Time complexity
• Here we will consider <i>elements of computational complexity theory</i> – an investigation of the time (or other resources) required for solving computational problems.
• We introduce a way of measuring the time used to solve a problem. Then we will classify problems according to the amount of time required.
• We will see that certain decidable problems require enormous amounts of time and how to determine when you are faced with such a problem.
• Let consider an example of a TM <i>M1</i> which decides the language $A = \{0^k 1^k : k \ge 0\}$.
MI = "on input w:
1. Scan across the tape and <i>reject</i> if a 0 is found to the right of a 1.
2. Repeat the following if both 0s and 1s remain on the tape.
3. Scan across the tape, crossing off a single 0 and a single 1.
4. If <i>Os</i> still remain after all the <i>1</i> s have been crossed off, or if <i>1</i> s remain after all the <i>0</i> s have been crossed off, <i>reject</i> . Otherwise, if neither <i>0</i> s nor <i>1</i> s remain on the tape, <i>accept</i> ."
• How much time does a single type TM need to decide A?
• We count the number of steps that algorithm uses on a particular input as a function of the length of the string representing the input.
• We consider <i>worst case analysis</i> , i.e., the longest running time of all inputs of a particular length.
Theory of Computation, Feodor F. Dragan, Kent State University 1

Asymptotic notation : big-O and small-o

• **Def. 1:** Let M be a TM that halts on all inputs. The **running time** or **time complexity** of M is the function $f: N \rightarrow N$, where f(n) is the maximum number of steps that M uses on any input of length n. We say M runs in time f(n) and M is an f(n) time Turing machine.

• **Def. 2:** Let f and g be two functions $f, g: N \to R^+$. Say that f(n) = O(g(n)) if positive integers c and n' exist so that for every $n \ge n'$, $f(n) \le c g(n)$. We say that g(n) is an **upper bound** for f(n) (or **asymptotic upper bound**).

• Intuitively, this means that f is less than or equal to g for sufficient large n if we disregard differences up to a constant factor. O represents that constant; constant is hidden under O.

If $f(n) = 5n^3 + 2n^2 + 22n + 6$, then $f(n) = O(n^3)$ or $f(n) = O(n^4)$, but $f(n) \neq O(n^2)$.

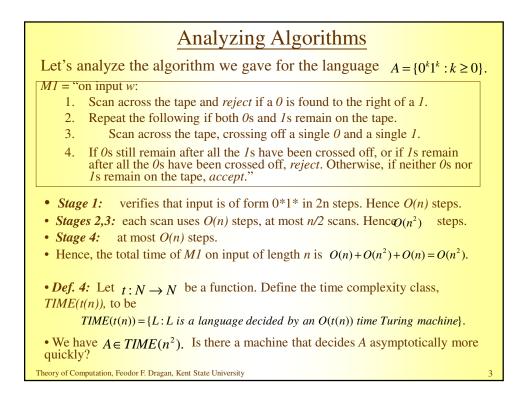
If $f(n) = 3n \log_2 n + 5n \log_2 \log_2 n + 2$, then $f(n) = O(n \log n)$.

If $f(n) = O(n^2) + O(n)$, then $f(n) = O(n^2)$.

• Other examples of run-time: $2^{O(n)}$, O(1), $n^{O(1)} (= 2^{O(\log n)})$. Bounds of the form n^c for c > 0 are called *polynomial bounds*. Bounds of the form $2^{(n^{\delta})} (\delta > 0)$ are called *exponential bounds*.

• **Def. 3:** Let f and g be two functions $f, g: N \to R^+$. Say that f(n) = o(g(n)) if for any real c > 0, a number n' exists so that for every $n \ge n'$, f(n) < c g(n)e.,

• Examples: $\sqrt{n} = o(n)$, $n \log \log n = o(n \log n)$,	$n = o(n \log \log n),$ $n \log n = o(n^{2}),$	$\lim_{n\to\infty}\frac{f(n)}{g(n)}=0.$
$n^2 = o(n^3),$	but $f(n) \neq o(f(n))$.	
Theory of Computation, Feodor F. Dragan, Kent State Univ	versity	2



	$A = \{0^k 1^k : k \ge 0\} \in TIME(n \log n)$
M2 = "0"	on input w:
1.	Scan across the tape and <i>reject</i> if a 0 is found to the right of a 1.
2.	Repeat the following if some <i>O</i> s and some <i>I</i> s remain on the tape.
3.	Scan across the tape, checking whether the total number of 0s and 1s remaining is even or odd. If odd, <i>reject</i> .
4.	Scan again across the tape, crossing off every other 0 starting with the first 0, and then crossing off every other 1 starting with the first 1.
5.	If no 0s and no 1s remain on the tape, accept. Otherwise, reject."
• Why	does M2 decide A?
	• on every scan performed in stage 4, the total number of 0 s (of <i>I</i> s) remaining is cut in half and any remainder is discarded.
	• in stage 3 we check whether the parities of # of 0s and # of 1s are the same.
• Run	ning Time:
	• All Stages take O(n) steps.
	• Stages 1 and 5 are executed once.
	• <i>Stages 2,3,4</i> are executed at most (1+log n) time.
• Hend	ce, the total time of M2 on input of length n is
	$O(n) + (1 + \log n)(O(n) + O(n) + O(n)) + O(n) = O(n \log n).$
• So, <u>/</u>	$A \in TIME(n \log n)$. This result cannot be further improved on a single tape TM.
Theory of Co	mputation, Feodor F. Dragan, Kent State University 4

