
Theory of Computation, Feodor F. Dragan, Kent State University 1

CHAPTER 3

The Church-Turing Thesis

Contents

• Turing Machines

• definitions, examples, Turing-recognizable and Turing-decidable

languages

• Variants of Turing Machine

• Multi-tape Turing machines, non-deterministic Turing Machines,

Enumerators, equivalence with other models

• The definition of Algorithm

• Hilbert’s problems, terminology for describing Turing machines

Theory of Computation, Feodor F. Dragan, Kent State University 2

The definition of algorithm

• Informally, an algorithm is a collection of simple instructions for carrying out
some task.

• Algorithms play an important role in CS and Math.

• Even though algorithms have had a long history in mathematics (finding prime
numbers, greatest common divisors, …), the notion of algorithms itself was not
defined precisely until the twentieth century.

• Before that, mathematicians had an intuitive notion of what algorithms were and
relied upon that notion when using and describing them.

• The intuitive notion was insufficient for gaining a deeper understanding of
algorithms.

• The story “Hilbert’s tenth problem” relates how the precise definition of algorithm
was crucial to one important mathematical problem.

• In 1900, mathematician David Hilbert, in his lecture (at the International Congress
of Mathematicians in Paris), identified twenty-three mathematical problems and
posed them as challenge for the coming century.

• The tenth problem on his list concerned algorithms.

Devise a process according to which it can be determined by finite number of

operations whether a polynomial has an integral root.

Theory of Computation, Feodor F. Dragan, Kent State University 3

Hilbert’s tenth problem
• A polynomial is a sum of terns, where each term is a product of certain variables
and a constant called a coefficient.

• is a term with coefficient 6.

• is a polynomial with four terms over the variables x,y, and z.

• A root of a polynomial is an assignment of values to variables so that the value of
the polynomial is 0. That polynomial has a root x=5, y=3, z=0.

• This root is integral since all the variables are assigned integer values.

• Some polynomials have an integral root and some do not.

• So, Hilbert’s tenth problem was to devise an algorithm that tests whether a
polynomial has an integral root.

• We now know that no algorithm exists for this task; it is algorithmically
unsolvable.

• For mathematicians of that period to come to this conclusion with their intuitive
concept of algorithm would have been virtually impossible.

• The intuitive concept of algorithm may have been adequate for giving algorithms
for certain tasks, but it was useless for showing that no algorithm exists for a
particular task.

• Proving that an algorithm does not exist requires having a clear definition of
algorithm. Progress on the tenth problem had to wait for that definition.

2366 yzxzzyxxx =⋅⋅⋅⋅⋅⋅

1036 3223
−−+ xxyyzx

Theory of Computation, Feodor F. Dragan, Kent State University 4

Church-Turing thesis

• The definition came in the 1936 papers of A. Church and A.Turing.

• Church used a notational system called -calculus to define algorithms.

• Turing did it with his ‘machines’.

• These two definitions were shown to be equivalent.

• This connection between the informal notion of algorithm and the precise
definition has come to be called the Church-Turing thesis.

λ

Intuitive notion Turing machine

of algorithms algorithms
equals

• This thesis provides the definition of algorithm necessary to resolve Hilbert’s
tenth problem.

• In 1970, Yuri Matijasevich showed that no algorithm exists for testing whether a
polynomial has integral roots.

• Later we will see the techniques that form the basis for proving that this and other
problems are algorithmically unsolvable.

Theory of Computation, Feodor F. Dragan, Kent State University 5

Hilbert’s tenth problem(cont.)
• We formulate Hilbert’s tenth problem in our terminology.

• Let D = {p: p is polynomial with an integral root}. Hilbert’s tenth problem asks
whether the language (set) D is decidable.

• The answer is negative. We can show that D is Turing-recognizable, but not
decidable.

• Let first consider a simpler problem: it is an analog of Hilbert’s tenth problem for
polynomials that have only a single variable, e.g.

• Let D1 = {p: p is polynomial over x with an integral root}. Here is a Turing machine M1
that recognizes D1:

• Clearly, if p has an integral root, M1 will find it and accept. If p does not have an integral
root, M1 will run forever.

• For multivariable case, we can present similar Turing machine M that recognizes D. M will
go through all possible settings of its variables to integral values.

• Both M1 and M are recognizers but not deciders. We can convert M1 to be decider for D1
since we can calculate bounds within which the roots of a single variable polynomial must lie
and restrict the search to these bounds. If a root is not found within these bounds, the
machine rejects.

• Matijasevich’s theorem shows that calculating such bounds for multivariable polynomials is
impossible.

1. Evaluate p with x set successively to the values 0,1,-1,2,-2,… .

If at any point the polynomial evaluates to 0, accept.”

M1= “ the input is a polynomial p over the variable x.

.724 23
−+− xxx

|]|/|,|/[1max1max0 ckcckcx −∈

Theory of Computation, Feodor F. Dragan, Kent State University 6

Terminology for describing Turing Machines
Three variants of description.

1. The formal description: spells out in full the Turing machine’s states,
transition function, and so on.

2. The implementation description: uses English prose to describe the way that
the Turing machine moves its head and the way that it stores data on its tape.

3. The high-level description: uses English prose to describe an algorithm,
ignoring the implementation model. At this level we do not need to mention how
the machine manages its tape or head.

• From now on we will use only high-level descriptions.

• The input to a TM is always a string.

if we want to provide an object other than a string as input, we must first
represent that object as a string. Strings can easily represent polynomials,
graphs, grammars, automata, and any combination of those objects.

• Notation for the encoding of an object O into its representation as a string is <O>. A string
<O1,O2,…,Ok> is the encoding of several objects O1,O2,…,Ok.

• We will use the following format for describing TM algorithms:

• We describe TM algorithm with an indented segments of text within quotes.

• We break the algorithm into stages, each usually involving many individual steps of the
TM’s computation.

• The first line of the algorithm describes the input to the machine. If the input is simply
w, the input is taken to be a string w. If the input is the encoding of an object as in <A>,
the TM first implicitly tests whether the input properly encodes an object of the desired
form and rejects it if it doesn’t.

Theory of Computation, Feodor F. Dragan, Kent State University 7

Example

• Let A be the language consisting of all strings representing undirected graphs that
are connected.

• Graph is connected if every node can be reached from every other node by
traveling along the edges of the graph.

• We write A = {<G>: G is a connected undirected graph}.

• The following is a high-level description of a TM M that decides A.

1. Select the first node of G and mark it.

2. Repeat the following stage until no new nodes are marked.

3. For each node in G, mark it if it is attached by an edge to a node that is
already marked.

4. Scan all the nodes of G to determine whether they all are marked. If they
are, accept; otherwise reject.”

M = “On input <G>, the encoding of a graph G:

1

2 3

4G = <G >= (1,2,3,4)((1,2), (2,3), (3,1), (1,4))

A graph G and its encoding <G>.

