
Practical Approximation Algorithms for
Separable Packing Linear Programs�

Feodor F. Dragan1, Andrew B. Kahng2, Ion I. Măndoiu3, Sudhakar Muddu4,
and Alexander Zelikovsky5

1 Department of Computer Science, Kent State University, Kent, OH 44242
dragan@cs.kent.edu

2 Departments of Computer Science and Engineering, and of Electrical and
Computer Engineering, UC San Diego, La Jolla, CA 92093-0114

abk@cs.ucsd.edu
3 Department of Computer Science, UC Los Angeles, Los Angeles, CA 90095-1596

mandoiu@cc.gatech.edu
4 Sanera Systems, Inc., Santa Clara, CA

muddu@sanera.net
5 Department of Computer Science, Georgia State University, Atlanta, GA 30303

alexz@cs.gsu.edu

Abstract. We describe fully polynomial time approximation schemes
for generalized multicommodity flow problems arising in VLSI applica-
tions such as Global Routing via Buffer Blocks (GRBB). We extend
Fleischer’s improvement [7] of Garg and Könemann [8] fully polynomial
time approximation scheme for edge capacitated multicommodity flows
to multiterminal multicommodity flows in graphs with capacities on ver-
tices and subsets of vertices. In addition, our problem formulations ob-
serve upper bounds and parity constraints on the number of vertices on
any source-to-sink path. Unlike previous works on the GRBB problem
[5,17], our algorithms can take into account (i) multiterminal nets, (ii)
simultaneous buffered routing and compaction, and (iii) buffer libraries.
Our method outperforms existing algorithms for the problem and has
been validated on top-level layouts extracted from a recent high-end mi-
croprocessor design.

1 Introduction

In this paper, we address the problem of how to perform buffering of global
nets given an existing buffer block plan. We give integer linear program (ILP)
formulations of the basic Global Routing via Buffer Blocks (GRBB) problem and
its extensions to (i) multiterminal nets, (ii) simultaneous buffered routing and
compaction, and (iii) buffer libraries. The fractional relaxations of these ILP’s
are separable packing LP’s (SP LP) which are multiterminal multicommodity
flows in graphs with capacities on vertices and subsets of vertices.
� This work was partially supported by Cadence Design Systems, Inc., the MARCO
Gigascale Silicon Research Center and NSF Grant CCR-9988331.

F. Dehne, J.-R. Sack, and R. Tamassia (Eds.): WADS 2001, LNCS 2125, pp. 325–337, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

326 F.F. Dragan et al.

The main contribution of this paper is a practical algorithm for the GRBB
problem and its extensions based on a fully polynomial time approximation
scheme (FPTAS) for solving SP LPs. Prior to our work, heuristics based on
solving fractional relaxations followed by randomized rounding have been applied
to VLSI global routing [12,16,2,9,1] As noted in [11], the applicability of this
approach is limited to problem instances of relatively small size by the prohibitive
cost of solving exactly the fractional relaxation. We avoid this limitation by
giving an FPTAS for SP LP’s based on results in [8,7]. Computational experience
with industrial benchmarks shows that our approach is practical and outperforms
existing algorithms.

The rest of the paper is organized as follows. In Section 3 we formulate the
GRBB problem and its extensions as integer linear programs. The fractional
relaxation of these ILPs is a special type of packing LP which we refer to as sep-
arable packing LP. In Sections 4 we give a practical approximation algorithm,
obtained by extending the ideas of Fleischer [7] for separable packing LPs; the
details of the key subroutine for finding minimum-weight feasible Steiner trees
are given in Section 5; the details of randomized rounding algorithms are in Sec-
tion 6. In Section 7 we describe implementations of several GRBB heuristics and
give the results of an experimental comparison of these heuristics on industrial
test cases.

2 Global Buffering via Buffer Blocks

Process scaling in VLSI leads to an increasingly dominant effect of interconnect
on high-end chip performance. Each top-level global net must undergo repeater
or buffer (inverter) insertion to maintain signal integrity and reasonable signal
delay [4]. It is estimated that up to 106 repeaters will be needed for the next
generation on-chip interconnect. To isolate repeaters from circuit block imple-
mentations, a buffer block methodology is becoming increasingly popular. Two
recent works by Cong, Kong and Pan [5] and Tang and Wong [17] give algo-
rithms to solve the buffer block planning problem. Their buffer block planning
formulation is roughly stated as follows: Given a placement of circuit blocks,
and a set of 2-pin connections with feasible regions for buffer insertion, plan the
location of buffer blocks within the available free space so as to route a maximum
number of connections.

In this paper we address the problem of maximizing the number of routed
nets for given buffer block locations and capacities, informally defined as follows.

Given:

– a planar region with rectangular obstacles;
– a set of nets in the region, each net having:

• a non-negative importance (criticality) coefficient;
• a single source and multiple sinks;

Practical Approximation Algorithms for Separable Packing Linear Programs 327

– for each sink:
• a parity requirement and an upper-bound on the number of buffers on
the path connecting it to the source;

– a set of buffer blocks, each with given capacity; and
– an interval [L,U] specifying lower and upper bounds on the distance between
buffers.

Global Routing via Buffer Blocks (GRBB) Problem: route a subset of
the given nets, with maximum total importance, such that:

– the distance between the source of a route and its first repeater, between
any two consecutive repeaters, respectively between the last repeater on a
route and the route’s sink, are all between L and U ;

– the number of routing trees passing through any given buffer block does not
exceed the block’s capacity;

– the number of buffers on each source-sink path does not exceed the given
upper bound and has the required parity; to meet the parity constraint two
buffers of the same block can be used.

We also address the following extensions of the basic GRBB problem:

– GRBB with Set Capacity Constraints. The basic GRBB problem as-
sumes predetermined capacities for all buffer blocks. In practice buffer blocks
are placed in the space available after placing circuit blocks, and some of the
circuit blocks can still be moved within certain limits (Figure 1). The GRBB
problem with set capacity constraints captures this freedom by allowing con-
straints on the total capacity of arbitrary sets of buffer blocks.

BB1 BB2 BB1 BB2

M M

Fig. 1. Two buffer blocks BB1 and BB2 that share capacity: if the circuit block
M moves to the right, then the capacity of buffer block BB1 is increasing while
the capacity of buffer block BB2 is decreasing. In this example it is the sum
of capacities of BB1 and BB2, rather than their individual capacities, that is
bounded.

328 F.F. Dragan et al.

– GRBB with Buffer Library. To achieve better use of area and power
resources, multiple buffer types can be used. The GRBB problem with buffer
library optimally distributes the available buffer block capacity between given
buffer types and simultaneously finds optimum buffered routings.

3 Integer Linear Program Formulations

Throughout this paper we let Nk = (sk; t1k, . . . , t
qk

k), k = 1, . . . ,K, denote the
nets to be routed; sk is the source, and t1k, . . . , t

qk

k are the sinks of net Nk.
We denote by gk ≥ 1 the importance (criticality) coefficient of net Nk, and by
ai

k ∈ {even, odd} and lik ≥ 0 the prescribed parity, respectively upper bound,
on the number of buffers on the path between source sk and sink tik. We also
let S = {s1, . . . , sK} and S′ = {t11, . . . , tq1

1 , . . . , t
1
K , . . . , t

qK

K } denote the set of
sources, respectively of sinks, and R = {r1, . . . , rn} denote the given set of
buffer blocks. For each buffer block ri, we let c(ri) denote its capacity, i.e., the
maximum number of buffers that can be inserted in ri.

A routing graph for nets Nk, k = 1, . . . ,K, is an undirected graph G = (V,E)
such that S ∪ S′ ⊆ V . The set of vertices of G other than sources and sinks,
V \ (S ∪ S′), is denoted by V ′. All vertices in a routing graph are associated to
locations on the chip, including vertices of V ′ which are associated with buffer
block locations. We require that the rectilinear distance with obstacles between
two vertices connected by an edge in the routing graph be either between L
and U or 0 (this last case corresponds to using two buffers in the same buffer
block). Thus, inserting a buffer at each Steiner point ensures that every Steiner
tree in the routing graph satisfies the given L/U bounds. A feasible Steiner tree
for net Nk is a Steiner tree Tk connecting terminals sk, t1k, . . . , t

qk

k such that, for
every i = 1, . . . , qk, the path of Tk connecting sk to tik has length at most lik and
parity ai

k. We denote the set of all feasible Steiner trees for net Nk by Tk, and
let T =

⋃K
k=1 Tk.

For the GRBB problem, the routing graph G = (V,E) has
V = S ∪ S′ ∪ {r′, r′′ | r ∈ R} (there are two vertices corresponding to
each buffer block to allow for feasible Steiner trees that meet the parity con-
straints by using two buffers in the same buffer block) and E = {(r′, r′′) | r ∈ R}
∪{(x, y) | x, y ∈ V , L ≤ d(x, y) ≤ U}, where, d(x, y) is the rectilinear distance
with obstacles between points x and y. Given importance coefficients gk = g(Nk)
for each net Nk, let g(T) = gk for each tree T ∈ Tk, k = 1, . . . ,K. The GRBB
problem is then equivalent to the following integer linear program:

maximize
∑

T∈T g(T)fT (GRBB ILP)
subject to ∑

T∈T πT (v)fT ≤ 1, ∀v ∈ S ∪ S′∑
T∈T (πT (r′) + πT (r′′))fT ≤ c(r), ∀r ∈ R

fT ∈ {0, 1}, ∀T ∈ T

where πT (v) is 1 if v ∈ T and 0 otherwise.

Practical Approximation Algorithms for Separable Packing Linear Programs 329

The GRBB ILP, as well as the ILP formulations for GRBB with set
constraints and buffer library (which we omit from this extended abstract) are
captured by the following common generalization, referred to as the separable
packing ILP (SP ILP):

maximize
∑

T∈T g(T)fT (SP ILP)
subject to ∑

T∈T (
∑

v∈X πT (v)s(v)) fT ≤ c(X), ∀X ∈ V
fT ∈ {0, 1}, ∀T ∈ T

for given

– arbitrary sets Tk of Steiner trees for each net Nk;
– family V of subsets of V such that {v} ∈ V for every v ∈ S ∪ S′;
– “size” function s : V → R+ such that s(v) = 1 for every v ∈ S ∪ S′; and
– “set-capacity” function c : V → Z+ such that c({v}) = 1 for every v ∈ S∪S′.

Our two-step approach to the GRBB problem and its extensions is to first
solve the fractional relaxations obtained by replacing integrality constraints
fT ∈ {0, 1} with fT ≥ 0, and then use randomized rounding to get integer
solutions. In next section we give an algorithm for approximating the fractional
relaxation of the SP ILP. The algorithm relies on a subroutine for finding min-
imum weight feasible Steiner trees, the details of this subroutine are given in
Section 5.

4 Approximating the SP ILP Relaxation

The fractional relaxation of the SP ILP can be solved exactly in polynomial time
using, e.g., the ellipsoid algorithm. However, exact algorithms are highly imprac-
tical. The SP LP can be efficiently approximated within any desired accuracy
using Garg and Könemann’s approximation scheme for packing LPs [8]. The
main step of their algorithm is computing the minimum weight column of the
LP. For the special case of edge-capacitated multicommodity flow LPs, Fleischer
[7] gave a significantly faster algorithm by computing in each step the minimum
weight column only among columns corresponding to a single commodity. Be-
low we generalize Fleisher’s idea to separable packing LPs by partitioning the
columns into groups corresponding to the nets.

4.1 The Algorithm

Our algorithm simultaneously finds feasible solutions to the SP LP and its
dual. The dual LP asks for an assignment of non-negative weights w(X) to
every X ∈ V such that the weight of every tree T ∈ T is at least 1, where
the weight of T is defined by weight(T) = 1

g(T)

∑
X∈V πT (X)w(X) and

πT (X) =
∑

v∈X πT (v)s(v):

330 F.F. Dragan et al.

Input: Nets N1, . . . , NK , coefficients g1, . . . , gK , routing graph G = (V,E), family V
of subsets of V , capacities c(X), X ∈ V, and weights s(v), v ∈ V
Output: SP LP solution fT , T ∈ T

For every T ∈ T , fT ← 0
For every X ∈ V, w(X)← δ
ᾱ← δ/Γ

For i = 1 to t =
⌊
log1+ε

(1+ε)Γ
δ

⌋
do

For k = 1 to K do
Find a minimum weight feasible Steiner tree T in Tk

While weight(T) < min{1, (1 + ε)ᾱ} do
fT ← fT + 1
For all X ∈ V, w(X)← w(X)(1 + επT (X)/c(X))
Find a minimum weight feasible Steiner tree T in Tk

End while
End for on k
ᾱ← (1 + ε)ᾱ

End for on i
For every T ∈ T , fT ← fT

log1+ε
(1+ε)Γ

δ

Output fT , T ∈ T

Fig. 2. The algorithm for finding approximate solutions to the SP LP.

maximize
∑

X∈V w(X)c(X) (SP LP Dual)
subject to

1
g(T)

∑
X∈V πT (X)w(X) ≥ 1, ∀T ∈ T

w(X) ≥ 0, ∀X ∈ V

In the following we assume that min{gk : k = 1, . . . ,K} = 1 (this can be easily
achieved by scaling) and denote max{gk : k = 1, . . . ,K} by Γ .

The algorithm (Figure 2) starts with weights w(X) = δ for every X ∈ V,
where δ is an appropriately chosen constant, and with a SP LP solution f ≡ 0.
While there is a feasible tree whose weight is less than 1, the algorithm se-
lects such a tree T and increments fT by 1. This increase will likely violate
the capacity constraints for some of the sets in V; feasibility is achieved at the
end of the algorithm by uniformly scaling down all fT ’s. Whenever fT is incre-
mented, the algorithm also updates each weight w(X) by multiplying it with
(1 + επT (X)/c(X)), for a fixed ε.

According to the Garg and Könemann’s approximation algorithm [8] each
iteration must increment the variable fT corresponding to a tree with minimum
weight among all trees in T . Finding this tree essentially requires K minimum-
weight feasible Steiner tree computations, one for each net Nk. We reduce the
total number of minimum-weight feasible Steiner tree computations during the

Practical Approximation Algorithms for Separable Packing Linear Programs 331

algorithm by extending a speed-up idea due to Fleischer [7]. Instead of always
finding the minimum-weight tree in T , the idea is to settle for trees with weight
within a factor of (1 + ε) of the minimum. As shown in next section, the faster
algorithm still leads to an approximation guarantee similar to that of Garg and
Könemann.

4.2 Runtime and Performance Analysis

In each iteration the algorithm cycles through all nets. For each net, the al-
gorithm repeatedly computes minimum-weight feasible Steiner tree until the
weight becomes larger than (1 + ε) times a lower-bound ᾱ on the overall mini-
mum weight, min{weight(T) : T ∈ T }. The lower-bound ᾱ is initially set to δ/Γ ,
and then multiplied by a factor of (1 + ε) from one iteration to another (note
that no tree in T has weight smaller than (1+ ε)ᾱ at the end of an iteration, so
(1 + ε)ᾱ is a valid lower-bound for the next iteration).

The scheme used for updating ᾱ fully determines the number of iterations in
the outer loop of the algorithm. Since ᾱ = δ/Γ in the first iteration and at most
(1+ ε) in the last one, it follows that the number of iterations is

⌊
log1+ε

(1+ε)Γ
δ

⌋
.

The following lemma gives an upper-bound on the runtime of the algorithm.

Lemma 1. Overall, the algorithm in Figure 2 requires O
(
K log1+ε

(1+ε)Γ
δ

)
minimum-weight feasible Steiner tree computations.

Proof. First, note that the number of minimum-weight feasible Steiner tree
computations that do not contribute to the final fractional solution is
K

⌊
log1+ε

(1+ε)Γ
δ

⌋
. Indeed, in each iteration, and for each net Nk, there is

exactly one minimum-weight feasible Steiner tree computation revealing that
minT∈Tk

weight(T) ≥ (1 + ε)ᾱ, all other computations trigger the incrementa-
tion of some fT .

We claim that the number of minimum-weight Steiner trees that lead to
variable incrementations is at most K log1+ε

(1+ε)Γ
δ . To see this, note that

the weight of the set {sk} ∈ V is updated whenever a variable fT , T ∈ Tk,
is incremented. Moreover, w({sk}) is last updated when incrementing fT

for a tree T ∈ Tk of weight less than one. Thus, before the last update,
w({sk}) ≤ Γ · weight(T) < Γ . Since πT ({sk}) = c({sk}) = 1, the weight of
{sk} is multiplied by a factor of 1 + ε in each update, including the last one.
This implies that the final value of w({sk}) is at most (1 + ε)Γ . Recalling that
w({sk}) is initially set to δ, this gives that the number of updates to w({sk})
is at most log1+ε

(1+ε)Γ
δ . The lemma follows by summing this upper-bound over

all nets.

We now show that, for an appropriate value of the parameter δ, the algorithm
finds a feasible solution close to optimum.

332 F.F. Dragan et al.

Theorem 1. For every ε < 0.15, the algorithm in Figure 2 computes a feasible
solution to the SP LP within a factor of 1/(1 + 4ε) of optimum by choosing
δ = (1 + ε)Γ ((1 + ε)LΓ)−

1
ε ; the runtime of the algorithm for this value of δ

is O
(1

ε2K(logL+ logΓ)Ttree

)
. Here, L is the maximum number of vertices in

a feasible tree, and Ttree is the time required to compute the minimum weight
feasible Steiner tree for a net.

Proof. Our proof is an adaptation of the proofs of Garg and Könemann [8]
and Fleischer [7]. We omit the proof that the solution found by the algorithm
is feasible. To establish the approximation guarantee, we show that the solu-
tion computed by the algorithm is within a factor of 1/(1 + 4ε) of the opti-
mum objective value, β, of the dual LP. Let α(w) be the weight of a mini-
mum weight tree from T with respect to weight function w : V → R+, and let
D(w) =

∑
X∈V w(X)c(X). A standard scaling argument shows that the dual LP

is equivalent to finding a weight function w such that D(w)/α(w) is minimum,
and that β = minw{D(w)/α(w)}.

For every X ∈ V, let wi(X) be the weight of set X at the end of the ith
iteration and w0(X) = δ be the initial weight of set X. For brevity, we will
denote α(wi) and D(wi) by α(i) and D(i), respectively. Furthermore, let f i

T

be the value of fT at the end of ith iteration, and hi =
∑

T∈T g(T)f
i
T be the

objective value of the SP LP at the end of this iteration.
When the algorithm increments fT by one unit, each weight w(X) is increased

by (επT (X)w(X)/c(X). Thus, the incrementation of fT increases D(w) by

ε
∑

X∈V
πT (X)w(X) = ε weight(T)g(T)

If this update takes place in the ith iteration, then weight(T) ≤ (1 + ε)α(i− 1).
Adding this over all fT ’s incremented in ith iteration gives

D(i)−D(i− 1) ≤ ε(1 + ε)α(i− 1)(hi − hi−1)

which implies that

D(i)−D(0) ≤ ε(1 + ε)
i∑

j=1

α(j − 1)(hj − hj−1)

Consider the weight function wi−w0, and notice that D(wi−w0) = D(i)−D(0).
Since the minimum weight tree w.r.t. weight function wi −w0 has a weight of at
most α(wi −w0)+Lδ w.r.t. wi, α(i) ≤ α(wi −w0)+Lδ. Hence, if α(i)−Lδ > 0,
then

β ≤ D(wi − w0)
α(wi − w0)

≤ D(i)−D(0)
α(i)− Lδ

≤ ε(1 + ε)
∑i

j=1 α(j − 1)(hj − hj−1)
α(i)− Lδ

Thus, in any case (when α(i)− Lδ ≤ 0 this follows trivially) we have

α(i) ≤ Lδ +
ε(1 + ε)
β

i∑
j=1

α(j − 1)(hj − hj−1)

Practical Approximation Algorithms for Separable Packing Linear Programs 333

Note that, for each fixed i, the right-hand side of last inequality is maximized
by setting α(j) to its maximum possible value, say α′(j), for every 0 ≤ j < i.
Then, the maximum value of α(i) is

α′(i) = Lδ +
ε(1 + ε)
β

i−1∑
j=1

α′(j − 1)(hj − hj−1) +
ε(1 + ε)
β

α′(i− 1)(hi − hi−1)

= α′(i− 1)
(
1 +

ε(1 + ε)
β

(hi − hi−1)
)

≤ α′(i− 1)e
ε(1+ε)

β (hi−hi−1)

where the last inequality uses that 1 + x ≤ ex for every x ≥ 0. Using that
α′(0) = Lδ, this gives

α(i) ≤ Lδe
ε(1+ε)

β hi

Let t be the last iteration of the algorithm. Since α(t) ≥ 1,

1 ≤ Lδe
ε(1+ε)

β ht

and thus
β

ht
≤ ε(1 + ε)

ln(Lδ)−1

Let γ = β
ht
log1+ε

(1+ε)Γ
δ be the ratio between the optimum dual objective value

and the objective value of the SP LP solution produced by the algorithm. By
substituting the previous bound on β/ht we obtain

γ ≤ ε(1 + ε) log1+ε
(1+ε)Γ

δ

ln(Lδ)−1
=
ε(1 + ε) ln (1+ε)Γ

δ

ln(1 + ε) ln(Lδ)−1

For δ = (1 + ε)Γ ((1 + ε)LΓ)−
1
ε ,

ln (1+ε)Γ
δ

ln(Lδ)−1
=

ln ((1 + ε)LΓ)
1
ε

ln ((1 + ε)LΓ)−1+
1
ε

=
1
ε ln (1 + ε)LΓ)

1−ε
ε ln (1 + ε)LΓ)

=
1

1− ε

and thus

γ ≤ ε(1 + ε)
(1− ε) ln(1 + ε)

≤ ε(1 + ε)
(1− ε)(ε− ε2/2)

≤ (1 + ε)
(1− ε)2

Here we use the fact that ln(1 + ε) ≥ ε − ε2/2 (by Taylor series expansion
of ln(1 + ε) around the origin). The proof of the approximation guarantee is
completed by observing that (1 + ε)/(1 − ε)2 ≤ (1 + 4ε) for every ε < 0.15. The
runtime follows by substituting δ in the bound given by Lemma 1.

334 F.F. Dragan et al.

5 Computing Minimum-Weight Feasible Steiner Trees

The key subroutine of the approximation algorithm given in the previous sec-
tion is to compute, for a fixed k and given weights w(X), X ∈ V, a feasi-
ble tree T ∈ Tk minimizing weight(T) = 1

g(T)

∑
X∈V πT (X)w(X). Define a

weight function w′ on the vertices of the routing graph G = (V,E) by setting
w′(v) = 1

g(T)

∑
v∈X∈V w(X), and let w′(T) =

∑
v∈V (T) w

′(v) be the total vertex
weight w.r.t. w′ of T . Then weight(T) = w′(T), and the problem reduces to
finding a tree T ∈ Tk with minimum total vertex weight w.r.t. w′.

Recall that for the GRBB problem and its extensions, Tk contains all Steiner
trees connecting the source sk with the sinks t1k, . . . , t

qk

k such that the number
of intermediate vertices on each tree path between sk and tik has the parity
specified by ai

k and does not exceed lik. In this case we can further reduce the
problem of finding the tree T ∈ Tk minimizing w′(T) to the minimum-cost
directed rooted Steiner tree (DRST) problem in a directed acyclic graph. Un-
fortunately, the minimum-cost DRST problem is NP-hard, and the fact that Dk

is acyclic does not help since there is a simple reduction for this problem from
arbitrary directed graphs to acyclic graphs. As far as we know, the best result
for the DRST problem, due to Charikar et al. [3], gives O(log2 qk)-approximate
solutions in quasi-polynomial time O(n3 log qk). Note, on the other hand, that
the minimum-cost DRST can be found in polynomial time for small nets (e.g.,
in time O(nM−1) for nets with at most M sinks, for M = 2, 3, 4); most of the
nets in industrial VLSI designs fall into this category [10]. For nets of small size,
Theorem 1 immediately gives:

Corollary 1. If the maximum net size is M ≤ 4, the algorithm in Figure 2
finds, for every ε < 0.15, a feasible solution to the SP LP within a factor of
1/(1 + 4ε) of optimum in time O

(1
ε2Kn

M−1(log n+ logΓ)
)
.

We have implemented both heuristics that use approximate DRSTs instead
of optimum DRSTs and heuristics that decompose larger nets into nets with 2-4
pins before applying the algorithm in Figure 2; results of experiments comparing
these approaches are reported in Section 7.

6 Rounding Fractional SP LP Solutions

In the previous two sections we presented an algorithm for computing near-
optimal solutions to the SP LP. In this section we give two algorithms based
on the randomized rounding technique of Raghavan and Thomson [14] (see also
[11]) for converting these solutions to integer SP ILP solutions.

The first algorithm is to route net Nk with probability equal to fk =∑
T∈Tk

fT by picking, for selected nets, one of the trees T ∈ Tk with probability
fT /fk. A drawback of this algorithm is that it requires the explicit representa-
tion of trees T ∈ T with f(T) �= 0. Although the approximate SP LP algorithm
produces a polynomial number of trees with non-zero fT , storing all such trees

Practical Approximation Algorithms for Separable Packing Linear Programs 335

Input: Net- and edge-cumulated fT values, fk =
∑

T∈Tk
fT and

fk(e) =
∑

T∈Tk: e∈E(T) fT , k = 1, . . . ,K, e ∈ E(Dk)
Output: Routed trees Tk ∈ Tk

For each k = 1, . . . ,K, select net Nk with probability fk

Route each selected net Nk as follows:
Tk ← {sk}
For each sink tik in Nk do

P ← ∅; v ← tik
While v /∈ Tk do

Pick arc (u, v) with probability fk(u,v)∑
(w,v)∈E

fk(w,v)

P ← P ∪ {(u, v)}; v ← u
End while
Tk ← Tk ∪ P

End for

Fig. 3. The random walk based rounding algorithm.

is infeasible for large problem instances. Our second rounding algorithm (Fig-
ure 3) takes as input the net- and edge-cumulated fT values, fk =

∑
T∈Tk

fT ,
respectively fk(e) =

∑
T∈Tk: e∈E(T) fT , thus using only O(K|E|) space.

As the first rounding algorithm, the algorithm in Figure 3 routes each net
Nk with a probability of fk =

∑
T∈Tk

fT . The difference is in how each chosen
net is routed: to route net Nk, the algorithm performs backward random walks
from each sink of Nk until reaching either the source of Nk or a vertex already
connected to the source. The random walks are performed in the directed acyclic
graphs used for DRST computation, with probabilities given by the normalized
fk(e) values.

On the average, the total importance of the nets routed by each of the two
algorithm is

∑K
k=1 gkfk =

∑
T∈T g(T)fT . By Theorem 1, this is within a factor

of 1/(1 + 4ε) of the optimum SP LP solution, which in turn is an upper-bound
on the optimum SP ILP solution. Ensuring that no set capacity is exceeded
can be accomplished in two ways. One approach is to solve the SP LP with
set capacities scaled down by a small factor which guarantees that the rounded
solution meets the original capacities with very high probability (see [11]). A
more practical approach, extending the so-called greedy-deletion algorithm in
[6] to multiterminal nets, is to repeatedly drop routed paths passing through
over-used sets until feasibility is achieved.

7 Experimental Results

We have implemented four greedy algorithms for the GRBB problem; all four
greedy algorithms route nets sequentially. For a given net, the algorithms start

336 F.F. Dragan et al.

90

91

92

93

94

95

96

97

98

99

0.25 1 4 16 64 256 1024 4096 16384 65536

C
on

ne
ct

ed
 s

in
ks

 (
%

 o
f a

ll
si

nk
s)

CPU seconds

2TG
3TG
4TG
MTG

G2TMCF
G3TMCF
G4TMCF
GMTMCF

Fig. 4. Percent of sinks connected vs. CPU time.

with a tree containing only the net’s source, then iteratively add shortest paths
from each sink to the already constructed tree. The only difference is in whether
or not net decomposition is used, and in the size of the decomposed nets. The
first three algorithms—referred to as 2TG, 3TG, and 4TG, respectively—start
by decomposing larger multiterminal nets into 2-, 3-, respectively 4-pin nets.
The fourth algorithm, MTG, works on the original (undecomposed) nets.

We have also implemented four algorithms that approximate the fractional
solution to the SP LP corresponding to GRBB problem (which generalizes the
node-capacitated multiterminal multicommodity flow problem) and then ap-
ply randomized rounding. The first three algorithms (2TMCF, 3TMCF, and
4TMCF) decompose larger nets into 2-, 3-, respectively 4-pin nets then call the
algorithm in Figure 2 with exact DRST computations. The fourth algorithm,
MTMCF, works on the original (undecomposed) nets, using shortest-path trees
as approximate DRSTs in the SP LP approximation algorithm.

Figure 4 plots the solution quality versus the CPU time (on a 195MHz SGI
Origin 2000) of each implemented algorithm. The test cases used in our experi-
ments were extracted from the next-generation (as of January 2000) micropro-
cessor chip at SGI. The results clearly demonstrate the high quality of solutions
obtained by rounding the approximate SP LP solutions. The MTMCF algorithm
proves to be the best among all algorithms when the time budget is limited, pro-
viding significant improvements over greedy algorithms without undue runtime

Practical Approximation Algorithms for Separable Packing Linear Programs 337

penalty. However, the best convergence to the optimum is achieved by 4TMCF,
which dominates all other algorithms when high time budgets are allowed.

References

1. C. Albrecht, “Provably good global routing by a new approximation algorithm for
multicommodity flow”, Proc. ISPD, 2000.

2. R.C. Carden and C.-K. Cheng, “A global router using an efficient approximate
multicommodity multiterminal flow algorithm”, Proc. DAC, 1991, pp. 316–321.

3. M. Charikar, C. Chekuri, T. Cheung, Z. Dai, A. Goel, and S. Cheung, “Approx-
imation algorithms for directed Steiner problems”, J. Algorithms, 33 (1999), pp.
73–91.

4. J. Cong, L. He, C.-K. Koh and P.H. Madden, “Performance optimization of VLSI
interconnect layout”, Integration 21 (1996), pp. 1–94.

5. J. Cong, T. Kong and D.Z. Pan, “Buffer block planning for interconnect-driven
floorplanning”, Proc. ICCAD, 1999, pp. 358–363.

6. F.F. Dragan, A.B. Kahng, I.I. Măndoiu, S. Muddu and A. Zelikovsky, “Provably
good global buffering using an available buffer block plan”, Proc. ICCAD, 2000,
pp. 104–109.

7. L.K. Fleischer, “Approximating fractional multicommodity flow independent of
the number of commodities”, Proc. 40th Annual Symposium on Foundations of
Computer Science, 1999, pp. 24–31.

8. N. Garg and J. Könemann, “Faster and simpler algorithms for multicommodity
flow and other fractional packing problems”, Proc. 39th Annual Symposium on
Foundations of Computer Science, 1998, pp. 300–309.

9. J. Huang, X.-L. Hong, C.-K. Cheng and E.S. Kuh, “An efficient timing-driven
global routing algorithm”, Proc. DAC, 1993, pp. 596-600.

10. A.B. Kahng and G. Robins. On Optimal Interconnections for VLSI, Kluwer Aca-
demic Publishers, Norwell, Massachusetts, 1995.

11. R. Motwani, J. Naor, and P. Raghavan, “Randomized approximation algorithms in
combinatorial optimization”, In Approximation algorithms for NP-hard problems
(Boston, MA, 1997), D. Hochbaum, Ed., PWS Publishing, pp. 144–191.

12. A.P.-C. Ng, P. Raghavan, and C.D. Thomson, “Experimental results for a linear
program global router”. Computers and Artificial Intelligence, 6 (1987), pp. 229–
242.

13. C.A. Phillips, “The network inhibition problem”, Proc. 25th Annual ACM Sympo-
sium on Theory of Computing, 1993, pp. 776–785.

14. P. Raghavan and C.D. Thomson, “Randomized rounding”, Combinatorica, 7
(1987), pp. 365–374.

15. P. Raghavan and C.D. Thomson, “Multiterminal Global Routing: A Deterministic
Approximation Scheme”, Algorithmica, 6 (1991), pp. 73–82.

16. E. Shragowitz and S. Keel, “A global router based on a multicommodity flow
model”, Integration, 5 (1987), pp. 3–16.

17. X. Tang and D.F. Wong, “Planning buffer locations by network flows”, Proc. ISPD,
2000.

	Introduction
	Global Buffering via Buffer Blocks
	Integer Linear Program Formulations
	Approximating the SP ILP Relaxation
	The Algorithm
	Runtime and Performance Analysis

	Computing Minimum-Weight Feasible Steiner Trees
	Rounding Fractional SP LP Solutions
	Experimental Results

