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Real-life networks

and graphs

o Large networks are everywhere

o Can we understand their structure

and exploit it?

Pictures are taken from Blair D. Sullivan’s presentation

A partial map of the Internet, January 15 2005

-l....,. -.-. . . . ‘s ‘q;‘-
% N @ Metabolism
. ? W . ) x . ® Biood ¢
WY 4 o0t ® Cardiovascular ‘ =
'y v N\ /A . . ® Dermatological 5
o o SR, W T iR §inee y oy
2 = * S homin .: 2 Ry A\F A T ® Antiinfoctives 5/ \a
m:a&m ~ . . ... * LT . 'S : ° = ® Antineoplastics ¢ 9
TN A Sl o s e
é :. N . .. s ® ..o o v s . . [ ] Nu?.avasihc
v 1 0 o .- . a N\ ® Rospiratory
AR : it .'Q. ' . ¥ b o e b :z::f"ﬂnm
SN he -t
. "ol . s » GAliA g g
! :- L] ..... .?:m:.."- v ¢ .’.. Membrane
e, AN ARNT KCH I Al Orbgon;
o.:u:; » ‘ JEUL % .o'..' Organelles
,"m < & 4 o C oA Nuckeus T ianerviccion Linge
*_..:- . . . ] ! = rnonn by \okage_Category
. i Below 2206V (nat shown)
o T . 1T s o KEZN N - LR Y
l -- ” :.... e g O e D Jom Tagel 3 @ 1 WENY . 0V
.' B I : 2 . ; 5 00KV TIBN
v Y e A (1) 4 c l . >G> (] s 3 ._ . 5V - A0
X Drug Ta,rget Netwmrk e e o 4 (SSlon system.. T P ‘fé,.,c %
all oth
_Nature BrotechnoIogy 25 (}0) October 2007 Courtesy North Amgrlgan Reliability;€erporation—




Tree-like networks and graphs

Recent empirical and theoretical work has suggested that many real-life
complex networks and graphs arising in Internet applications, in biological
and social sciences, in chemistry and physics

have tree-like structures from a metric point of view.

Some prior empirical evidence

The Unreasonable Effectiveness of Tree-Based Theory for Networks with Clustering,
Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).

Fast computation of empirically tight bounds for the diameter of massive graphs,
Magnien, Latapy, Habib. ACM ]. of Experimental Algorithmics 13 (2008)

“It was noted in recent years that the Internet structure has a highly connected core and long stretched
tendrils, and that most of the routing paths between nodes in the tendrils pass through the core. Therefore, we
suggest to embed the Internet distance metric in a hyperbolic space where routes are bent toward the center”
Shavitt, Tankel. 2008. Hyperbolic embedding of internet graph for distance estimation and overlay
construction. IEEE/ACM Trans. Netw. 16, 1 (2008).

Finding Hierarchy in Directed Online Social Networks, Gupta, Shankar, Li, Muthukrishnan, Iftode. WWW2011.



Pictures are taken from Blair D. Sullivan’s presentation
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o no consensus has been reached on defining and measuring this tree-like structure



Graph parameters capturing

( n )
Tree'llke 'neSS Although, some
We consider here only unweighted and undirected graphs retili,vlt;gﬁggd
o Tree-width tw(G) (combinatorial) graphs as well
a g h

e Tree-length tl(G)
e Tree-breadth th(G)
e Tree-stretch ts(G)

e Tree-distortion td(G) (metric) X
e Hyperbolicity hb(G) ;
e (luster-diameter 44(G) of a layering partition .

e (luster-radius p4(G) of a layering partition

All measuring tree-likeness - the smaller parameter, the closer graph to a tree

£n S




Graph parameters capturing
“Tree-like”-ness

We consider here only unweighted and undirected graphs

Tree-width tw(G) (combinatorial)

Tree-length tl(G) b ac gf i
Tree-breadth tb(G) e
Tree-stretch ts(G) - 3 2 &
Tree-distortion td(G) (metric) x
Hyperbolicity hb(G) o
Cluster-diameter 44(G) of a layering partition A -
Cluster-radius p¢(G) of a layering partition -

This talk:
* Discussion of these parameters
* Relations between them; their approximations

* Resulting approximation algorithms for optimization problems



Layering partition of a graph

| Brandstadt, Chepoi, Dragan: /. Algorithms (1999) |
| Chepoi, Dragan: Eur: /. Combinatorics (2000) ]

A layering of G is the partition of V into the concentric spheres
L'={ueV:d(s,u)=i},i=01,2,....

A layering partition of G is a partition of each L' into clusters L},..., L. :

-y Lp, -

u,v € L' belong to the same cluster Lj: iff they can be connected by a
path outside the ball B;—1(s) of radius i — 1 centered at s.
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Layering partition of a graph
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A layering of G is the partition of V into the concentric spheres
L'={ueV:d(s,u)=i},i=01,2,....

A layering partition of G is a partition of each L into clusters L}, ..., L} :

u,v € L' belong to the same cluster Lj: iff they can be connected by a
path outside the ball Bi_i(s) of radius i — 1 centered at s.




Layering partition of a graph

A layering of G is the partition of V into the concentric spheres
L'={ueV:d(s,u)=i},i=01,2,....

A layering partition of G is a partition of each L' into clusters L},..., L. :

-y Lp, -

u,v € L' belong to the same cluster Lj: iff they can be connected by a
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Layering partition of a graph

Can be constructed in O(/E/) time | Chepoi, Dragan: Eur: /. Combinatorics (2000) |
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A layering of G is the partition of V into the concentric spheres

L'={ueV:d(s,u)=i},i=01,2,....

A layering partition of G is a partition of each L into clusters L}, ..., L} :

u,v € L' belong to the same cluster Lj: iff they can be connected by a
path outside the ball Bi_i(s) of radius i — 1 centered at s.




['-Tree of a layering partition

Can be constructed in O(/E/) time | Chepoi, Dragan: Eur: /. Combinatorics (2000) |




Distance approximating trees

Can be constructed in O(/E/) time | Chepoi, Dragan: Eur: . Combinatorics (2000) ]




Distance approximating trees

Can be constructed in O(/E/) time | Chepoi, Dragan: Eur: . Combinatorics (2000) ]

Vuv €V,dr(u,v) —2<d;(uw,v) <d;(u,v)+d;w,v)



Distance approximating trees

Cluster-diameter A4(G) of a layering partition

A.(G) = max{d,(u,v):u, v are in the same cluster
S( ) { G( ) } Parameters 44(G), ps (G)

can be computed in
O(n m) time for any graph

Cluster-radius p¢(G) of a layering partition

ps(G) = min {r: V cluster C; 3 v; with C; € B, (v;)}

A5(G)
VG,s,VYuveV,dr(u,v)—2<ds(u,v) <dr(uv)+ %v’)
c VG,s, ps(G) <A,(G) <2p,(G) asVSCV(G), rad;(S) < diam;(S) < 2rad;(S)



Particular graph classes

P

VG,s,AT,Vu,veV,dr(u,v) —2<d;(u,v) < dy (u,v) + 4,(G)

the smaller parameter 4,(G), the closer graph to a tree metric

» Chordal graphs: 4,(G) <3, p;(G) <2 (V G, s)

[ Brandstadt, Chepoi, Dragan: /. Algorithms (1999) |

The length of largest
Vuv €V,dr(u,v) —2 <d;(w,v) < dr(u,v)+2 induced cycles is 3
 k-Chordal graphs: 4,(G) <%*/,+2 (V G,s)
[ Chepoi, Dragan: Eur: /. Combinatorics (2000) ] The length of largest

induced cycles is k

Vu,v €V,dr(u,v) —2<ds;(u,v) < d;(uv)+ k/2+2

* More graph classes to come...



http://www.cs.kent.edu/~mabuata/graph embed/unweighted graph tree metric/index.htm

Real-life graphs / networks

A5(G)
I/
VG5, AT, Vu,veV,dr(u,v) —2 <d;(u,v) < dr (u,v) +d;(y
By Muad Abu-Ata, PhD student at Kent State University
Data set [V] |E| diam(G) #of clusters A,(G) Average cluster diam %of <2
Yeast 2,224 6,609 11 1,037 6 0.119575699 98%
Homo Sapiens 16,711 115,406 10 6,817 5 0.03432595 99%
PPI 1,458 1,948 19 1,017 8 0.118977384 98%
DBLB-coauthors 317,080 1,049,866 22 99,828 11 0.45350002 98%
Amazon 334,863 925,872 44 72,278 21 0.489056144 95%
Dutch_Elite 3,621 4,311 22 2,934 10 0.070211316 99%
ITDK0304 190,914 607,610 26 89,856 11 0.270377048 97%
Aqualab 12/2007- 09/2008 31,845 143,383 9 16,287 6 0.05826733 99%
Dimes 3/2010 26,424 90,267 8 16,065 4 0.056582633 99%
Routeview 10,515 21,455 10 6,702 6 0.063264697 99%
AS_CAIDA 26,475 53,381 17 17,067 6 0.056424679 99%
PPl has 966 clusters of diameter 0 AS_CAIDA has 16459 clusters of diameter 0
Yeast has 981 clusters of diameter 0 21 1 361 1
18 1 14 2 174 2
23 2 5 3 46 3
6 3 5 4 21 4
5 4 1 5 4 5
2 5 4 6 2 6
2 6 0 7
1 8



Tree-Decomposition

[ Robertson, Seymour |

e Tree-decomposition T(G) ofagraph G = (V,E) isapair ({X;:i € I},T
= (I,F)) where {X;:i € I} is a collection of subset of I"(bags) and T is a
tree whose nodes are the bags satisfying:

1) UigXi=V
Z) VYuv€eE Ji€els.t.u,vEX;
3) VveV,thesetof bags{i € 1,v € X;} form a subtree T, of T
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Tree-Decomposition and
Graph Parameters

Tree-width tw(G): qiEg
- Width of T(G) is méalxlXil -1 e |
l
- tw(G): minimum width over all tree-decompositions ;
a a
Tree-length tl(G): a ?f '86? a
— Length of T(G) is max max d;(u, v) .
lel u,veX; c
. . @
— tl(G): minimum length over all tree-decompositions
Tree-breadth tbh(G): aa be Cf
— Breadth is minimum r such that Vi € I, 3v; with X; € g h
r (i, G)

- tb(G): minimum breadth over all tree-decompositions

Tree-length was introduced in [ Dourisboure, Gavoille: DM (2007) | and [ Dragan,Lomonosov: DAM (2007) |

Tree-breadth was introduced in [ Dragan,Lomonosov: DAM (2007) | and [ Dragan, Kohler: APPROX (2011) |

(R,D)-acyclic clustering



Tree-Decomposition and
Graph Parameters

Tree-width tw(G):

a g h
- Width of T(G) is méalxlXil -1 e |
l
- tw(G): minimum width over all tree-decompositions ;
a a

Tree-length tl(G): A 'ai a

- Length of T(G) is max ur}gg§i de(u,v) c‘g

— tl(G): minimum length over all tree-decompositions
Tree-breadth tbh(G): 3 be Cf

— Breadth is minimum r such that Vi € I, 3v; with X; g h

c D,.(v;,G) -

- tb(G): minimum breadth over all tree-decompositions

VG, th(G) <tl(G) < 2th(G) as vV SCV(G), radg(S) < diam;(S) < 2rad;(S)
tw(G) and tl(G) are not comparable (check cycles and cliques)

tw(Csy) = 2, tl(C3) =k
tw(K,) =n—1, tl(K,) =1



Tree-Decomposition and
Graph Parameters

Tree-width tw(G):

a g h
- Width of T(G) is méalxlXil -1 e |
l
- tw(G): minimum width over all tree-decompositions ;
a a

Tree-length t1(G): -9 ¢

— Length of T(G) is nlqéalxunggg((l d¢(u,v) c‘g

— tl(G): minimum length over all tree-decompositions
Tree-breadth tbh(G): 3 be Cf

— Breadth is minimum r such that Vi € I, 3v; with X; € g h

D, (v;, 6) -

- tb(G): minimum breadth over all tree-decompositions

VG, th(G) < tl(G) < 2th(G) as vV SCV(G), radg(S) < diamg(S) < ZradG(S)
tw(G) and tl(G) are not comparable (check cycles and cliques) -

Many real-life networks (e.g., with a highly connected core)
have a large tree-width but still exhibit a tree-like structure




Particular graph classes / networks

the smaller parameters tl(G), tb(G), the closer graph to a tree

e Chordal graphs: tb(G) < tl(G) < 1 (viaclique tree) A,(G) <3
* Chordal bipartite graphs: tb(G) < 1 [ Dragan,Lomonosov: DAM (2007) |
 k-Chordal graphs: tb(G) < tl(G) < */, [ Dourisboure, Gavoille: DM (2007) | A(G) <K/5+2

From Michel ‘
Habib’sl Real Data 7 from CAIDA project

presentation, M. Soto, PhD student at Paris Diderot, has computed graph
June 2009 invariants on some real networks

2 graphs with normal graph distance

Internet Topology Data Kit (ITDK) graph of the routing machines
Treedwidth = 234, Treelength<<10, Diameter=19,
a-hyperbolicity=3 (but for 96 % of the computed quadruplets the
value is 1)

Autonomus System Internet Topology (AS-level) graph, a smaller
graph

Treedwidth = 82, Treelength <6, Diameter=10, d-hyperbolicity=2
(but for 98 % of the computed quadruplets the value is 1)




Relationship between tl(G) tb(G)
and 45(G), ps(G)

e Chordal graphs:
th(G) <tl(G) <1 and A4.(G) <3
e k-Chordal graphs: -'
th(G) < tl(G) <¥/,and 44(G) <*/,+2

General graphs

VaG,s tl(G)—1< AS(G) < 3 tl(G) [Dourisboure, Gavoille: DM (2007) ]
e VG,s, Ps (G) <2 tl(G) [ Dourisboure, Dragan, Gavoille, Yan: 7CS(2007) |
VG,s, tb(G) — 1< ,OS(G) <3 tb(G) | Dragan, Kohler: APPROX (2011) |

To testif t1(G) < A is NP-complete for eachA> 1 [ Lokshtanov: DAM (2010) |

A tree-decomposition of length 4,(G) + 1 < 3 tI(G) + 1 can be obtained in linear
time from the I'-Tree of a layering partition. [ Dourisboure, Gavoille: DM (2007) ]



Consequences for bounded
tree-length graphs

For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv) —2<d;(u,v) < dr (u,v) + 460

P3t1(6)

the smaller parameter tI(G) (tb(G)), the closer graph to a tree metric

More results from [ Dourisboure, Dragan, Gavoille, Yan: 7CS (2007) | that employ
inequalities 4.(G) < 3 tl(G) and p,(G) < 2 tl(G)

o Every n -vertex graph G has an additive (4 t/(G))-spanner with at most
(2tl(G) + 1)(n — 1) edges constructible in polynomial time

o Every n -vertex graph G has an additive (2 t/(G))-spanner with at most
(tl(G) + logn)(n — 1) edges constructible in polynomial time

* More results from | Dragan, Kéhler: APPROX (2011) | after few more slides



Hyperbolicity

d-Hyperbolicity (M. Gromov, 1987)

for any four points u, v, w, x of a metric space (X, d), the two larger of
the distance sums d(u,v) + d(w, x), d(u, w) + d(v, x),
d(u,x)+ d(v,w) differ by at most 24.

e dx,y)+du,v)=a+b+d+c+2n+2¢

u
* e dx,v)+du,y)=a+b+d+c+ 27
p e dx,u)+d(y,v)=a+b+d+c+ 28
Ui oy
¢ c min{n, &} <o
xe—
b
L]
vV

d-Hyperbolicity measures the local deviation of a metric from a tree
metric: a metric is a tree metric Iff it is 0-hyperbolic.




Hyperbolicity of a graph

e The hyperbolicity hb(G) of a graph G is the smallest number 6such
that (V(G), dg) is J-hyperbolic.

In tree o dr(x,v)+dr(w,y) =a+b+c+d+2n
metric e dr(x,y)+dr(wv)=a+b+c+d+2n
Subspace dr(x,u) +dr(y,v)=a+b+c+d
formed by
four points
ingraph e dG(X,U)+dG(u,y):a+b+d+C+2T]+ZE
metric * de(x,y)+de(wv)=a+b+d+c+2n

o de(x,u)+ds(y,v)=a+b+d+c+2¢
min{n,&} <o

the smaller parameters o, the closer graph to a tree metrically



Particular graph classes ot

the smaller parameters hb(G), the closer graph to a tree metrically

e hb(G) can be computed naively in 0(n*) time :
* hb(G) is a halfinteger (1/,, 1,3/,, 2, ...) for unweighted graphs Y

hb(K,) = 0 (is a tree metrically)

hb(S,) = 1 (is not a tree metrically)

hb(G) = 0iff G is a block graph (metrically a tree)

Chordal graphs: hb(G) < 1 A(G) <3, th(G) <tl(G) <1
| Brinkmann, Koolen, Moulton: Annals of Combinatorics (2001) |

k-Chordal graphs (k>3): hb(G) <%/, A(G) <¥/,+2, th(G) < tl(G) </,
| Wu, Zhang: E.J. on Combinatorics (2011) |

More graph classes to come...



http://www.cs.kent.edu/~mabuata/graph embed/unweighted graph tree metric/index.htm

Real-life graphs / networks

By Muad Abu-Ata, PhD student at Kent State University

Data set V| |E| diam(G) A,(G) hyperbolicity % of<1 PPI
Yeast 2,224 6,609 11 6 2.5 99% relative

hyperbolicity frequency
Homo Sapiens 16,711 115,406 10 5 -

0 0.4831

PPI 1,458 1,948 19 8 3.5 98% 0.5 0.3634
DBLB-coauthors 317,080 1,049,866 22 11 - 1 0.1336
Amazon 334,863 925,872 44 21 = 1.5 0.0179
Dutch_Elite 3,621 4,311 22 10 4 96% 2 0.0019
ITDK0304 190,914 607,610 26 11 - 2.5 3.55E-05
Aqualab 12/2007- 09/2008 31,845 143,383 9 6 - 3 1.65E-06
Dimes 3/2010 26,424 90,267 8 4 - 3.5 3.79E-09
Routeview 10,515 21,455 10 6 -
AS CAIDA 26,475 53,381 17 6 2.5 97%

M. Soto (2009)

Internet Topology Data Kit (ITDK) graph of the routing machines
Treedwidth > 234, Treelength<10, Diameter=19,

Montgolfier, Soto, Viennot: NCA (2011)

Graph Avg deg | Max deg Ji; Hyp. tw < < o 0

CAIDA AS % T815 30 20 | E[82.073] i) hypgrboI|C|ty_3 (but for 96 % of the computed quadruplets the

Erdos-Rényi 6.34 18 - 15 > 135 value is 1)

Barabisi 6.00 283 292 | 2 > 130 Autonomus System Internet Topology (AS-level) graph, a smaller

AS degree dist. | 6.31 1.815 | 2.19 > 110 graph

Power Law 897 1507 | 219 = 150 Treedwidth > 82, Treelength <6, Diameter=10, J-hyperbolicity=2

(but for 98 % of the computed quadruplets the value is 1)




Relationship between
tl(G),A,(G) and hb(G)

e Chordal graphs: Ou o Y
hb(G) <landtb(G) < tl(G) <1 and 4,(G) <3 ) ¢
e k-Chordal graphs:
hb(G) <%/, and th(G) < tl(G) <¥/,and A,(G) <k/,+2 You o) y
d 'r] EC
General graphs : ”

| Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) |
| Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

e VG, hb(G) <tl(G) <0O(hb(G) logn) R
e VG,s, hb(G) < A,(G) < O(hb(G) logn) e

l

Recall: ! W~

* VG,s, tl(G) —1<A4,(G) <3tl(G)




Distance approximating trees

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) |
[ Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

e VG,s, hb(G) < A,(G) < 4+12 hb(G) + 8 hb(G) log,n

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(uv) <dr(uv) +A?€G+\
O(hb(G)logn)
equivalently,
Vu,veV,d;(w,v) —0(hb(G)logn) <dr(u,v) < d;u,v)+2

(notice, T is unweighted and without Steiner points)




Distance approximating trees

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) |
[ Chepoi, Dragan, Estellon, Habib, Vaxes, Xiang: Algorithmica (2012) ]

e \VG,s, hb(G) < A,(G) < 4+12 hb(G) + 8 hb(G) log,n

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(uv) <dr(uv) +A?€G+\
O(hb(G)logn)
equivalently,
Vu,veV,d;(w,v) —0(hb(G)logn) <dr(u,v) < d;u,v)+2

(notice, T is unweighted and without Steiner points)

Can be made non-expanding like in Gromov's case by
allowing Steiner points and edge weights {0,1}in T.

S B Y Theorem (Gromov, 1987)

- For any d-hyperbolic metric space (X, d) on n points and any fixed

e basepoint s € X, there a tree T and a map ¢ : X — T such that
s @ dr(¢(s), p(x)) = d(s,x) pour tout x € X,
o d(x,y) — 2dlog, n < dr(¢(x),¢(y)) < d(x,y) forall x,y € X.

The tree T can be constructed using O(n?) distance computations.
Easy to show: y

» Ifforagraph G thereisatree T with d;(u,v) < d; (u,v) <d; (u,v)+r Vuv eV thenG isr-hyperbolic
» Ifforagraph G thereisatree T with d,(u,v) < d; (u,v) <d; (u,v) +r Vu,v eV thenG isr-hyperbolic



More algorithmic results

Known algorithmic results about é-hyperbolicity

The internet topology embeds with better accuracy into low-dimensional
hyperbolic space than into Euclidian space of comparable dimension.
PTAS for the Traveling Salesman Problem, efficient nearest neighbor
search, distance labeling schemes and routing schemes, and

Sparse additive spanners

approximation algorithms for covering and packing by ballis: [ Chepoi, Dragan, Estellon,
- Habib, Vaxes, Xiang:
gormics 201)]
(i) We show that approximating the diameter diam(S), the radius rad(5S),
and the center C(S) of a subset S in a §-hyperbolic geodesic space or
graph with an O(d)-additive error can be done in the same way as for
trees. This leads to very simple algorithms for fast approximating (and in [ Chepoi, Dragan, Estellon,
some cases, for computing in linear time) of diam(S), rad(S), and C(S). Habib, Vaxes: SoCG (2008) ]

(ii) We present a simple linear-time construction of distance
approximating trees of 4-hyperbolic graphs with n vertices having the
same additive distortion O(d log n) as Gromov's construction.

(iii) We establish that several classes of geometrically defined graphs
have bounded hyperbolicity.

o The Unreasonable Effectiveness of Tree-Based Theory for Networks with Clustering,
Melnik, Hackett, Porter, Mucha, Gleeson. Physical Review E, Vol. 83, No. 3 (2010).
Recall:

o Fast computation of empirically tight bounds for the diameter of massive graphs,
Magnien, Latapy, Habib. ACM ]. of Experimental Algorithmics 13 (2008)



Diameter, Radius, Center

Diameter

Let S be a finite set of points of a metric space (X, d).
Diameter: diam(S) = max{d(u,v) : u,v € S5}.
Diametral pair: any pair of points x,y € S such that d(x, y) = diam(S).

Furthest neighbors

The set F(x) of furthest neighbors of a point x € X in S consists of all
points of S at the maximum distance from x. The eccentricity ecc(x) of

x € X is the distance from x to any point of F(x).

Center and radius

The center C(S) of S is the set of points of X with minimum eccentricity.
The radius rad(S) of S is the eccentricity of central points, i.e., rad(S) is
the smallest radius of a ball of (X, d) enclosing all points of S (a ball
B(c,r) ={x € X : d(c,x) < r} consists of all points x € X at distance
at most r to c).

Fast computation of diameter, radius, and center

is a basic algorithmic problem in computational geometry and graph
theory with applications in operation research, data clustering, location

theory, and analysis of complex networks.



Tree-Folklore

C. Jordan (1869)

C. Jordan established that the center of a tree is a single point (and of a
graphic tree is a vertex or an edge).

Diameter

The diameter diam(S) of a set S in a tree T can be found in linear time
by running the following folklore algorithm:

Algorithm 2FP

1 Pick an arbitrary point u of T
2 Find a furthest neighbor v of v in S
3 Find a furthest neighbor w of v in §

4 Return d(v,w) as diam(S) and v,w as a diametral pair of S

To find the center of S it suffices to add the following step:

5 Return the midpoint ¢ of the unique (v,w)-path of T




Diameter and Radius

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) |

For a finite subset S of a d-hyperbolic space (X, d) and any u € X, if
v € F(u) and w € F(v), then d(v,w) = diam(5) — 24. The pair {v,w}

can be computed using O(|S|) distance calculations.

Proposition 2

For a finite set S of a d-hyperbolic geodesic space,

2rad(S) = diam(S) = 2rad(S) — 44.

For a finite set S of a d-hyperbolic geodesic space,

rad(S) < d(v,w)/2 + 34.




Center

[ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG (2008) |

Proposition 3

For a finite set S of a 4-hyperbolic geodesic space, diam(C(5)) < 44.

Let ¢ be the middle of a geodesic [v,w]| between v and w.

Proposition 4

The inequality ecc(c) < rad(S) + 54 holds for all §-hyperbolic geodesic
spaces and graphs. Moreover C(S) C B(c,5d) (C(G) € B(c,55 + 1) for
d-hyperbolic graphs).




Tree-distortion td(G)

o Tree-distortion td(G) of a graph G = (V, E) is the smallest number «
such that ¢ admits a (not necessarily spanning, possibly weighted and
having Steiter points) treeT = (V U S, U) with

Vuv €V, de(u,v) <d;:(w,v) < ads(u,v). m %
1/2
o the smaller «, the closer graph to a tree /2

o The problem is known also as td(Ky) = 1 (is a tree metrically)
“non-contractive minimum distortion embedding into trees”
( most popular among different embeddings into trees )

s S S o

Contractive
embedding +1/2




Variations of earlier results

(toreachtheformVu,v €V, d;(u,v) <dr(u,v) < ad;(u,v))
[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr&Comput.Geom. (2012) ]
We had:

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(u,v) <druv)+ 4,(G) -

(notice, T is unweighted and without Steiner points)

« Assigning uniformly weight 4.(G) + 1 to all edges of T"'we get T,, with
Vu,veV, de(u,v) <dr, (u,v) < (4:(6) +1)(dg (w,v) +2)

(non-contractive)



Variations of earlier results

(toreachtheformVu,v €V, d;(u,v) <dr(u,v) < ad;(u,v))
[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr&Comput.Geom. (2012) ]
We had:

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(u,v) <druv)+ 4,(G) -

(notice, T is unweighted and without Steiner points)

« Assigning uniformly weight 4.(G) + 1 to all edges of T"'we get T,, with
Vu,veV, de(u,v) <dr, (u,v) < (4:(6) +1)(dg (w,v) +2)

(non-contractive)




Variations of earlier results

(toreachtheformVu,v €V, d;(u,v) <d;(u,v) < adg;(u,v))
[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr&Comput.Geom. (2012) ]
We had:

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(u,v) <druv)+ 4,(G) '

(notice, T is unweighted and without Steiner points)

« Assigning uniformly weight 4.(G) + 1 to all edges of T"'we get T,, with
Vu,veV, de(u,v) <dr, (u,v) < (4:(6) +1)(dg (w,v) +2)

(non-contractive) «

« Introducing Steiner points and assigning uniformly weight (4.(G) + 1)/2 to all edges
of Tweget '), withVu,v €V, ds(u,v) < drp, (u,v) < (45(G) + 1)(dg (w,v) + 1)



Relations between td(G)and 4,(G)

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;(uv) <drv)+ 4,(G)

» Assigning uniformly weight A.(G) + 1 to all edges of Twe get T,, with
VuveV, de(u,v) <dr, (u,v) < (4:(G) +1)(dg (w,v) +2)

» Introducing Steiner points and assigning uniformly weight (4.(G) + 1)/2 to all edges
of Tweget T'), withvVu,v €V, ds(w,v) < drp, (u,v) < (4,(G) + 1)(dg (w,v) + 1)

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr&Comput.Geom. (2012) ]

c VG,5,4,(6)/3<td(G)<2A4,(G)+2

Hence:

 For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2<d;uwv) <dy(uv)+3td(G)

« Assigning uniformly weight 4.(G) + 1 to all edges of T'we get T,, with
VuveV, de(u,v) <dr, (u,v) <3Btd(G) +1)(ds (u,v) + 2)

* Introducing Steiner points and assigning uniformly weight (4.(G) + 1)/2 to all edges of
Tweget T, withVu,v eV, ds(u,v) < dr, (u,v) < (3td(G) +1)(ds (w,v) + 1)



Consequences for minimum
distortion embedding into trees

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: Discr&Comput.Geom. (2012) ]

¢ VG,S,AS(G)/BStd(G)SZAS(G) +2 H may be
ichted
If G admitsatree Hwithvu,v €V, d;(u,v) <dy(u,v) <adg(u,v) then: Z\;eégmaey
have
« there is a tree T, constructible in linear time, such that IS)Zellnntzr

VuveV,dr(u,v)—2=<d;uv) < dr(uv)+3a
( multiplicative distortion turned into an additive distortion; T is unweighted and no Steiner points )
* assigning uniformly weight 4.(G) + 1 to all edges of T we get T,, with
Vu,veV, de(u,v) <dr, (u,v) < Ba+1)(ds (u,v) +2) < 12a dg (u,v)
(a 12-approximation algorithm for minimum distortion embedding into trees )
* introducing Steiner points and assigning uniformly weight (4.(G) + 1)/2 to all edges of

T we get T',, with
VuveV, de(w,v) <dr, (u,v) < Ba+1)(ds (w,v)+1) <8ads; (u,v)

(an 8-approximation algorithm for minimum distortion embedding into trees )



Previous approximation bounds
and final 6-approximation

* The problem of minimum distortion embedding into trees is NP-hard
* 100 - approximation [ Badoiu, Indyk, Sidiropoulos: SODA (2007) ]
* 27 - approximation [ Badoiu, Demaine, Hajiaghayi, Sidiropoulos, Zadimoghaddam: APPROX (2008) |

[ Chepoi, Dragan, Newman, Rabinovich, Vaxes: APPROX (2010) and Discr&Comput.Geom. (2012) ]
e VG,s,4,(6)/3<td(G)<24,(G)+2

12 - approximation by a weighted tree without Steiner points
. 8 - approximation by a weighted tree with Steiner points

* VG,s,ps(G) <max{3td(G)-1, 2td(G)+ 1}

* 9 -approximation by a weighted tree without Steiner points
* 6 -approximation by a weighted tree with Steiner points

VuveV, dg(w,v) < dq,(w,v) <3a(dg (w,v)+1)<6ad; (u,v)

( the larger the distance d; (u, v), the smaller the distortion )
d;(u,v) = 1 = distortion < 6;

d;(u,v) = 2 = distortion < 4.5;
d;(u,v)= 3 = distortion < 4; ...



http://www.cs.kent.edu/~mabuata/graph embed/unweighted graph tree metric/index.htm

Real-life graphs / networks

* For any graph G there is a tree T, constructible in linear time, such that
VuveV,dr(uv)—2=<ds;(u,v) < dr(u,v)+3td(G)

By Muad Abu-Ata, PhD student at Kent State University

Avg max % of left Avg max % of right Avg. relative % of
Data set VI error error pairs error error pairs error pairs
left left (dG> dT) right right (dT > dG) (Ida _dTIIdG) dT = dG
(dg/dry (dg/dr) (dr/dg) (dr/dg)
Yeast 2,224 1.48714 5 56.3% 1.48714 3 12.2% 0.219268 31.5%
Homo Sapiens 16,711 1.533 4 2.8% 1.17564 3 25.2% 0.180092 72.0%
PPI 1,458 1.50159 7 70.5% 1.10486 3 9.1% 0.24669 20.4%
DBLB-coauthors 317,080 1.77416 9 95.8% 1.03535 3 0.6% 0.383101 3.6%
Amazon 334,863 2.48301 19 99.1% 1.04929 3 0.3% 0.536656 0.6%
Dutch_Elite 3,621 1.54045 7 73.0% 1.05818 3 3.9% 0.252341 23.1%
ITDKO304 190,914 1.60077 8 94.8% 1.02828 3 0.6% 0.331656 4.6%
Aqualab 12/2007- 09/2008 31,845 1.42269 4 31.7% 1.21947 3 35.8% 0.241815 32.5%
Dimes 3/2010 26,424 1.53666 3 5.7% 1.17552 3 44.4% 0.184767 49.9%
Routeview 10,515 1.40636 4 24.3% 1.18259 3 33.4% 0.205375 42.3%
AS_CAIDA 26,475 1.48085 4 21.4% 1.16106 3 35.4% 0.192302 43.2%
PPI relative ;
error frequency Homo Sapiens relative
[7,6] 0.000030 Yeast relative error  frequency
error frequency [4,3] 0.000013
(6,5] 0.000069 —
[5,4] 0.000127 AS CAIDA (3,2]  0.004992
(5,4] 0.000214 - error frequency
(4,3] 0.000708 (2,1) 0.023258
(4,3] 0.007091 [4,3] 0.000015 0
(3,2] 0.080864 [1,2)  0.884653 90%
(3,2] 0.081369 (3,2] 0.029115
(2,1) 0.481600 ’ [2,3] 0.087083
(2,1) 0.616643 90 12) 0.428692 90% (2,1) 0.185172 950
[1,2) 0.290158 0 ’ ' [1,2) 0.771621 0

2,3 0.008009
[2,3] 0.004456 [2,3] 12,3] 0.014077



Tree-stretch ts(G)

o Tree-stretch ts(G) of an unweighted undirected graph G = (V, E) is the
minimum number ¢ such that G has a spanning tree T = (V, E") with
dr(u,v) <t for every edge uv € E.

o Tree shape mimics graph shape: the smaller t the closer graph to a tree
Corresponding decision problem: é §G >
Tree t-Spanner Problem (5(G) = 3
Given unweighted undirected graph ¢ = (V, E) and integer t.
Does G admit a spanning tree T = (V, E") such that

Vuv €V,dr(u,v) < td;(u,v)
(a multiplicative tree t-spanner of )



Tree-stretch ts(G)

o Tree-stretch ts(G) of an unweighted undirected graph G = (V, E) is the
minimum number ¢ such that G has a spanning tree T = (V, E") with
dr(u,v) <t for every edge uv € E.

o Tree shape mimics graph shape: the smaller £ the closer graph to a tree
Corresponding decision problem: @
Tree t-Spanner Problem (5(G) = 3
Given unweighted undirected graph ¢ = (V, E) and integers t, . s
Does G admit a spanning tree T = (V, E") such that
Vuv €V,dr(u,v) < tdg(u,v)

(a multiplicative tree t-spanner of )
or

VuveV,dr(u,v) <d;(uv)+r
(an additive tree r-spanner of G)? minimum 7 is called tree-surplus tp(G)



Some previously known results

General unweighted graphs

® NP-complete for ¢t > 3, linear fort = 1,2, openfort = 3
[ Cai, Corneil: SIAM J. Discrete Math. (1995) ]

® NP-hard to 2-approximate
[Liebchen, Wiinsch: Discrete Appl. Math. (2008) |

®* O(logn)-approximation
[ Emek, Peleg: SIAM J. Comput. (2008) ]

Special graph classes

® Linear time for planar graphs and their generalizations for any fixed t
[ Dragan, Fomin, Golovach: /. of Computer and System Sciences (2011) ]

® ts(G) is constant for AT-free, strongly chordal, dually chordal, etc...
[Kratsch, Le, Miiller, Prisner, Wagner: SIAM J. Discrete Math. (2003) |

[ Brandstadt, Chepoi, Dragan: /. Algorithms (1999) ] ...

® ts(G) isB(logn) for chordal graphs
| Dragan, Kohler: APPROX (2011) |



©)

Relations between ts(G)and th(G)
and consequences

| Dragan, Kohler: APPROX (2011) |
VG, th(G) <[ts(G)/2] and tl(G) < ts(G)

Any connected n-vertex, m-edge graph G admits a tree (2tb(G) log,n)-spanner
constructible in O (nmlog?n) time from scratch.

Any connected n-vertex, m-edge graph G admits a tree (6tl(G) log,n)-spanner
constructible in O (mlogn) time from scratch.

VG, ts(G) <2tb(G) log,n < 2tl(G) logyn

Hence, O(logn)-approximation for ts(G)

o One can construct from scratch for any graph G

= atree (2[ts(G)/2] log,n)-spanner in O(nmlog?n) time
= atree (6ts(G) log,n)-spanner in O(mlogn) time

Compare with [ Emek, Peleg: SIAM J. Comput. (2008) |

o One can construct from scratch for any graph G

= atree (6ts(G) log,n)-spanner in O(nmlog?n) time



Relations between tl(G), ts(G)and
td(G) and consequences

o VG, th(G) <tl(G) <td(G) <ts(G)

o Any connected n-vertex, m-edge graph G admits a tree (2tbh(G) log,n)-spanner
constructible in 0 (nmlog?n) time from scratch. [ Dragan, Kohler: APPROX (2011) ]

o VG, ts(G) <2td(G) log,n

Hence, if a graph is embeddable into a tree with distortion a then it is embeddable to a
spanning tree with stretch at most 2a log,n.

The bound is sharp (chordal graphs):
* ts(G) isB(logn) [ Dragan, Kohler: APPROX (2011) ]
* td(G) is6(1) | Brandstadt, Chepoi, Dragan: /. Algorithms (1999) |
AT, vu,v €V, dr(u,v) =2 <ds;(w,v) < dr(w,v)+2



Relations between tI(G), ts(G)and
td(G) and consequences

o VG, th(G) <tl(G) < td(G) < ts(G)

o Any connected n-vertex, m-edge graph G admits a tree (2tbh(G) log,n)-spanner
constructible in 0 (nmlog?n) time from scratch. [ Dragan, Kohler: APPROX (2011) ]

o VG, ts(G) <2td(G) log,n

Hence, if a graph is embeddable into a tree with distortion « then it is embeddable to a
spanning tree with stretch at most 2a log,n.

Recall],

If G admitsatree Hwithvu,v €V, d;(u,v) <dy(u,v) <adg(u,v) then
 thereisatree T, constructible in linear time, such that
VuveV,dr(uv)—2<ds;(u,v) <dr(uv)+3a
* there is a easily constructible tree T'; with Vu,v € V, d;(u,v) <
dr,(uw,v) <3a(ds (w,v)+1) <6ad; (u,v)

Hence, if a graph admits a tree t-spanner then it is embeddable to a tree with distortion
at most 6t. Furthermore, tree t-spanner can be turned into additive distortion tree.



Relationships between parameters

VG, th(G)<tl(G) < 2th(G) [ folklore ]
VG,s, ps(G) <A5(6G) < 2p5(G) [ folklore |
VG,s, tl(G)—1<4,(G) <3tl(G) [ Dourisboure, Gavoille: DM (2007) ]
VG,s, ps(G) <2tl(G) | Dourisboure, Dragan, Gavoille, Yan: 7¢S (2007) |
VG,s, th(G) —1< ps(G) <3th(G) | Dragan, Kohler: APPROX (2011) ]

VG, hb(G) <tl(G) <O0(hb(G)1
() () (hb(G) logn) [ Chepoi, Dragan, Estellon, Habib, Vaxes: SoCG

VG,s, hb(G) < A,(G) < O(hb(G) logn) (2008) ]
VG5, 45(6)/3 = td(G) =2 45(G) +2 [ Chepoi, Dragan, Newman, Rabinovich, Vaxes:
VG, s, ps(G)<max{3td(G)-1, 2td(G)+ 1} Discr.&Comput.Geom. (2012) |
VG, tl(G) <td(G) <ts(G) and th(G) < [ts(G)/2]

D , Kéhler: APPROX (2011
VG, ts(G) < 2tb(G) log,n [ Dragan, Kohler ( )|

VG, ts(G) < 2td(G) log,n

hb(G) < tl(G) < td(G) < ts(G) < 2th(G) log,n < O(hb(G)log?n)



Thank You
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