
1

Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 3

The Church-Turing Thesis

Contents

• Turing Machines

• definitions, examples, Turing-recognizable and Turing-decidable

languages

• Variants of Turing Machine

• Multi-tape Turing machines, non-deterministic Turing Machines,

Enumerators, equivalence with other models

• The definition of Algorithm

• Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University 2

The definition of algorithm

• Informally, an algorithm is a collection of simple instructions for carrying out
some task.

• Algorithms play an important role in CS and Math.

• Even though algorithms have had a long history in mathematics (finding prime
numbers, greatest common divisors, …), the notion of algorithms itself was not
defined precisely until the twentieth century.

• Before that, mathematicians had an intuitive notion of what algorithms were and
relied upon that notion when using and describing them.

• The intuitive notion was insufficient for gaining a deeper understanding of
algorithms.

• The story “Hilbert’s tenth problem” relates how the precise definition of algorithm
was crucial to one important mathematical problem.

• In 1900, mathematician David Hilbert, in his lecture (at the International Congress
of Mathematicians in Paris), identified twenty-three mathematical problems and
posed them as challenge for the coming century.

• The tenth problem on his list concerned algorithms.

Devise a process according to which it can be determined by finite number of

operations whether a polynomial has an integral root.

2

Theory of Computation, Feodor F. Dragan, Kent State University 3

Hilbert’s tenth problem
• A polynomial is a sum of terns, where each term is a product of certain variables
and a constant called a coefficient.

• is a term with coefficient 6.

• is a polynomial with four terms over the variables x,y, and z.

• A root of a polynomial is an assignment of values to variables so that the value of
the polynomial is 0. That polynomial has a root x=5, y=3, z=0.

• This root is integral since all the variables are assigned integer values.

• Some polynomials have an integral root and some do not.

• So, Hilbert’s tenth problem was to devise an algorithm that tests whether a
polynomial has an integral root.

• We now know that no algorithm exists for this task; it is algorithmically
unsolvable.

• For mathematicians of that period to come to this conclusion with their intuitive
concept of algorithm would have been virtually impossible.

• The intuitive concept of algorithm may have been adequate for giving algorithms
for certain tasks, but it was useless for showing that no algorithm exists for a
particular task.

• Proving that an algorithm does not exist requires having a clear definition of
algorithm. Progress on the tenth problem had to wait for that definition.

2366 yzxzzyxxx =⋅⋅⋅⋅⋅⋅

1036 3223
−−+ xxyyzx

Theory of Computation, Feodor F. Dragan, Kent State University 4

Church-Turing thesis

• The definition came in the 1936 papers of A. Church and A.Turing.

• Church used a notational system called -calculus to define algorithms.

• Turing did it with his ‘machines’.

• These two definitions were shown to be equivalent.

• This connection between the informal notion of algorithm and the precise
definition has come to be called the Church-Turing thesis.

λ

Intuitive notion Turing machine

of algorithms algorithms
equals

• This thesis provides the definition of algorithm necessary to resolve Hilbert’s
tenth problem.

• In 1970, Yuri Matijasevich showed that no algorithm exists for testing whether a
polynomial has integral roots.

• Later we will see the techniques that form the basis for proving that this and other
problems are algorithmically unsolvable.

3

Theory of Computation, Feodor F. Dragan, Kent State University 5

Hilbert’s tenth problem(cont.)
• We formulate Hilbert’s tenth problem in our terminology.

• Let D = {p: p is polynomial with an integral root}. Hilbert’s tenth problem asks
whether the language (set) D is decidable.

• The answer is negative. We can show that D is Turing-recognizable, but not
decidable.

• Let first consider a simpler problem: it is an analog of Hilbert’s tenth problem for
polynomials that have only a single variable, e.g.

• Let D1 = {p: p is polynomial over x with an integral root}. Here is a Turing machine M1
that recognizes D1:

• Clearly, if p has an integral root, M1 will find it and accept. If p does not have an integral
root, M1 will run forever.

• For multivariable case, we can present similar Turing machine M that recognizes D. M will
go through all possible settings of its variables to integral values.

• Both M1 and M are recognizers but not deciders. We can convert M1 to be decider for D1
since we can calculate bounds within which the roots of a single variable polynomial must lie
and restrict the search to these bounds. If a root is not found within these bounds, the
machine rejects.

• Matijasevich’s theorem shows that calculating such bounds for multivariable polynomials is
impossible.

1. Evaluate p with x set successively to the values 0,1,-1,2,-2,… .

If at any point the polynomial evaluates to 0, accept.”

M1= “ the input is a polynomial p over the variable x.

.724 23
−+− xxx

|]|/|,|/[1max1max0 ckcckcx −∈

Theory of Computation, Feodor F. Dragan, Kent State University 6

Terminology for describing Turing Machines
Three variants of description.

1. The formal description: spells out in full the Turing machine’s states,
transition function, and so on.

2. The implementation description: uses English prose to describe the way that
the Turing machine moves its head and the way that it stores data on its tape.

3. The high-level description: uses English prose to describe an algorithm,
ignoring the implementation model. At this level we do not need to mention how
the machine manages its tape or head.

• From now on we will use only high-level descriptions.

• The input to a TM is always a string.

if we want to provide an object other than a string as input, we must first
represent that object as a string. Strings can easily represent polynomials,
graphs, grammars, automata, and any combination of those objects.

• Notation for the encoding of an object O into its representation as a string is <O>. A string
<O1,O2,…,Ok> is the encoding of several objects O1,O2,…,Ok.

• We will use the following format for describing TM algorithms:

• We describe TM algorithm with an indented segments of text within quotes.

• We break the algorithm into stages, each usually involving many individual steps of the
TM’s computation.

• The first line of the algorithm describes the input to the machine. If the input is simply
w, the input is taken to be a string w. If the input is the encoding of an object as in <A>,
the TM first implicitly tests whether the input properly encodes an object of the desired
form and rejects it if it doesn’t.

4

Theory of Computation, Feodor F. Dragan, Kent State University 7

Example

• Let A be the language consisting of all strings representing undirected graphs that
are connected.

• Graph is connected if every node can be reached from every other node by
traveling along the edges of the graph.

• We write A = {<G>: G is a connected undirected graph}.

• The following is a high-level description of a TM M that decides A.

1. Select the first node of G and mark it.

2. Repeat the following stage until no new nodes are marked.

3. For each node in G, mark it if it is attached by an edge to a node that is
already marked.

4. Scan all the nodes of G to determine whether they all are marked. If they
are, accept; otherwise reject.”

M = “On input <G>, the encoding of a graph G:

1

2 3

4G = <G >= (1,2,3,4)((1,2), (2,3), (3,1), (1,4))

A graph G and its encoding <G>.

