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o Large networks are everywhere 

o Can we understand their structure 
and exploit it? 

A partial map of the Internet, January 15 2005 

Drug-Target Network.
Nature Biotechnology 25(10), October 2007

The US electric transmission system.
Courtesy North American Reliability Corporation.

Pictures are taken from  Blair D. Sullivan’s presentation 



Recent empirical and theoretical work has suggested that many real-life 
complex networks and graphs arising in Internet applications, in biological 
and social sciences, in chemistry and physics 

have treehave treehave treehave tree----like structures from a metric point of view.like structures from a metric point of view.like structures from a metric point of view.like structures from a metric point of view.

o The Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of Tree----Based Theory for Networks with Clustering, Based Theory for Networks with Clustering, Based Theory for Networks with Clustering, Based Theory for Networks with Clustering, 
Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).

o Fast Fast Fast Fast computation of empirically tight bounds for the diameter of massive computation of empirically tight bounds for the diameter of massive computation of empirically tight bounds for the diameter of massive computation of empirically tight bounds for the diameter of massive graphs,                                           graphs,                                           graphs,                                           graphs,                                           
Magnien, Latapy, Habib. ACM J. of Experimental Algorithmics 13 (2008)

o “It was noted in recent years that the the the the Internet structure has a highly connected core and long stretched Internet structure has a highly connected core and long stretched Internet structure has a highly connected core and long stretched Internet structure has a highly connected core and long stretched 
tendrils, and that most of the routing paths between nodes in the tendrils pass through the core.tendrils, and that most of the routing paths between nodes in the tendrils pass through the core.tendrils, and that most of the routing paths between nodes in the tendrils pass through the core.tendrils, and that most of the routing paths between nodes in the tendrils pass through the core. Therefore, we 
suggest to embed the Internet distance metric in a hyperbolic space where routes are bent toward the center“ 
Shavitt, Tankel. 2008. Hyperbolic embedding of internet graph for distance estimation and overlay 
construction. IEEE/ACM Trans. Netw. 16, 1 (2008).

o Finding Finding Finding Finding Hierarchy in Directed Online Social NetworksHierarchy in Directed Online Social NetworksHierarchy in Directed Online Social NetworksHierarchy in Directed Online Social Networks, Gupta, Shankar, Li, Muthukrishnan, Iftode. WWW2011.

Some prior Some prior Some prior Some prior empirical evidenceempirical evidenceempirical evidenceempirical evidence



o no consensus has been reached on defining and measuring this tree-like structure

Image credit: Tim Davis

Arxiv GR-QC collaboration

Image credit: Traub, Kelsic, Mucha, Porter

Facebook: Caltech Network

Image credit: Graphics@Illinois

Autonomous Systems

Pictures are taken from  Blair D. Sullivan’s presentation 



• Tree-width DE(F) (combinatorial)

• Tree-length DG(F)

• Tree-breadth DH(F)

• Tree-stretch DI(F)

• Tree-distortion DJ(F)

• Hyperbolicity KH(F)

• Cluster-diameter LI(F) of a layering partition

• Cluster-radius MI(F) of a layering partition

(metric)

We consider here only unweighted and undirected graphs

All measuring tree-likeness - the smaller parameter, the closer graph to a tree 

Although, some 
results extend 
to weighted 

graphs as well



• Tree-width DE(F) (combinatorial)

• Tree-length DG(F)

• Tree-breadth DH(F)

• Tree-stretch DI(F)

• Tree-distortion DJ(F)

• Hyperbolicity KH(F)

• Cluster-diameter LI(F) of a layering partition

• Cluster-radius MI(F) of a layering partition

(metric)

We consider here only unweighted and undirected graphs

This talk:

• Discussion of these parameters

• Relations between them; their approximations

• Resulting approximation algorithms for optimization problems 



[ Brandstädt, Chepoi, Dragan: J. Algorithms (1999) ]
[ Chepoi, Dragan: Eur. J. Combinatorics (2000) ]









Can be constructed in O(|E|) time [ Chepoi, Dragan: Eur. J. Combinatorics (2000) ]



G
Can be constructed in O(|E|) time [ Chepoi, Dragan: Eur. J. Combinatorics (2000) ]



Can be constructed in O(|E|) time [ Chepoi, Dragan: Eur. J. Combinatorics (2000) ]



Can be constructed in O(|E|) time [ Chepoi, Dragan: Eur. J. Combinatorics (2000) ]

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + Z^(V′, W′)



∀ a, b, ∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + Z^(V′, W′)

LI F = max {Z^ V, W : V, W are in the same cluster}

• Cluster-diameter LI(F) of a layering partition

• Cluster-radius MI(F) of a layering partition

MI F = min {f: ∀ ghVbijf kl  ∃ Wl  with kl ⊆  op Wl }

qr(a)

• ∀ a, b,   sr (a) ≤ qr(a) ≤ 2sr(a) as  ∀ tŒY(a),  fuZ^ t ≤ Zvuw^ t ≤ 2fuZ^ t

Parameters LI(F), MI (F)
can be computed in 
O(n m) time for any graph



• Chordal graphs: qr a ≤3, sr a ≤2  (∀ a, b)

[ Brandstädt, Chepoi, Dragan: J. Algorithms (1999) ]

• k-Chordal graphs: qr a ≤ x
y⁄ +2 (∀ a, b)

[ Chepoi, Dragan: Eur. J. Combinatorics (2000) ] 

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + 2
The length of largest 

induced cycles is 3

• More graph classes to come…

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^ V, W ≤  Z[ V, W +  |
2} + 2

∀ a, b, ∃~, ∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + LI F

The length of largest 
induced cycles is k

the smaller parameter LI F , the closer graph to a tree metric 



Data set |V| |E| diam(G) # of clusters LI F Average cluster diam % of ≤ 2

Yeast 2,224 6,609 11 1,037 6 0.119575699 98%

Homo Sapiens 16,711 115,406 10 6,817 5 0.03432595 99%

PPI 1,458 1,948 19 1,017 8 0.118977384 98%

DBLB-coauthors  317,080 1,049,866 22 99,828 11 0.45350002 98%

Amazon 334,863 925,872 44 72,278 21 0.489056144 95%

Dutch_Elite 3,621 4,311 22 2,934 10 0.070211316 99%

ITDK0304 190,914 607,610 26 89,856 11 0.270377048 97%

Aqualab 12/2007- 09/2008 31,845 143,383 9 16,287 6 0.05826733 99%

Dimes 3/2010 26,424 90,267 8 16,065 4 0.056582633 99%

Routeview 10,515 21,455 10 6,702 6 0.063264697 99%

AS_CAIDA 26,475 53,381 17 17,067 6 0.056424679 99%

By Muad Abu-Ata, PhD student at Kent State University

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + Z^(V′, W′)
qr(a)

http://www.cs.kent.edu/~mabuata/graph_embed/unweighted_graph_tree_metric/index.htm

AS_CAIDA has 16459 clusters of diameter 0
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∀ a, b, ∃~, 



• Tree-decomposition ~(a) of a graph a = (Y, �) is a pair ( �l: v ∈ � , ~
= (�, �)) where �l: v ∈ � is a collection of subset of V (bags) and ~ is a 
tree whose nodes are the bags satisfying:

1) ⋃ �l = Yl∈�

2) ∀ VW ∈ �, ∃ v ∈ � b. i.  V, W ∈ �l

3) ∀ W ∈ Y, i�j bji �� �u�b v ∈ �, W ∈ �l  ��fw u bV�ifjj ~� �� ~

[ Robertson, Seymour ]



• Tree-width DE(F)::::
– Width of ~ a is max

l∈�
�l − 1 

– DE(F):::: minimum width over all tree-decompositions 

• Tree-length DG(F)::::
– Length of  ~ a is max

l∈�
max

�,�∈��
Z^(V, W)

– DG(F):::: minimum length over all tree-decompositions

• Tree-breadth DH(F)::::
– Breadth is minimum f such that ∀v ∈ �, ∃Wl  with �l ⊆

 �p(Wl , a)
– DH F :::: minimum breadth over all tree-decompositions

Tree-length was introduced in [ Dourisboure, Gavoille: DM (2007) ] and [ Dragan,Lomonosov: DAM (2007) ] 

Tree-breadth was introduced in [ Dragan,Lomonosov: DAM (2007) ] and [ Dragan, Köhler: APPROX (2011) ]  

(R,D)-acyclic clustering



• Tree-width DE(F)::::
– Width of ~ a is max

l∈�
�l − 1 

– DE(F):::: minimum width over all tree-decompositions 

• Tree-length DG(F)::::
– Length of  ~ a is max

l∈�
max

�,�∈��
Z^(V, W)

– DG(F):::: minimum length over all tree-decompositions

• Tree-breadth DH(F)::::
– Breadth is minimum f such that ∀v ∈ �, ∃Wl  with �l

⊆  �p(Wl , a)
– DH F :::: minimum breadth over all tree-decompositions

• ∀ a, i�(a) ≤ ih(a) ≤ 2i�(a) as  ∀ tŒY(a),  fuZ^ t ≤ Zvuw^ t ≤ 2fuZ^ t
• i� a  and ih(a) are not comparable (check cycles and cliques) 

i�(k�x) = 2, ih(k�x) = |
i�(��) = � − 1, ih(��) = 1



• Tree-width DE(F)::::
– Width of ~ a is max

l∈�
�l − 1 

– DE(F):::: minimum width over all tree-decompositions 

• Tree-length DG(F)::::
– Length of  ~ a is max

l∈�
max

�,�∈��
Z^(V, W)

– DG(F):::: minimum length over all tree-decompositions

• Tree-breadth DH(F)::::
– Breadth is minimum f such that ∀v ∈ �, ∃Wl  with �l ⊆

 �p(Wl , a)
– DH F :::: minimum breadth over all tree-decompositions

• ∀ a, i�(a) ≤ ih(a) ≤ 2i�(a) as  ∀ tŒY(a),  fuZ^ t ≤ Zvuw^ t ≤ 2fuZ^ t
• i� a  and ih(a) are not comparable (check cycles and cliques) 

Many real-life networks (e.g., with a highly connected core) 
have a large tree-width but still exhibit a tree-like structure



the smaller parameters  ih a , i� a , the closer graph to a tree  

• Chordal graphs: i�(a) ≤ ih(a) ≤ 1 (via clique tree) 

• Chordal bipartite graphs: i�(a) ≤ 1 [ Dragan,Lomonosov: DAM (2007) ]

• k-Chordal graphs: i�(a) ≤ ih(a) ≤ x
y⁄  [ Dourisboure, Gavoille: DM (2007) ]

qr a ≤3

qr a ≤ x
y⁄ +2

From Michel 
Habib’s
presentation, 
June 2009



I I

• ∀ a, b, ih a − 1 ≤ qr a ≤ 3 ih a

• ∀ a, b,  sr a ≤ 2 ih a

• ∀ a, b,  i� a − 1 ≤  sr a ≤ 3 i� a [ Dragan, Köhler: APPROX (2011) ]

• To test if ih a ≤ λ is NP-complete for each λ> 1

• A tree-decomposition of length LI F + � ≤ 3 ih a + 1 can be obtained in linear 
time from the G-Tree of a layering partition. 

[ Dourisboure, Gavoille: DM (2007) ]

[ Dourisboure, Dragan, Gavoille, Yan: TCS (2007) ]

• Chordal graphs:
i�(a) ≤ ih(a) ≤ 1 and

• k-Chordal graphs: 
                  i�(a) ≤ ih(a) ≤ x

y⁄ and

qr a ≤3

qr a ≤ x
y⁄ +2

General graphs

[ Lokshtanov: DAM (2010) ]

[ Dourisboure, Gavoille: DM (2007) ]



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a

3 ih a

• More results from [ Dourisboure, Dragan, Gavoille, Yan: TCS (2007) ] that employ 
inequalities qr a ≤ 3 ih a and sr a ≤ 2 ih a  

o Every � -vertex graph a has an additive (4 ih a )-spanner with at most 
2 ih a + 1)(� − 1 edges constructible in polynomial time

o Every � -vertex graph a has an additive (2 ih a )-spanner with at most 
ih a + h���)(� − 1 edges constructible in polynomial time 

• More results from [ Dragan, Köhler: APPROX (2011) ] after few more slides

the smaller parameter  ih a  (i� a ), the closer graph to a tree metric  



u
�

g

Z

• Z �,   + Z V, W = u + � + Z + g + 2η + 2ξ
• Z �, W + Z V,   = u + � + Z + g + 2η
• Z �, V + Z  , W = u + � + Z + g + 2ξ



• The hyperbolicity  KH(F) of a graph a is the smallest number δ such 
that (V(G), d¤)  is  δ-hyperbolic.

 
�

WV

u
�

gZ

• Z[ �, W + Z[ V,   = u + � + g + Z + 2η
• Z[ �,   + Z[(V, W) = u + � + g + Z + 2η
• Z[ �, V + Z[( , W) = u + � + g + Z

�

WV

u
�

g
Z

η
 

η
ξ

η
ξ

Subspace 
formed by 
four points 

in tree 
metric 

in graph 
metric 

• Z^ �, W + Z^ V,   = u + � + Z + g + 2η + 2ξ
• Z^ �,   + Z^(V, W) = u + � + Z + g + 2η
• Z^ �, V + Z^( , W) = u + � + Z + g + 2ξ

min{η , ξ} ≤ δ

the smaller parameters δ, the closer graph to a tree metrically



• Chordal graphs: ��(a) ≤ 1
[ Brinkmann, Koolen, Moulton: Annals of Combinatorics (2001) ]

• k-Chordal graphs (k>3): ��(a) ≤ x
¥⁄  

[ Wu, Zhang: E.J. on Combinatorics (2011) ] 

• More graph classes to come…

• KH(F) can be computed naively in  §(�¥) time
• KH(F) is a half integer  (¨

y⁄ , 1, �
y⁄ , 2, …) for unweighted graphs

the smaller parameters  KH(F), the closer graph to a tree metrically

qr a ≤ 3,  i�(a) ≤ ih(a) ≤ 1

qr a ≤ x
y⁄ +2, i�(a) ≤ ih(a) ≤ x

y⁄  

1
2}

�� �� = 0 (is a tree metrically) 

1
2}

1
2}

1
2}

�� t¥ = 1 (is not a tree metrically) 

• �� a = 0 iff a is a block graph (metrically a tree) 

1
2}

1
2}

1
2}

1
2}

1
2}

1
2}

1
2}

1
2}



Data set |V| |E| diam(G) LI F hyperbolicity % of ≤ 1

Yeast 2,224 6,609 11 6 2.5 99%

Homo Sapiens 16,711 115,406 10 5 -

PPI 1,458 1,948 19 8 3.5 98%

DBLB-coauthors  317,080 1,049,866 22 11 -

Amazon 334,863 925,872 44 21 -

Dutch_Elite 3,621 4,311 22 10 4 96%

ITDK0304 190,914 607,610 26 11 -

Aqualab 12/2007- 09/2008 31,845 143,383 9 6 -

Dimes 3/2010 26,424 90,267 8 4 -

Routeview 10,515 21,455 10 6 -

AS_CAIDA 26,475 53,381 17 6 2.5 97%

By Muad Abu-Ata, PhD student at Kent State University

http://www.cs.kent.edu/~mabuata/graph_embed/unweighted_graph_tree_metric/index.htm

PPI

hyperbolicity

relative 

frequency

0 0.4831

0.5 0.3634

1 0.1336

1.5 0.0179

2 0.0019

2.5 3.55E-05

3 1.65E-06

3.5 3.79E-09

Montgolfier, Soto, Viennot: NCA (2011) 
M. Soto (2009) 



I

• ∀ a, �� a ≤ ih a ≤ O(�� a log n)

• ∀ a, b,  �� a ≤ qr a ≤ O(�� a  log n)

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) ]
[ Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

• Chordal graphs:
��(a) ≤ 1 and i�(a) ≤ ih(a) ≤ 1 and  qr a ≤3

• k-Chordal graphs:  
      ��(a) ≤ x

¥⁄  and  i�(a) ≤ ih(a) ≤ x
y⁄ and  qr a ≤ x

y⁄ +2

General graphs

Recall: 

• ∀ a, b, ih a − 1 ≤ qr a ≤ 3 ih a



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a

O(�� a log �)

• ∀ a, b,  �� a ≤ qr a ≤ 4+12 �� a  + 8 �� a  h��yn

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) ]
[ Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

equivalently, 
∀ V, W ∈ Y, Z^ V, W − O(�� a log �) ≤ Z[(V, W) ≤  Z^ V, W + 2
(notice,  ~ is unweighted and without Steiner points)



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a

O(�� a log �)

• ∀ a, b,  �� a ≤ qr a ≤ 4+12 �� a  + 8 �� a  h��yn

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) ]
[ Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

Can be made non-expanding like in Gromov’s case by 
allowing Steiner points and edge weights {0,1} in ~. 

• If for a graph a there is a tree ~ with  Z^ V, W ≤  Z[ V, W ≤ Z^ V, W + f    ∀ V, W ∈ Y then a is f-hyperbolic
• If for a graph a there is a tree ~ with  Z[ V, W ≤  Z^ V, W ≤ Z[ V, W + f    ∀ V, W ∈ Y   then a is f-hyperbolic

Easy to show:

equivalently, 
∀ V, W ∈ Y, Z^ V, W − O(�� a log �) ≤ Z[(V, W) ≤  Z^ V, W + 2
(notice,  ~ is unweighted and without Steiner points)



o The Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of TreeThe Unreasonable Effectiveness of Tree----BBBBaaaasssseeeedddd    TTTThhhheeeeoooorrrryyyy    ffffoooorrrr    NNNNeeeettttwwwwoooorrrrkkkkssss    wwwwiiiitttthhhh    CCCClllluuuusssstttteeeerrrriiiinnnngggg,,,,                                                                                
Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).

o Fast Fast Fast Fast ccccoooommmmppppuuuuttttaaaattttiiiioooonnnn    ooooffff    eeeemmmmppppiiiirrrriiiiccccaaaallllllllyyyy    ttttiiiigggghhhhtttt    bbbboooouuuunnnnddddssss    ffffoooorrrr    tttthhhheeee    ddddiiiiaaaammmmeeeetttteeeerrrr    ooooffff    mmmmaaaassssssssiiiivvvveeee    ggggrrrraaaapppphhhhssss,,,,                                                                                                            
Magnien, Latapy, Habib. ACM J. of Experimental Algorithmics 13 (2008)

Sparse additive spanners 

[ Chepoi, Dragan, Estellon, 
Habib, Vaxes, Xiang: 
Algorithmica (2012) ]

Recall: 

[ Chepoi, Dragan, Estellon, 
Habib, Vaxes: SoCG (2008) ]







[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) ]



[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) ]



o The problem is known also as    
“non-contractive minimum distortion embedding into trees”

o Tree-distortion DJ(F) of a graph a = (Y, �) is the smallest number ª
such that G admits a (not necessarily spanning, possibly weighted and 
having Steiter points) tree ~ = (Y ∪ t, ¬) with

∀ V, W ∈ Y,  Z^ V, W ≤ Z[ V, W ≤ ª Z^ V, W .

iZ t� = 2 

iZ �� = 1 (is a tree metrically) 

1
2}

1
2}

1
2}

1
2}

1
2}

ª = 3 ª = 2 

1
2}

Contractive 

embedding ±1/2
ª = 2 

o the smaller ª,  the closer graph to a tree 

( most popular among different embeddings into trees )



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a
(notice,  ~ is unweighted and without Steiner points)

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.&Comput.Geom. (2012) ]

• Assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (qr a + 1)(Z^ (V, W) + 2)

( to reach the form ∀ V, W ∈ Y,  Z^ V, W ≤ Z[ V, W ≤ ª Z^ V, W ) 

We had: 

(non-contractive)



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a
(notice,  ~ is unweighted and without Steiner points)

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.&Comput.Geom. (2012) ]

• Assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (qr a + 1)(Z^ (V, W) + 2)

( to reach the form ∀ V, W ∈ Y,  Z^ V, W ≤ Z[ V, W ≤ ª Z^ V, W ) 

We had: 

(non-contractive)



• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a
(notice,  ~ is unweighted and without Steiner points)

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.&Comput.Geom. (2012) ]

• Assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (qr a + 1)(Z^ (V, W) + 2)

( to reach the form ∀ V, W ∈ Y,  Z^ V, W ≤ Z[ V, W ≤ ª Z^ V, W ) 

We had: 

• Introducing Steiner points and assigning uniformly weight (qr a + 1)/2 to all edges
of T we get  ~′¯ with ∀ V, W ∈ Y, Z^(V, W) ≤  Z [±°

V, W ≤ (qr a + 1)(Z^ (V, W) + 1)

(non-contractive)



I
• For any graph a there is a tree ~, constructible in linear time, such that

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + qr a

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.&Comput.Geom. (2012) ]

• Assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (qr a + 1)(Z^ (V, W) + 2)

• Introducing Steiner points and assigning uniformly weight (qr a + 1)/2 to all edges
of T we get  ~′¯ with ∀ V, W ∈ Y, Z^(V, W) ≤  Z [±°

V, W ≤ (qr a + 1)(Z^ (V, W) + 1)

• ∀ a, b, qr a /3 ≤ iZ a ≤ 2 qr a +2

• For any graph a there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + 3iZ(a)

• Assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (3iZ(a) + 1)(Z^ (V, W) + 2)

• Introducing Steiner points and assigning uniformly weight (qr a + 1)/2 to all edges of
T we get  ~′¯ with ∀ V, W ∈ Y, Z^(V, W) ≤  Z [±°

V, W ≤ (3iZ(a) + 1)(Z^ (V, W) + 1)

Hence: 



[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr.&Comput.Geom. (2012) ]

• ∀ a, b, qr a /3 ≤ iZ a ≤ 2 qr a +2

• there is a tree ~, constructible in linear time, such that
∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + 3ª

• assigning uniformly weight qr a + 1 to all edges of T we get  ~̄ with
∀ V, W ∈ Y,  Z^(V, W) ≤  Z [°

V, W ≤ (3ª + 1)(Z^ (V, W) + 2) ≤ 12ª Z^ (V, W)

• introducing Steiner points and assigning uniformly weight (qr a + 1)/2 to all edges of
T we get  ~′¯ with

       ∀ V, W ∈ Y, Z^(V, W) ≤  Z [±°
V, W ≤ (3ª + 1)(Z^ (V, W) + 1) ≤ 8ª Z^ (V, W)

 If  a admits a tree ² with ∀ V, W ∈ Y,  Z^ V, W ≤ Z³ V, W ≤ ª Z^ V, W   then:  

( multiplicative distortion turned into an additive distortion; ~ is unweighted and no Steiner points )

( a 12-approximation algorithm for minimum distortion embedding into trees )

( an 8-approximation algorithm for minimum distortion embedding into trees )

H may be 
weighted 
and may 
have  
Steiner 
points 



[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: APPROX (2010) and Discr.&Comput.Geom. (2012) ]

• ∀ a, b, qr a /3 ≤ iZ a ≤ 2 qr a +2
• 12 - approximation by a weighted tree without Steiner points
• 8 - approximation by a weighted tree with Steiner points

[ Badoiu, Indyk, Sidiropoulos: SODA (2007) ]

• The problem of minimum distortion embedding into trees is NP-hard
• 100 - approximation
• 27 - approximation [ Badoiu, Demaine, Hajiaghayi, Sidiropoulos, Zadimoghaddam: APPROX (2008) ]

• ∀ a, b, sr a ≤ max{3iZ a -1, 2iZ a + 1}
• 9 - approximation by a weighted tree without Steiner points
• 6 - approximation by a weighted tree with Steiner points

∀ V, W ∈ Y, Z^(V, W) ≤  Z [±µ
V, W ≤ 3ª(Z^ (V, W) + 1) ≤ 6ª Z^ V, W

( the larger the distance Z^(V, W), the smaller the distortion )
Z^ V, W = 1 ⇒ distortion ≤ 6; 

Z^ V, W = 2 ⇒ distortion ≤ 4.5;
Z^ V, W ≥ 3 ⇒ distortion ≤ 4; …



Data set |V|

Avg 

error 

left 

(JF/J¸)

max 

error 

left

(JF/J¸)

% of left 

pairs

(JF> J¸)

Avg 

error 

right

(J¸/JF)

max 

error 

right

(J¸/JF)

% of right

pairs

(J¸ > JF)

Avg. relative 

error

(|JF −J¸|/JF)

% of 

pairs

J¸ = JF

Yeast 2,224 1.48714 5 56.3% 1.48714 3 12.2% 0.219268 31.5%

Homo Sapiens 16,711 1.533 4 2.8% 1.17564 3 25.2% 0.180092 72.0%

PPI 1,458 1.50159 7 70.5% 1.10486 3 9.1% 0.24669 20.4%

DBLB-coauthors  317,080 1.77416 9 95.8% 1.03535 3 0.6% 0.383101 3.6%

Amazon 334,863 2.48301 19 99.1% 1.04929 3 0.3% 0.536656 0.6%

Dutch_Elite 3,621 1.54045 7 73.0% 1.05818 3 3.9% 0.252341 23.1%

ITDK0304 190,914 1.60077 8 94.8% 1.02828 3 0.6% 0.331656 4.6%

Aqualab 12/2007- 09/2008 31,845 1.42269 4 31.7% 1.21947 3 35.8% 0.241815 32.5%

Dimes 3/2010 26,424 1.53666 3 5.7% 1.17552 3 44.4% 0.184767 49.9%

Routeview 10,515 1.40636 4 24.3% 1.18259 3 33.4% 0.205375 42.3%

AS_CAIDA 26,475 1.48085 4 21.4% 1.16106 3 35.4% 0.192302 43.2%

By Muad Abu-Ata, PhD student at Kent State University

http://www.cs.kent.edu/~mabuata/graph_embed/unweighted_graph_tree_metric/index.htm

error

relative 

frequency

[7,6] 0.000030

(6,5] 0.000069

(5,4] 0.000214

(4,3] 0.007091

(3,2] 0.081369

(2,1) 0.616643

[1,2) 0.290158

[2,3] 0.004456

PPI

error

relative 

frequency

[5,4] 0.000127

(4,3] 0.000708

(3,2] 0.080864

(2,1) 0.481600

[1,2) 0.428692

[2,3] 0.008009

Yeast

error

relative 

frequency

[4,3] 0.000015

(3,2] 0.029115

(2,1) 0.185172

[1,2) 0.771621

[2,3] 0.014077

AS_CAIDA

error

relative 

frequency

[4,3] 0.000013

(3,2] 0.004992

(2,1) 0.023258

[1,2) 0.884653

[2,3] 0.087083

Homo Sapiens 

90% 95%90%

90%



Corresponding decision problem: 
Tree D-Spanner Problem 

Given unweighted undirected graph a = (Y, �) and integer i.
Does a admit a spanning tree ~ = (Y, �′) such that

∀ V, W ∈ Y, Z[ V, W ≤ iZ^(V, W)
(a multiplicative  tree i-spanner  of a)

o Tree-stretch DI(F) of an unweighted undirected graph a = (Y, �) is the 
minimum number D such that a has a spanning tree ~ = (Y, �′) with 
Z[ V, W ≤ i for every edge VW ∈ �.

o Tree shape mimics graph shape: the smaller D the closer graph to a tree 

ib(a) = 3 

a



Corresponding decision problem: 
Tree D-Spanner Problem 

Given unweighted undirected graph a = (Y, �) and integers i, f.
Does a admit a spanning tree ~ = (Y, �′) such that

∀ V, W ∈ Y, Z[ V, W ≤ iZ^(V, W)
(a multiplicative  tree i-spanner  of a)

orororor

∀ V, W ∈ Y, Z[ V, W ≤ Z^ V, W + f
(an additive tree f-spanner  of a)?

o Tree-stretch DI(F) of an unweighted undirected graph a = (Y, �) is the 
minimum number D such that a has a spanning tree ~ = (Y, �′) with 
Z[ V, W ≤ i for every edge VW ∈ �.

o Tree shape mimics graph shape: the smaller D the closer graph to a tree 

ib(a) = 3 

a

minimum º is called tree-surplus D»(F)



[Liebchen, Wünsch: Discrete Appl. Math.  (2008) ]

[ Cai, Corneil: SIAM J. Discrete Math. (1995) ]

[ Emek, Peleg: SIAM J. Comput.  (2008) ]

• NP-complete for i > 3, linear for i = 1,2, open for i = 3

• NP-hard to 2-approximate

• § log � -approximation 

General unweighted graphs 

Special graph classes
• Linear time for planar graphs  and their generalizations for any fixed i

• ib(a) is constant for AT-free, strongly chordal, dually chordal, etc…

• ib(a)  is ½(log � ) for chordal graphs 
[ Dragan, Köhler: APPROX (2011) ]

[ Dragan, Fomin, Golovach: J. of Computer and System Sciences (2011) ]

[Kratsch, Le, Müller, Prisner, Wagner: SIAM J. Discrete Math.  (2003) ]

[ Brandstädt, Chepoi, Dragan: J. Algorithms (1999) ] …



o ∀ a, i�(a) ≤ ib(a)/2 and    ih(a) ≤ ib(a)

o Any connected �-vertex, w-edge graph a admits a tree (2i�(a) h��y�)-spanner
constructible in §(�wh��y�) time from scratch.

o Any connected �-vertex, w-edge graph a admits a tree (6ih(a) h��y�)-spanner
constructible in §(wh���) time from scratch.

o One can construct from scratch for any graph a
� a tree (2 ib(a)/2  h��y�)-spanner in §(�wh��y�) time 
� a tree (6ib(a) h��y�)-spanner in §(wh���) time 

Compare with 

o One can construct from scratch for any graph a
� a tree (6ib(a) h��y�)-spanner in §(�wh��y�) time 

[ Emek, Peleg: SIAM J. Comput.  (2008) ]

Hence,  ¾(G¿À Á)----approximationapproximationapproximationapproximation for for for for DI F

o ∀ a, ib(a) ≤ 2i� a  h��y� ≤  2ih(a) h��y�

[ Dragan, Köhler: APPROX (2011) ]



o ∀ a, i�(a) ≤ DG(F) ≤ DJ(F) ≤ ib(a)

o Any connected �-vertex, w-edge graph a admits a tree (2i�(a) h��y�)-spanner
constructible in §(�wh��y�) time from scratch.

Hence,  if a graph is embeddable into a tree with distortion ª then it is embeddable to a 
spanning tree with stretch at most 2ª h��y�.

o ∀ a, ib(a) ≤ 2iZ a  h��y�

[ Dragan, Köhler: APPROX (2011) ]

• ib(a)  is ½ log �

• iZ(a)  is ½(1)

The bound is sharp (chordal graphs):  

[ Dragan, Köhler: APPROX (2011) ]

∃~, ∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + 2

[ Brandstädt, Chepoi, Dragan: J. Algorithms (1999) ]



o ∀ a, i�(a) ≤ DG(F) ≤ DJ(F) ≤ ib(a)

o Any connected �-vertex, w-edge graph a admits a tree (2i�(a) h��y�)-spanner
constructible in §(�wh��y�) time from scratch.

Hence,  if a graph is embeddable into a tree with distortion ª then it is embeddable to a 
spanning tree with stretch at most 2ª h��y�.

o ∀ a, ib(a) ≤ 2iZ a  h��y�

[ Dragan, Köhler: APPROX (2011) ]

If  a admits a tree ² with ∀ V, W ∈ Y,  Z^ V, W ≤ Z³ V, W ≤ ª Z^ V, W   then 
• there is a tree ~, constructible in linear time, such that   

∀ V, W ∈ Y, Z[ V, W − 2 ≤ Z^(V, W) ≤  Z[ V, W + 3ª
• there is a easily constructible tree  ~′Â with  ∀ V, W ∈ Y, Z^(V, W) ≤

 Z [±µ
V, W ≤ 3ª(Z^ (V, W) + 1) ≤ 6ª Z^ V, W

Recall, 

Hence,  if a graph admits a tree i-spanner then it is embeddable to a tree with distortion  
at most 6i. Furthermore,  tree t-spanner can be turned into additive distortion tree. 



• ∀ a,     i� a ≤ ih a ≤ 2i� a                                                                                       [ folklore ]

• ∀ a, b,  sr (a) ≤ qr(a) ≤ 2sr(a) [ folklore ]

• ∀ a, b,  ih a − 1 ≤ qr a ≤ 3 ih a [ Dourisboure, Gavoille: DM (2007) ]

• ∀ a, b,   sr a ≤ 2 ih a [ Dourisboure, Dragan, Gavoille, Yan: TCS (2007) ]

• ∀ a, b,   i� a − 1 ≤  sr a ≤ 3 i� a [ Dragan, Köhler: APPROX (2011) ]

• ∀ a, �� a ≤ ih a ≤ O(�� a log �)

• ∀ a, b,  �� a ≤ qr a ≤ O(�� a  log n)

• ∀ a, b, qr a /3 ≤ iZ a ≤ 2 qr a +2

• ∀ a, b,   sr a ≤ max{3iZ a -1, 2iZ a + 1}

• ∀ a,    ih(a) ≤ iZ(a) ≤ ib(a) and   i�(a) ≤ ib(a)/2

• ∀ a, ib(a) ≤ 2i� a  h��y�

• ∀ a, ib(a) ≤ 2iZ a  h��y�

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG
(2008) ]

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: 
Discr.&Comput.Geom. (2012) ]

[ Dragan, Köhler: APPROX (2011) ]

�� a ≤ ih a ≤ iZ a ≤ ib a ≤ 2i� a  h��y� ≤ §(��(a)h��y�)



Thank You



Special thanks to all 
organizers 



Special thanks to 
Andreas Brandstädt


