation of the pumping lemma holds for L.

2. Show that a lan%uage that is known to be non-regular can be built from L
and languages that are known to be regular using operations that are
known to preserve regularity.

e Example (of the second proof technique):
L, ={we {0,1}*:w contains the same number of 1’s and 0’s} 1S not regular,

since L=L, N (0*1*¥) (if L,were regular, then L would also be regular,

which contradicts the first example).
Theory of Computation, Feodor F. Dragan, Kent State University

