Tree-like Structures in Graphs: a Metric Point of View

Feodor F. Dragan

Computer Science Department
Kent State University

WG 2013

Real-life networks and graphs

- Large networks are everywhere
- Can we understand their structure and exploit it?

Tree-like networks and graphs

Recent empirical and theoretical work has suggested that many real-life complex networks and graphs arising in Internet applications, in biological and social sciences, in chemistry and physics have tree-like structures from a metric point of view.

Some prior empirical evidence

- The Unreasonable Effectiveness of Tree-Based Theory for Networks with Clustering, Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).
- Fast computation of empirically tight bounds for the diameter of massive graphs, Magnien, Latapy, Habib. ACM J. of Experimental Algorithmics 13 (2008)
- "It was noted in recent years that the Internet structure has a highly connected core and long stretched tendrils, and that most of the routing paths between nodes in the tendrils pass through the core. Therefore, we suggest to embed the Internet distance metric in a hyperbolic space where routes are bent toward the center" Shavitt, Tankel. 2008. Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Trans. Netw. 16, 1 (2008).
- Finding Hierarchy in Directed Online Social Networks, Gupta, Shankar, Li, Muthukrishnan, Iftode. WWW2011.

What do you mean, "tree-like" metrically?

Image credit: Traub, Kelsic, Mucha, Porter

- no consensus has been reached on defining and measuring this tree-like structure

Graph parameters capturing "Tree-like"-ness

We consider here only unweighted and undirected graphs

Although, some results extend to weighted graphs as well

- Tree-length $\boldsymbol{t l}(\boldsymbol{G})$
- Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$
- Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$
- Tree-distortion $\boldsymbol{t d}(\boldsymbol{G})$
- Hyperbolicity $\boldsymbol{h b}(\boldsymbol{G})$
- Cluster-diameter $\Delta_{s}(\boldsymbol{G})$ of a layering partition
- Cluster-radius $\boldsymbol{\rho}_{s}(\boldsymbol{G})$ of a layering partition

All measuring tree-likeness - the smaller parameter, the closer graph to a tree

Graph parameters capturing "Tree-like"-ness

We consider here only unweighted and undirected graphs

- Tree-width $\boldsymbol{t w}(\boldsymbol{G})$
(combinatorial)
- Tree-length $\boldsymbol{t l}(\boldsymbol{G})$
- Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$
- Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$
- Tree-distortion $\boldsymbol{t d}(\boldsymbol{G})$
- Hyperbolicity $\boldsymbol{h} \boldsymbol{b}(\boldsymbol{G})$
- Cluster-diameter $\Delta_{s}(\boldsymbol{G})$ of a layering partition
- Cluster-radius $\boldsymbol{\rho}_{s}(\boldsymbol{G})$ of a layering partition

This talk:

- Discussion of these parameters
- Relations between them; their approximations
- Resulting approximation algorithms for optimization problems

Layering partition of a graph

[Brandstädt, Chepoi, Dragan: J. Algorithms (1999)] [Chepoi, Dragan: Eur. J. Combinatorics (2000)]

A layering of G is the partition of V into the concentric spheres

$$
L^{i}=\{u \in V: d(s, u)=i\}, i=0,1,2, \ldots .
$$

A layering partition of G is a partition of each L^{i} into clusters $L_{1}^{i}, \ldots, L_{p_{l}}^{i}$: $u, v \in L^{i}$ belong to the same cluster L_{j}^{i} iff they can be connected by a path outside the ball $B_{i-1}(s)$ of radius $i-1$ centered at s.

Layering partition of a graph

A layering of G is the partition of V into the concentric spheres

$$
L^{i}=\{u \in V: d(s, u)=i\}, i=0,1,2, \ldots .
$$

A layering partition of G is a partition of each L^{i} into clusters $L_{1}^{i}, \ldots, L_{p_{l}}^{i}$: $u, v \in L^{i}$ belong to the same cluster L_{j}^{i} iff they can be connected by a path outside the ball $B_{i-1}(s)$ of radius $i-1$ centered at s.

Layering partition of a graph

A layering of G is the partition of V into the concentric spheres

$$
L^{i}=\{u \in V: d(s, u)=i\}, i=0,1,2, \ldots .
$$

A layering partition of G is a partition of each L^{i} into clusters $L_{1}^{i}, \ldots, L_{p_{l}}^{i}$: $u, v \in L^{i}$ belong to the same cluster L_{j}^{i} iff they can be connected by a path outside the ball $B_{i-1}(s)$ of radius $i-1$ centered at s.

Layering partition of a graph

A layering of G is the partition of V into the concentric spheres

$$
L^{i}=\{u \in V: d(s, u)=i\}, i=0,1,2, \ldots .
$$

A layering partition of G is a partition of each L^{i} into clusters $L_{1}^{i}, \ldots, L_{p_{l}}^{i}$: $u, v \in L^{i}$ belong to the same cluster L_{j}^{i} iff they can be connected by a path outside the ball $B_{i-1}(s)$ of radius $i-1$ centered at s.

Layering partition of a graph

Can be constructed in $O(/ E /)$ time
[Chepoi, Dragan: Eur. J. Combinatorics (2000)]

A layering of G is the partition of V into the concentric spheres

$$
L^{i}=\{u \in V: d(s, u)=i\}, i=0,1,2, \ldots .
$$

A layering partition of G is a partition of each L^{i} into clusters $L_{1}^{i}, \ldots, L_{p_{l}}^{i}$: $u, v \in L^{i}$ belong to the same cluster L_{j}^{i} iff they can be connected by a path outside the ball $B_{i-1}(s)$ of radius $i-1$ centered at s.

Γ-Tree of a layering partition

Can be constructed in $O(\mid E /)$ time \quad [Chepoi, Dragan: Eur. J. Combinatorics (2000)]

Distance approximating trees

Can be constructed in $O(/ E /)$ time
[Chepoi, Dragan: Eur. J. Combinatorics (2000)]

Distance approximating trees

Can be constructed in $O(/ E /)$ time
[Chepoi, Dragan: Eur. J. Combinatorics (2000)]

$$
\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+d_{G}\left(u^{\prime}, v^{\prime}\right)
$$

Distance approximating trees

- Cluster-diameter $\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})$ of a layering partition

$$
\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})=\max \left\{d_{G}(u, v): u, v \text { are in the same cluster }\right\}
$$

- Cluster-radius $\boldsymbol{\rho}_{s}(\boldsymbol{G})$ of a layering partition

Parameters $\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G}), \boldsymbol{\rho}_{\boldsymbol{s}}(\boldsymbol{G})$ can be computed in
$O(n \mathrm{~m})$ time for any graph

$$
\boldsymbol{\rho}_{\boldsymbol{s}}(\boldsymbol{G})=\min \left\{r: \forall \text { cluster } C_{i} \exists v_{i} \text { with } C_{i} \subseteq B_{r}\left(v_{i}\right)\right\}
$$

$\Delta_{S}(G)$
$\forall G, s, \forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+d_{G}\left(\imath, v^{\prime}\right)$

- $\forall G, s, \rho_{S}(G) \leq \Delta_{S}(G) \leq 2 \rho_{s}(G)$ as $\forall S \subseteq V(G), \operatorname{rad}_{G}(S) \leq \operatorname{diam}_{G}(S) \leq 2 \operatorname{rad}_{G}(S)$

Particular graph classes

$\forall G, s, \exists T, \forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{s}(\boldsymbol{G})$ the smaller parameter $\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})$, the closer graph to a tree metric

- Chordal graphs: $\Delta_{s}(G) \leq 3, \rho_{s}(G) \leq 2(\forall G, s)$
[Brandstädt, Chepoi, Dragan: J. Algorithms (1999)]

$$
\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+2
$$

- k-Chordal graphs: $\Delta_{S}(G) \leq{ }^{k} / 2+2(\forall G, s)$
[Chepoi, Dragan: Eur. J. Combinatorics (2000)]

$$
\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+k / 2+2
$$

The length of largest induced cycles is 3

The length of largest induced cycles is k

- More graph classes to come...

Real-life graphs / networks

$\Delta_{s}(G)$
$\forall G, s, \exists T, \forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+d_{G}\left(u^{\prime}, \sigma^{\prime}\right)$
By Muad Abu-Ata, PhD student at Kent State University

Data set	\|V	\|E	diam(G)	\# of clusters	$\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})$	Average cluster diam	$\%$ of ≤ 2
Yeast	2,224	6,609	11	1,037	6	0.119575699	98%
Homo Sapiens	16,711	115,406	10	6,817	5	0.03432595	99%
PPI	1,458	1,948	19	1,017	8	0.118977384	98%
DBLB-coauthors	317,080	$1,049,866$	22	99,828	11	0.45350002	98%
Amazon	334,863	925,872	44	72,278	21	0.489056144	95%
Dutch_Elite	3,621	4,311	22	2,934	10	0.070211316	99%
ITDK0304	190,914	607,610	26	89,856	11	0.270377048	97%
Aqualab 12/2007-09/2008	31,845	143,383	9	16,287	6	0.05826733	99%
Dimes 3/2010	26,424	90,267	8	16,065	4	0.056582633	99%
Routeview	10,515	21,455	10	6,702	6	0.063264697	99%
AS_CAIDA	26,475	53,381	17	17,067	6	0.056424679	99%

PPI has 966 clusters of diameter 0

Yeast has 981 clusters of diameter 0	
18	1
23	2
6	3
5	4
2	5
2	6

AS_CAIDA has 16459 clusters of diameter 0

361	1
174	2
46	3
21	4
4	5
2	6

Tree-Decomposition

[Robertson, Seymour]

- Tree-decomposition $T(G)$ of a graph $G=(V, E)$ is a pair $\left(\left\{X_{i}: i \in I\right\}, T\right.$ $=(I, F))$ where $\left\{X_{i}: i \in I\right\}$ is a collection of subset of $V($ bags $)$ and T is a tree whose nodes are the bags satisfying:

1) $\cup_{i \in I} X_{i}=V$
2) $\forall u v \in E, \exists i \in I$ s.t. $u, v \in X_{i}$
3) $\forall v \in V$, the set of bags $\left\{i \in I, v \in X_{i}\right\}$ form a subtree T_{v} of T

Tree-Decomposition and Graph Parameters

- Tree-width $\boldsymbol{t w}(\boldsymbol{G})$:
- Width of $T(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- $\boldsymbol{t w}(\boldsymbol{G})$: minimum width over all tree-decompositions
- Tree-length $\boldsymbol{t l}(\boldsymbol{G})$:
- Length of $T(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $\quad t l(G):$ minimum length over all tree-decompositions
- Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with $X_{i} \subseteq$
 $D_{r}\left(v_{i}, G\right)$
- $\boldsymbol{t b}(G)$: minimum breadth over all tree-decompositions

Tree-length was introduced in [Dourisboure, Gavoille: DM(2007)] and [Dragan,Lomonosov: DAM(2007)]

Tree-breadth was introduced in [Dragan,Lomonosov: $D A M(2007)$] and [Dragan, Köhler: $A P P R O X(2011)$]
(R,D)-acyclic clustering

Tree-Decomposition and Graph Parameters

- Tree-width $\boldsymbol{t w}(\boldsymbol{G})$:
- Width of $T(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- $\boldsymbol{t w}(\boldsymbol{G})$: minimum width over all tree-decompositions
- Tree-length $\boldsymbol{t l}(\boldsymbol{G})$:
- Length of $T(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $\quad t l(G):$ minimum length over all tree-decompositions
- Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with X_{i}

$\subseteq D_{r}\left(v_{i}, G\right)$
- $\boldsymbol{t b}(\boldsymbol{G})$: minimum breadth over all tree-decompositions
- $\forall G, t b(G) \leq t l(G) \leq 2 t b(G) \quad$ as $\forall S \subseteq V(G), \operatorname{rad}_{G}(S) \leq \operatorname{diam}_{G}(S) \leq 2 \operatorname{rad}_{G}(S)$
- $\quad t w(G)$ and $t l(G)$ are not comparable (check cycles and cliques)

$$
\begin{gathered}
t w\left(C_{3 k}\right)=2, \quad t l\left(C_{3 k}\right)=k \\
t w\left(K_{n}\right)=n-1, \quad t l\left(K_{n}\right)=1
\end{gathered}
$$

Tree-Decomposition and Graph Parameters

- Tree-width $\boldsymbol{t w}(\boldsymbol{G})$:
- Width of $T(G)$ is $\max _{i \in I}\left|X_{i}\right|-1$
- $\boldsymbol{t w}(\boldsymbol{G})$: minimum width over all tree-decompositions
- Tree-length $\boldsymbol{t l}(\boldsymbol{G})$:
- Length of $T(G)$ is $\max _{i \in I} \max _{u, v \in X_{i}} d_{G}(u, v)$
- $\quad t l(G):$ minimum length over all tree-decompositions
- Tree-breadth $\boldsymbol{t b}(\boldsymbol{G})$:
- Breadth is minimum r such that $\forall i \in I, \exists v_{i}$ with $X_{i} \subseteq$

$$
D_{r}\left(v_{i}, G\right)
$$

- $\boldsymbol{t b}(G)$: minimum breadth over all tree-decompositions
- $\forall G, t b(G) \leq t l(G) \leq 2 t b(G) \quad$ as $\forall S \subseteq V(G), \operatorname{rad}_{G}(S) \leq \operatorname{diam}_{G}(S) \leq 2 \operatorname{rad}_{G}(S)$
- $\quad t w(G)$ and $t l(G)$ are not comparable (check cycles and cliques)

Many real-life networks (e.g., with a highly connected core) have a large tree-width but still exhibit a tree-like structure

Particular graph classes / networks

the smaller parameters $t l(G), t b(G)$, the closer graph to a tree

- Chordal graphs: $t b(G) \leq t l(G) \leq 1$ (via clique tree)

$$
\Delta_{s}(G) \leq 3
$$

- Chordal bipartite graphs: $t b(G) \leq 1$ [Dragan,Lomonosov: DAM(2007)]
- k-Chordal graphs: $t b(G) \leq t l(G) \leq^{k} / 2$ [Dourisboure, Gavoille: $\left.D M(2007)\right] \quad \Delta_{s}(G) \leq k / 2+2$

From Michel Habib's presentation, June 2009

Real Data? from CAIDA project
M. Soto, PhD student at Paris Diderot, has computed graph invariants on some real networks

2 graphs with normal graph distance
Internet Topology Data Kit (ITDK) graph of the routing machines
Treedwidth ≥ 234, Treelength ≤ 10, Diameter $=19$,
δ-hyperbolicity $=3$ (but for 96% of the computed quadruplets the value is 1)
Autonomus System Internet Topology (AS-level) graph, a smaller graph
Treedwidth ≥ 82, Treelength ≤ 6, Diameter $=10, \delta$-hyperbolicity $=2$ (but for 98% of the computed quadruplets the value is 1)

Relationship between $\boldsymbol{\operatorname { l l }}(\boldsymbol{G}), \boldsymbol{t b}(\boldsymbol{G})$

 and $\Delta_{s}(\boldsymbol{G}), \boldsymbol{\rho}_{s}(\boldsymbol{G})$- Chordal graphs:

$$
t b(G) \leq t l(G) \leq 1 \text { and } \quad \Delta_{s}(G) \leq 3
$$

- k-Chordal graphs:

$$
t b(G) \leq t l(G) \leq^{k} / 2 \text { and } \quad \Delta_{s}(G) \leq^{k} / 2+2
$$

General graphs

- $\forall G, s, \operatorname{tl}(G)-1 \leq \Delta_{s}(G) \leq 3 \operatorname{tl}(G) \quad$ [Dourisboure, Gavoille: $D M(2007)$]
- $\forall G, S, \rho_{S}(G) \leq 2 \operatorname{tl}(G) \quad$ [Dourisboure, Dragan, Gavoille, Yan: TCS (2007)]
- $\forall G, s, t b(G)-1 \leq \rho_{s}(G) \leq 3 t b(G)$ [Dragan, Köhler: APPROX (2011)]
- To test if $t l(G) \leq \lambda$ is NP-complete for each $\lambda>1$ [Lokshtanov: $D A M(2010)]$
- A tree-decomposition of length $\Delta_{s}(G)+1 \leq 3 t l(G)+1$ can be obtained in linear time from the Γ-Tree of a layering partition. [Dourisboure, Gavoille: $D M(2007)$]

Consequences for bounded tree-length graphs

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+A_{s}(G)$ the smaller parameter $t l(G)(t b(G))$, the closer graph to a tree metric
- More results from [Dourisboure, Dragan, Gavoille, Yan: TCS (2007)] that employ inequalities $\Delta_{S}(G) \leq 3 t l(G)$ and $\rho_{S}(G) \leq 2 t l(G)$
- Every n-vertex graph G has an additive ($4 t l(G)$)-spanner with at most $(2 t l(G)+1)(n-1)$ edges constructible in polynomial time
- Every n-vertex graph G has an additive ($2 t l(G)$)-spanner with at most $(t l(G)+\log n)(n-1)$ edges constructible in polynomial time
- More results from [Dragan, Köhler: $\operatorname{APPROX}(2011)$] after few more slides

Hyperbolicity

δ-Hyperbolicity (M. Gromov, 1987)

for any four points u, v, w, x of a metric space (X, d), the two larger of the distance sums $d(u, v)+d(w, x), d(u, w)+d(v, x)$, $d(u, x)+d(v, w)$ differ by at most 2δ.

δ-Hyperbolicity measures the local deviation of a metric from a tree metric: a metric is a tree metric iff it is 0 -hyperbolic.

Hyperbolicity of a graph

- The hyperbolicity $\boldsymbol{h b}(\boldsymbol{G})$ of a graph G is the smallest number δ such that $\left(V(G), \mathrm{d}_{G}\right)$ is δ-hyperbolic.

- $d_{T}(x, v)+d_{T}(u, y)=a+b+c+d+2 \eta$
- $d_{T}(x, y)+d_{T}(u, v)=a+b+c+d+2 \eta$
- $d_{T}(x, u)+d_{T}(y, v)=a+b+c+d$

Subspace

formed by four points
in graph metric

- $d_{G}(x, v)+d_{G}(u, y)=a+b+d+c+2 \eta+2 \xi$
- $d_{G}(x, y)+d_{G}(u, v)=a+b+d+c+2 \eta$
- $d_{G}(x, u)+d_{G}(y, v)=a+b+d+c+2 \xi$
$\min \{\eta, \xi\} \leq \delta$
the smaller parameters δ, the closer graph to a tree metrically

Particular graph classes

the smaller parameters $\boldsymbol{h b}(\boldsymbol{G})$, the closer graph to a tree metrically

- $\boldsymbol{h} \boldsymbol{b}(\boldsymbol{G})$ can be computed naively in $O\left(n^{4}\right)$ time
- $\boldsymbol{h} \boldsymbol{b}(\boldsymbol{G})$ is a half integer $(1 / 2,1,3 / 2,2, \ldots)$ for unweighted graphs

$h b\left(K_{n}\right)=0$ (is a tree metrically)

$$
h b\left(S_{4}\right)=1 \text { (is not a tree metrically) }
$$

- $h b(G)=0$ iff G is a block graph (metrically a tree)
- Chordal graphs: $h b(G) \leq 1$

$$
\Delta_{s}(G) \leq 3, \operatorname{tb}(G) \leq t l(G) \leq 1
$$

[Brinkmann, Koolen, Moulton: Annals of Combinatorics (2001)]

- k -Chordal graphs $(\mathrm{k}>3)$: $h b(G) \leq^{k} / 4$

$$
\Delta_{s}(G) \leq^{k} / 2+2, \quad t b(G) \leq t l(G) \leq^{k} / 2
$$

[Wu, Zhang: E.J. on Combinatorics (2011)]

- More graph classes to come...

Real-life graphs / networks

By Muad Abu-Ata, PhD student at Kent State University

| Data set | \|V| | \|E| | $\operatorname{diam}(G)$ | $\Delta_{s}(G)$ | hyperbolicity | $\%$ of ≤ 1 | PPI | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yeast | 2,224 | 6,609 | 11 | 6 | 2.5 | 99\% | hyperbolicity | relative frequency |
| Homo Sapiens | 16,711 | 115,406 | 10 | 5 | - | | | 0.4831 |
| PPI | 1,458 | 1,948 | 19 | 8 | 3.5 | 98\% | 0.5 | 0.3634 |
| DBLB-coauthors | 317,080 | 1,049,866 | 22 | 11 | - | | 1 | 0.1336 |
| Amazon | 334,863 | 925,872 | 44 | 21 | - | | 1.5 | 0.0179 |
| Dutch_Elite | 3,621 | 4,311 | 22 | 10 | 4 | 96\% | 2 | 0.0019 |
| ITDK0304 | 190,914 | 607,610 | 26 | 11 | - | | 2.5 | $3.55 \mathrm{E}-05$ |
| Aqualab 12/2007-09/2008 | 31,845 | 143,383 | 9 | 6 | - | | 3 | $1.65 \mathrm{E}-06$ |
| Dimes 3/2010 | 26,424 | 90,267 | 8 | 4 | - | | 3.5 | $3.79 \mathrm{E}-09$ |
| Routeview | 10,515 | 21,455 | 10 | 6 | - | | | |
| AS_CAIDA | 26,475 | 53,381 | 17 | 6 | 2.5 | 97\% | | |

Montgolfier, Soto, Viennot: NCA (2011)

Graph	Avg deg	Max deg	β	Hyp.	tw
CAIDA AS	6.31	1,815	2.19	2.0	$\in[82,473]$
Erdös-Rényi	6.34	18	-	2.5	≥ 135
Barabási	6.00	283	2.92	2.0	≥ 130
AS degree dist.	6.31	1,815	2.19	1.5	≥ 110
Power Law	8.97	1,507	2.19	1.5	≥ 150

M. Soto (2009)

Internet Topology Data Kit (ITDK) graph of the routing machines Treedwidth ≥ 234, Treelength ≤ 10, Diameter $=19$,
δ-hyperbolicity=3 (but for 96% of the computed quadruplets the value is 1)
Autonomus System Internet Topology (AS-level) graph, a smaller graph
Treedwidth ≥ 82, Treelength ≤ 6, Diameter $=10, \delta$-hyperbolicity $=2$ (but for 98% of the computed quadruplets the value is 1)

Relationship between $\boldsymbol{t l}(\boldsymbol{G}), \boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})$ and $\boldsymbol{h b}(\boldsymbol{G})$

- Chordal graphs:
$h b(G) \leq 1$ and $t b(G) \leq t l(G) \leq 1$ and $\Delta_{S}(G) \leq 3$

- k-Chordal graphs:
$h b(G) \leq^{k} / 4$ and $t b(G) \leq t l(G) \leq^{k} / 2$ and $\Delta_{S}(G) \leq^{k} / 2+2$

General graphs

[Chepoi, Dragan, Estellon, Habib, Vaxes: $\operatorname{SoCG}(2008)$]
[Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012)]

- $\forall G, h b(G) \leq t l(G) \leq O(h b(G) \log \mathrm{n})$
- $\forall G, s, h b(G) \leq \Delta_{s}(G) \leq 0(h b(G) \log \mathrm{n})$

Recall:

- $\forall G, s, \operatorname{tl}(G)-1 \leq \Delta_{s}(G) \leq 3 \operatorname{tl}(G)$

Distance approximating trees

[Chepoi, Dragan, Estellon, Habib, Vaxes: $\operatorname{SoCG}(2008)$]
[Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012)]

- $\forall G, s, h b(G) \leq \Delta_{s}(G) \leq 4+12 h b(G)+8 h b(G) \log _{2} \mathrm{n}$
- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{S}(G)$ $\checkmark \mathrm{O}(h b(G) \log n)$ equivalently, $\forall u, v \in V, d_{G}(u, v)-O(h b(G) \log n) \leq d_{T}(u, v) \leq d_{G}(u, v)+2$ (notice, T is unweighted and without Steiner points)

Distance approximating trees

[Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008)]
[Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012)]

- $\forall G, s, h b(G) \leq \Delta_{s}(G) \leq 4+12 h b(G)+8 h b(G) \log _{2} \mathrm{n}$
- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+A_{S}(G)$

$$
\mathcal{V}_{(h b(G) \log n)}
$$

equivalently,
$\forall u, v \in V, d_{G}(u, v)-0(h b(G) \log n) \leq d_{T}(u, v) \leq d_{G}(u, v)+2$ (notice, T is unweighted and without Steiner points)

Can be made non-expanding like in Gromov's case by allowing Steiner points and edge weights $\{0,1\}$ in T.

Theorem (Gromov, 1987)

For any δ-hyperbolic metric space (X, d) on n points and any fixed basepoint $s \in X$, there a tree T and a map $\varphi: X \rightarrow T$ such that

- $d_{T}(\varphi(s), \varphi(x))=d(s, x)$ pour tout $x \in X$,
- $d(x, y)-2 \delta \log _{2} n \leq d_{T}(\varphi(x), \varphi(y)) \leq d(x, y)$ for all $x, y \in X$.

The tree T can be constructed using $O\left(n^{2}\right)$ distance computations.
Easy to show:

- If for a graph G there is a tree T with $d_{G}(u, v) \leq d_{T}(u, v) \leq d_{G}(u, v)+r \quad \forall u, v \in V$ then G is r-hyperbolic
- If for a graph G there is a tree T with $d_{T}(u, v) \leq d_{G}(u, v) \leq d_{T}(u, v)+r \quad \forall u, v \in V$ then G is r-hyperbolic

More algorithmic results

Known algorithmic results about δ-hyperbolicity

The internet topology embeds with better accuracy into low-dimensional
hyperbolic space than into Euclidian space of comparable dimension. PTAS for the Traveling Salesman Problem, efficient nearest neighbor search, distance labeling schemes and routing schemes, and approximation algorithms for covering and packing by balls.

Our results
Sparse additive spanners

[Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang:
Algorithmica (2012)]
(i) We show that approximating the diameter $\operatorname{diam}(S)$, the radius $\operatorname{rad}(S)$, and the center $C(S)$ of a subset S in a δ-hyperbolic geodesic space or graph with an $O(\delta)$-additive error can be done in the same way as for trees. This leads to very simple algorithms for fast approximating (and in some cases, for computing in linear time) of $\operatorname{diam}(S), \operatorname{rad}(S)$, and $C(S)$.
[Chepoi, Dragan, Estellon,
Habib, Vaxes: $\operatorname{SoCG}(2008)]$
(ii) We present a simple linear-time construction of distance approximating trees of δ-hyperbolic graphs with n vertices having the same additive distortion $O(\delta \log n)$ as Gromov's construction.
(iii) We establish that several classes of geometrically defined graphs have bounded hyperbolicity.

- The Unreasonable Effectiveness of Tree-Based Theory for Networks with Clustering, Recall: Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).
- Fast computation of empirically tight bounds for the diameter of massive graphs, Magnien, Latapy, Habib. ACM J. of Experimental Algorithmics 13 (2008)

Diameter, Radius, Center

Diameter

Let S be a finite set of points of a metric space (X, d).
Diameter: $\operatorname{diam}(S)=\max \{d(u, v): u, v \in S\}$.
Diametral pair: any pair of points $x, y \in S$ such that $d(x, y)=\operatorname{diam}(S)$.

Furthest neighbors

The set $F(x)$ of furthest neighbors of a point $x \in X$ in S consists of all points of S at the maximum distance from x. The eccentricity ecc (x) of $x \in X$ is the distance from x to any point of $F(x)$.

Center and radius

The center $C(S)$ of S is the set of points of X with minimum eccentricity. The radius $\operatorname{rad}(S)$ of S is the eccentricity of central points, i.e., $\operatorname{rad}(S)$ is the smallest radius of a ball of (X, d) enclosing all points of S (a ball $B(c, r)=\{x \in X: d(c, x) \leq r\}$ consists of all points $x \in X$ at distance at most r to c).

Fast computation of diameter, radius, and center

is a basic algorithmic problem in computational geometry and graph theory with applications in operation research, data clustering, location theory, and analysis of complex networks.

Tree-Folklore

C. Jordan (1869)

C. Jordan established that the center of a tree is a single point (and of a graphic tree is a vertex or an edge).

Diameter

The diameter $\operatorname{diam}(S)$ of a set S in a tree T can be found in linear time by running the following folklore algorithm:
Algorithm 2FP
1 Pick an arbitrary point u of T
2 Find a furthest neighbor u of v in S
3 Find a furthest neighbor w of v in S
4 Return $d(v, w)$ as $\operatorname{diam}(S)$ and v, w as a diametral pair of S

Center

To find the center of S it suffices to add the following step:
5 Return the midpoint c of the unique (v, w)-path of T

Diameter and Radius

[Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG(2008)]

Proposition 1

For a finite subset S of a δ-hyperbolic space (X, d) and any $u \in X$, if $v \in F(u)$ and $w \in F(v)$, then $d(v, w) \geq \operatorname{diam}(S)-2 \delta$. The pair $\{v, w\}$ can be computed using $O(|S|)$ distance calculations.

Proposition 2

For a finite set S of a δ-hyperbolic geodesic space, $2 \operatorname{rad}(S) \geq \operatorname{diam}(S) \geq 2 \operatorname{rad}(S)-4 \delta$.

Corollary 1

For a finite set S of a δ-hyperbolic geodesic space, $\operatorname{rad}(S) \leq d(v, w) / 2+3 \delta$.

Center

[Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008)]

Proposition 3

For a finite set S of a δ-hyperbolic geodesic space, $\operatorname{diam}(C(S)) \leq 4 \delta$.

Let c be the middle of a geodesic $[v, w]$ between v and w.

Proposition 4

The inequality $\operatorname{ecc}(c) \leq \operatorname{rad}(S)+5 \delta$ holds for all δ-hyperbolic geodesic spaces and graphs. Moreover $C(S) \subseteq B(c, 5 \delta)(C(G) \subseteq B(c, 5 \delta+1)$ for δ-hyperbolic graphs).

Tree-distortion $\boldsymbol{t d}(\boldsymbol{G})$

- Tree-distortion $\boldsymbol{t d}(\boldsymbol{G})$ of a graph $G=(V, E)$ is the smallest number α such that G admits a (not necessarily spanning, possibly weighted and having Steiter points) tree $T=(V \cup S, U)$ with

$$
\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha d_{G}(u, v)
$$

- the smaller α, the closer graph to a tree
- The problem is known also as

$$
t d\left(K_{n}\right)=1 \text { (is a tree metrically) }
$$

"non-contractive minimum distortion embedding into trees"
(most popular among different embeddings into trees)

Variations of earlier results

(to reach the form $\forall u, v \in V, d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha d_{G}(u, v)$)
[Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.\&Comput.Geom. (2012)]
We had:

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{S}(G)$ (notice, T is unweighted and without Steiner points)

- Assigning uniformly weight $\Delta_{S}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq\left(\Delta_{S}(G)+1\right)\left(d_{G}(u, v)+2\right)$

Variations of earlier results

(to reach the form $\forall u, v \in V, d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha d_{G}(u, v)$)
[Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.\&Comput.Geom. (2012)]
We had:

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{S}(G)$ (notice, T is unweighted and without Steiner points)

- Assigning uniformly weight $\Delta_{s}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq\left(\Delta_{S}(G)+1\right)\left(d_{G}(u, v)+2\right)$ (non-contractive)

Variations of earlier results

(to reach the form $\forall u, v \in V, d_{G}(u, v) \leq d_{T}(u, v) \leq \alpha d_{G}(u, v)$)
[Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.\&Comput.Geom. (2012)]
We had:

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{S}(G)$ (notice, T is unweighted and without Steiner points)

- Assigning uniformly weight $\Delta_{s}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq\left(\Delta_{s}(G)+1\right)\left(d_{G}(u, v)+2\right)$ (non-contractive)

- Introducing Steiner points and assigning uniformly weight $\left(\Delta_{S}(G)+1\right) / 2$ to all edges of T we get $T^{\prime}{ }_{w}$ with $\forall u, v \in V, d_{G}(u, v) \leq d_{T^{\prime} w}(u, v) \leq\left(\Delta_{S}(G)+1\right)\left(d_{G}(u, v)+1\right)$

Relations between $\boldsymbol{t d}(\boldsymbol{G})$ and $\boldsymbol{\Delta}_{\boldsymbol{s}}(\boldsymbol{G})$

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+\Delta_{S}(G)$
- Assigning uniformly weight $\Delta_{S}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq\left(\Delta_{s}(G)+1\right)\left(d_{G}(u, v)+2\right)$
- Introducing Steiner points and assigning uniformly weight $\left(\Delta_{S}(G)+1\right) / 2$ to all edges of T we get $T^{\prime}{ }_{w}$ with $\forall u, v \in V, d_{G}(u, v) \leq d_{T^{\prime} w}(u, v) \leq\left(\Delta_{S}(G)+1\right)\left(d_{G}(u, v)+1\right)$
[Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr:\&Comput.Geom. (2012)]
- $\forall G, s, \Delta_{s}(G) / 3 \leq t d(G) \leq 2 \Delta_{s}(G)+2$

Hence:

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+3 \operatorname{td}(G)$
- Assigning uniformly weight $\Delta_{S}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq(3 \operatorname{td}(G)+1)\left(d_{G}(u, v)+2\right)$
- Introducing Steiner points and assigning uniformly weight $\left(\Delta_{S}(G)+1\right) / 2$ to all edges of T we get $T^{\prime}{ }_{w}$ with $\forall u, v \in V, d_{G}(u, v) \leq d_{T^{\prime} w}(u, v) \leq(3 \operatorname{td}(G)+1)\left(d_{G}(u, v)+1\right)$

Consequences for minimum distortion embedding into trees

[Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.\&Comput.Geom. (2012)]

- $\forall G, s, \Delta_{s}(G) / 3 \leq t d(G) \leq 2 \Delta_{s}(G)+2$

If G admits a tree H with $\forall u, v \in V, d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)$ then:

- there is a tree T, constructible in linear time, such that

H may be weighted and may have Steiner points $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+3 \alpha$
(multiplicative distortion turned into an additive distortion; T is unweighted and no Steiner points)

- assigning uniformly weight $\Delta_{S}(G)+1$ to all edges of T we get T_{w} with $\forall u, v \in V, \quad d_{G}(u, v) \leq d_{T_{w}}(u, v) \leq(3 \alpha+1)\left(d_{G}(u, v)+2\right) \leq 12 \alpha d_{G}(u, v)$
(a 12-approximation algorithm for minimum distortion embedding into trees)
- introducing Steiner points and assigning uniformly weight $\left(\Delta_{S}(G)+1\right) / 2$ to all edges of T we get $T^{\prime}{ }_{w}$ with
$\forall u, v \in V, d_{G}(u, v) \leq d_{T^{\prime} w}(u, v) \leq(3 \alpha+1)\left(d_{G}(u, v)+1\right) \leq 8 \alpha d_{G}(u, v)$
(an 8 -approximation algorithm for minimum distortion embedding into trees)

Previous approximation bounds and final 6-approximation

- The problem of minimum distortion embedding into trees is NP-hard
- 100 - approximation [Badoiu, Indyk, Sidiropoulos: SODA (2007)]
- 27 - approximation [Badoiu, Demaine, Hajiaghayi, Sidiropoulos, Zadimoghaddam: APPROX(2008)]
[Chepoi, Dragan, Newman, Rabinovich, Vaxes: APPROX (2010) and Discr.\&Comput.Geom. (2012)]
- $\forall G, s, \Delta_{s}(G) / 3 \leq t d(G) \leq 2 \Delta_{s}(G)+2$
- 12 - approximation by a weighted tree without Steiner points
- 8 - approximation by a weighted tree with Steiner points
- $\forall G, s, \rho_{S}(G) \leq \max \{3 t d(G)-1,2 t d(G)+1\}$
- 9 - approximation by a weighted tree without Steiner points
- 6-approximation by a weighted tree with Steiner points

$$
\forall u, v \in V, d_{G}(u, v) \leq d_{T^{\prime} l}(u, v) \leq 3 \alpha\left(d_{G}(u, v)+1\right) \leq 6 \alpha d_{G}(u, v)
$$

(the larger the distance $d_{G}(u, v)$, the smaller the distortion)

$$
\begin{gathered}
d_{G}(u, v)=1 \Rightarrow \text { distortion } \leq 6 ; \\
d_{G}(u, v)=2 \Rightarrow \text { distortion } \leq 4.5 ; \\
d_{G}(u, v) \geq 3 \Rightarrow \text { distortion } \leq 4 ; \ldots
\end{gathered}
$$

Real-life graphs / networks

- For any graph G there is a tree T, constructible in linear time, such that $\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+3 t d(G)$
By Muad Abu-Ata, PhD student at Kent State University

| Data set | \|V| | $\begin{aligned} & \text { Avg } \\ & \text { error } \\ & \text { left } \\ & \left(d_{G} / d_{T}\right) \end{aligned}$ | $\begin{aligned} & \text { max } \\ & \text { error } \\ & \text { left } \\ & \left(d_{G} / d_{T}\right) \end{aligned}$ | $\begin{gathered} \text { \% of left } \\ \text { pairs } \\ \left(d_{G}>d_{T}\right) \end{gathered}$ | $\begin{aligned} & \text { Avg } \\ & \text { error } \\ & \text { right } \\ & \left(d_{T} / d_{G}\right) \end{aligned}$ | max error right $\left(d_{T} / d_{G}\right)$ | $\begin{aligned} & \% \text { of right } \\ & \text { pairs } \\ & \left(d_{T}>d_{G}\right) \end{aligned}$ | $\begin{gathered} \text { Avg. relative } \\ \text { error } \\ \left(\left\|d_{G}-d_{T}\right\| / d_{G}\right) \end{gathered}$ | $\begin{aligned} & \text { \% of } \\ & \text { pairs } \\ & \boldsymbol{d}_{\boldsymbol{T}}=\boldsymbol{d}_{\boldsymbol{G}} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Yeast | 2,224 | 1.48714 | 5 | 56.3\% | 1.48714 | 3 | 12.2\% | 0.219268 | 31.5\% |
| Homo Sapiens | 16,711 | 1.533 | 4 | 2.8\% | 1.17564 | 3 | 25.2\% | 0.180092 | 72.0\% |
| PPI | 1,458 | 1.50159 | 7 | 70.5\% | 1.10486 | 3 | 9.1\% | 0.24669 | 20.4\% |
| DBLB-coauthors | 317,080 | 1.77416 | 9 | 95.8\% | 1.03535 | 3 | 0.6\% | 0.383101 | 3.6\% |
| Amazon | 334,863 | 2.48301 | 19 | 99.1\% | 1.04929 | 3 | 0.3\% | 0.536656 | 0.6\% |
| Dutch_Elite | 3,621 | 1.54045 | 7 | 73.0\% | 1.05818 | 3 | 3.9\% | 0.252341 | 23.1\% |
| ITDK0304 | 190,914 | 1.60077 | 8 | 94.8\% | 1.02828 | 3 | 0.6\% | 0.331656 | 4.6\% |
| Aqualab 12/2007-09/2008 | 31,845 | 1.42269 | 4 | 31.7\% | 1.21947 | 3 | 35.8\% | 0.241815 | 32.5\% |
| Dimes 3/2010 | 26,424 | 1.53666 | 3 | 5.7\% | 1.17552 | 3 | 44.4\% | 0.184767 | 49.9\% |
| Routeview | 10,515 | 1.40636 | 4 | 24.3\% | 1.18259 | 3 | 33.4\% | 0.205375 | 42.3\% |
| AS_CAIDA | 26,475 | 1.48085 | 4 | 21.4\% | 1.16106 | 3 | 35.4\% | 0.192302 | 43.2\% |

Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$

- Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$ of an unweighted undirected graph $G=(V, E)$ is the minimum number t such that G has a spanning tree $T=\left(V, E^{\prime}\right)$ with $d_{T}(u, v) \leq t$ for every edge $u v \in E$.
- Tree shape mimics graph shape: the smaller \boldsymbol{t} the closer graph to a tree

Corresponding decision problem: Tree \boldsymbol{t}-Spanner Problem

Given unweighted undirected graph $G=(V, E)$ and integer t. Does G admit a spanning tree $T=\left(V, E^{\prime}\right)$ such that

$$
\forall u, v \in V, d_{T}(u, v) \leq t d_{G}(u, v)
$$

(a multiplicative tree t-spanner of G)

Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$

- Tree-stretch $\boldsymbol{t s}(\boldsymbol{G})$ of an unweighted undirected graph $G=(V, E)$ is the minimum number t such that G has a spanning tree $T=\left(V, E^{\prime}\right)$ with $d_{T}(u, v) \leq t$ for every edge $u v \in E$.
- Tree shape mimics graph shape: the smaller \boldsymbol{t} the closer graph to a tree

Corresponding decision problem: Tree \boldsymbol{t}-Spanner Problem

$t s(G)=3$
Given unweighted undirected graph $G=(V, E)$ and integers t, r.
Does G admit a spanning tree $T=\left(V, E^{\prime}\right)$ such that

$$
\forall u, v \in V, d_{T}(u, v) \leq t d_{G}(u, v)
$$

(a multiplicative tree t-spanner of G) or
$\forall u, v \in V, d_{T}(u, v) \leq d_{G}(u, v)+r$ (an additive tree r-spanner of G)?

Some previously known results

General unweighted graphs

- NP-complete for $t>3$, linear for $t=1,2$, open for $t=3$ [Cai, Corneil: SIAM J. Discrete Math. (1995)]
- NP-hard to 2-approximate
[Liebchen, Wünsch: Discrete Appl. Math. (2008)]
- $O(\log n)$-approximation
[Emek, Peleg: SIAM J. Comput. (2008)]
Special graph classes
- Linear time for planar graphs and their generalizations for any fixed t
[Dragan, Fomin, Golovach: J. of Computer and System Sciences (2011)]
- $t s(G)$ is constant for AT-free, strongly chordal, dually chordal, etc...
[Kratsch, Le, Müller, Prisner, Wagner: SIAM J. Discrete Math. (2003)]
[Brandstädt, Chepoi, Dragan: J. Algorithms (1999)] ...
- $t s(G)$ is $\theta(\log n)$ for chordal graphs
[Dragan, Köhler: APPROX (2011)]

Relations between $\boldsymbol{t s}(\boldsymbol{G})$ and $\boldsymbol{t b}(\boldsymbol{G})$ and consequences
 [Dragan, Köhler: APPROX(2011)]
 - $\forall G, t b(G) \leq\lceil t s(G) / 2\rceil$ and $t l(G) \leq t s(G)$

- Any connected n-vertex, m-edge graph G admits a tree $\left(2 t b(G) \log _{2} n\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time from scratch.
- Any connected n-vertex, m-edge graph G admits a tree ($6 t l(G) \log _{2} n$)-spanner constructible in $O(m \log n)$ time from scratch.
- $\forall G, t s(G) \leq 2 t b(G) \log _{2} n \leq 2 t l(G) \log _{2} n$

Hence, $\boldsymbol{O}(\boldsymbol{\operatorname { l o g }} \boldsymbol{n})$-approximation for $\boldsymbol{t s}(\boldsymbol{G})$

- One can construct from scratch for any graph G
- a tree $\left(2\lceil t s(G) / 2\rceil \log _{2} n\right)$-spanner in $O\left(n m \log ^{2} n\right)$ time
- a tree $\left(6 t s(G) \log _{2} n\right)$-spanner in $O(m \log n)$ time

Compare with [Emek, Peleg: SIAM J. Comput. (2008)]

- One can construct from scratch for any graph G
- a tree $\left(6 t s(G) \log _{2} n\right)$-spanner in $O\left(n m \log ^{2} n\right)$ time

Relations between $\boldsymbol{t l}(\boldsymbol{G}), \boldsymbol{t s}(\boldsymbol{G})$ and $\boldsymbol{t d}(\boldsymbol{G})$ and consequences

- $\forall G, \quad t b(G) \leq \boldsymbol{t l}(\boldsymbol{G}) \leq \boldsymbol{t d}(\boldsymbol{G}) \leq t s(G)$
- Any connected n-vertex, m-edge graph G admits a tree $\left(2 t b(G) \log _{2} n\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time from scratch. [Dragan, Köhler: APPROX (2011)]
- $\forall G, t s(G) \leq 2 t d(G) \log _{2} n$

Hence, if a graph is embeddable into a tree with distortion α then it is embeddable to a spanning tree with stretch at most $2 \alpha \log _{2} n$.

The bound is sharp (chordal graphs):

- $t s(G)$ is $\theta(\log n)$
[Dragan, Köhler: $\operatorname{APPROX}(2011)$]
- $t d(G)$ is $\theta(1)$
[Brandstädt, Chepoi, Dragan: J. Algorithms (1999)]

$$
\exists T, \forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+2
$$

Relations between $\boldsymbol{t l}(\boldsymbol{G}), \boldsymbol{t s}(\boldsymbol{G})$ and $\boldsymbol{t d}(\boldsymbol{G})$ and consequences

- $\forall G, \quad t b(G) \leq \boldsymbol{t l}(\boldsymbol{G}) \leq \boldsymbol{t d}(\boldsymbol{G}) \leq t s(G)$
- Any connected n-vertex, m-edge graph G admits a tree $\left(2 t b(G) \log _{2} n\right)$-spanner constructible in $O\left(n m \log ^{2} n\right)$ time from scratch. [Dragan, Köhler: APPROX (2011)]
- $\forall G, t s(G) \leq 2 t d(G) \log _{2} n$

Hence, if a graph is embeddable into a tree with distortion α then it is embeddable to a spanning tree with stretch at most $2 \alpha \log _{2} n$.
Recall,
If G admits a tree H with $\forall u, v \in V, d_{G}(u, v) \leq d_{H}(u, v) \leq \alpha d_{G}(u, v)$ then

- there is a tree T, constructible in linear time, such that

$$
\forall u, v \in V, d_{T}(u, v)-2 \leq d_{G}(u, v) \leq d_{T}(u, v)+3 \alpha
$$

- there is a easily constructible tree $T^{\prime}{ }_{l}$ with $\forall u, v \in V, d_{G}(u, v) \leq$

$$
d_{T_{l}^{\prime} l}(u, v) \leq 3 \alpha\left(d_{G}(u, v)+1\right) \leq 6 \alpha d_{G}(u, v)
$$

Hence, if a graph admits a tree t-spanner then it is embeddable to a tree with distortion at most $6 t$. Furthermore, tree t-spanner can be turned into additive distortion tree.

Relationships between parameters

- $\forall G, \quad t b(G) \leq t l(G) \leq 2 t b(G)$
[folklore]
- $\forall G, s, \rho_{s}(G) \leq \Delta_{s}(G) \leq 2 \rho_{s}(G)$
[folklore]
- $\forall G, s, \operatorname{tl}(G)-1 \leq \Delta_{s}(G) \leq 3 \operatorname{tl}(G)$
[Dourisboure, Gavoille: $D M(2007)$]
- $\forall G, s, \rho_{s}(G) \leq 2 t l(G)$
[Dourisboure, Dragan, Gavoille, Yan: TCS (2007)]
- $\forall G, s, t b(G)-1 \leq \rho_{s}(G) \leq 3 t b(G)$
[Dragan, Köhler: APPROX (2011)]
- $\quad \forall G, h b(G) \leq t l(G) \leq 0(h b(G) \log n)$
[Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008)]
- $\forall G, s, \Delta_{s}(G) / 3 \leq t d(G) \leq 2 \Delta_{s}(G)+2$
[Chepoi, Dragan, Newman, Rabinovich, Vaxes:
- $\forall G, s, \rho_{S}(G) \leq \max \{3 t d(G)-1,2 t d(G)+1\}$ Discr.\&Comput.Geom. (2012)]
- $\forall G, \quad t l(G) \leq t d(G) \leq t s(G)$ and $t b(G) \leq\lceil t s(G) / 2\rceil$
- $\forall G, \quad t s(G) \leq 2 t b(G) \log _{2} n$
[Dragan, Köhler: APPROX (2011)]
- $\forall G, t s(G) \leq 2 t d(G) \log _{2} n$

$$
h b(G) \leq t l(G) \leq t d(G) \leq t s(G) \leq 2 t b(G) \log _{2} n \leq O\left(h b(G) \log ^{2} n\right)
$$

Thank You

Special thanks to all organizers

Special thanks to Andreas Brandstädt

