
Provably good global buffering by multiterminal multicommodity flow approximation �

Feodor F. Dragan, Andrew B. Kahng§, Ion Măndoiu†, Sudhakar Muddu‡, and Alexander Zelikovsky¶

Department of Mathematics and Computer Science, Kent State University, Kent, OH 44242
§UCSD CSE and ECE Departments, La Jolla, CA 92093-0114

†College of Computing, Georgia Institute of Technology, Atlanta, GA 30332-0280
‡Sanera Systems, Inc., Santa Clara, CA

¶Department of Computer Science, Georgia State University, Atlanta, GA 30303
dragan@mcs.kent.edu, abk@cs.ucsd.edu, mandoiu@cc.gatech.edu, muddu@sanera.net, alexz@cs.gsu.edu

Abstract—To implement high-performance global interconnect with-
out impacting the placement and performance of existing blocks, the use
of buffer blocks is becoming increasingly popular in structured-custom
and block-based ASIC methodologies. Recent works by Cong, Kong and
Pan [5] and Tang and Wong [18] give algorithms to solve thebuffer block
planning problem. In this paper, we address the problem of how to per-
form buffering of global multiterminal nets given an existing buffer block
plan. We give a provably good algorithm based on a recent approach
of Garg and Könemann [8] and Fleischer [7] (see also Albrecht [1] and
Dragan et al. [6]). Our method routes connections using available buffer
blocks, such that required upper and lower bounds on buffer intervals—
as well as wirelength upper bounds per connection—are satisfied. In
addition, our algorithm allows more than one buffer to be inserted into
any given connection and observes buffer parity constraints. Most im-
portantly, and unlike previous works on the problem [5, 18, 6], we take
into account multiterminal nets. Our algorithm outperforms existing al-
gorithms for the problem [5, 6], which are based on 2-pin decompositions
of the nets. The algorithm has been validated on top-level layouts ex-
tracted from a recent high-end microprocessor design.

I. I NTRODUCTION

Process scaling leads to an increasingly dominant effect of in-
terconnect on high-end chip performance. Each top-level global
net must undergo repeater insertion (among other optimizations; see
[4, 11, 14]) to maintain signal integrity and reasonable signal delay.1

Estimates of the need for repeater insertion range up toO(106) re-
peaters for top-level on-chip interconnect when we reach the 50nm
technology node. These repeaters are large (anywhere from 40� to
200� minimum inverter size), affect global routing congestion, can
entail non-standard cell height and special power routing require-
ments, and can act as noise sources. In a block- or reuse-based
methodology, designers seek to isolate repeaters for global intercon-
nect from individual block implementations.

For these reasons, abuffer blockmethodology has become increas-
ingly popular in structured-custom and block-based ASIC method-
ologies. Two recent works by Cong, Kong and Pan [5] and Tang and
Wong [18] give algorithms to solve thebuffer block planningproblem.
Their buffer block planning formulation is roughly stated as follows:
Given a placement of circuit blocks, and a set of two-pin connections
with feasible regions2 for buffer insertion, plan the location ofbuffer
blockswithin the available free space so as to route a maximum num-
ber of connections. In another recent development, Dragan et al. [6]
give an algorithm for performing global buffered routing of two-pin
nets under an existing buffer block plan.

In this paper, we address the problem of how to perform buffer-
ing of globalmultiterminalnets given an existing buffer block plan.
(Hence, our work is compatible with and complements the methods
in [5, 18, 6].) We give a provably good algorithm based on a recent

�This work was partially supported by Cadence Design Systems, Inc., the MARCO
Gigascale Silicon Research Center and NSF Grant CCR-9988331.

1Following the literature, we will use the termsbufferandrepeaterfairly interchange-
ably. When we need to be more precise: a repeater can be implemented as either an
inverter or as a buffer (= two co-located inverters).

2In [18] only a single buffer per connection is allowed.

approach of Garg and K¨onemann [8] and Fleischer [7]. Our method
routes the nets using available buffer blocks, such that required up-
per and lower bounds on repeater intervals—as well as length upper
bounds per connection—are satisfied.3 In addition, our algorithm ob-
servesrepeater parity constraints, i.e., it will choose to use an inverter
or a buffer (= co-located pair of inverters) according to source and des-
tination signal parity. The authors of [5, 18, 6] assumed that global
nets have been already decomposed into two-pin connections; unlike
these works our model takes into accountmultiterminal nets.

Informally, our problem is defined as follows.

Given:
� a planar region with rectangular obstacles;
� a set of nets in the region, each net has:

– a single source and multiple sinks;
– a non-negative importance (criticality) coefficient;

� each sink has:
– a parity requirement, which specifies the required parity

of the number of buffers (inverters) on the path connecting
it to the source;

– a timing-driven requirement, which specifies the maxi-
mum number of buffers on the path to the source;

� a set of buffer blocks, each with given capacity; and
� an interval[L;U] specifying lower and upper bounds on the dis-

tance between buffers.

Global Routing via Buffer Blocks (GRBB) Problem: route a subset
of the given nets, with maximum total importance, such that:

� the distance between the source of a route and its first repeater,
between any two consecutive repeaters, respectively between
the last repeater on a route and the route’s sink, are all between
L andU ;

� the number of trees passing through any given buffer block does
not exceed the block’s capacity;

� the number of buffers on each source-sink path does not exceed
the given upper bound and has the required parity; to meet the
parity constraint two buffers of the same block can be used.

If possible, the optimum solution to the GRBB problem simultane-
ously routes all the nets. Otherwise, it maximizes the sum of the
importance coefficients over routed nets. The importance coefficients
can be used to model various practical objectives. For example, im-
portance coefficients of 1 for each net correspond to maximizing the
number of routed nets, and importance coefficients equal the number
of sinks in the net correspond to maximizing the number of connected
sinks.

The GRBB problem can be formulated as a generalized version
of (vertex-capacitated) integermultiterminal multicommodity flow
(MTMCF). The main contribution of this paper is an MTMCF based
algorithm for the GRBB problem. Prior to our work, multicommodity
flow (MCF) based heuristics have been applied to VLSI global routing
[13, 17, 2, 9, 1]. As noted in [12], the applicability of these algorithms

3For example, global repeater rules for a high-end microprocessor design in 0.25µm
CMOS [10] require repeater intervals of at most 4500µm. The number of buffers needed
for a given connection depends strongly on the length of the connection; as noted in [10],
the repeater interval is not only required for delay reduction, but also for crosstalk noise
immunity and edge slewtime control.

has often been limited to problem instances of relatively small size
by the prohibitive cost of solving exactly the fractional relaxation.
Following [1, 6], we avoid this limitation by using an approximate
MTMCF algorithm based on results in [8, 7]. An important feature
of our algorithm is that it allows for a smooth trade-off between run-
ning time and solution accuracy. Our experiments indicate that even
MTMCF solutions with very low accuracy give good final solutions
for the GRBB problem.

The most interesting feature of our algorithm is its ability to
work with multiterminalnets. Previous work on the GRBB problem
[5, 18, 6] has considered only the case of 2-pin nets. Experiments on
top-level layouts extracted from a recent high-end microprocessor de-
sign validate our MTMCF algorithm, and indicate that it significantly
outperforms existing algorithms for the problem [5, 6].

The rest of the paper is organized as follows. In Section 2, we
reduce the Global Buffering Problem to a generalized version of in-
teger multiterminal multicommodity flow. The fractional relaxation
of this problem is a special case ofpacking LP, and can thus be ap-
proximated within any desired accuracy using the algorithm of Garg
and Könemann [8]. In Section 3 we present a faster approximation
algorithm, obtained by extending the ideas of Fleischer [7] to this
special type of packing LPs. In Section 4 we describe the randomized
rounding algorithm used to convert near-optimal fractional MTMCF
solutions to near-optimal integral solutions. In Section 5 we describe
several global buffering heuristics, some based on the MTMCF ap-
proach, and some based on less sophisticated greedy ideas. In Section
6 we give the results of an experimental comparison of these heuristics
on test cases extracted from the top-level layout of a recent high-end
microprocessor. Finally, we conclude in Section 7 with a list of open
research directions.

II. I NTEGERPROGRAM FORMULATION OF GRBB

GivenK netsNk = (sk;t1
k ; : : : ;t

qk
k), k= 1; : : : ;K, andn buffer blocks

fr1; : : : ; rng, letS= fs1; : : : ;sKg, T = ft1
1 ; : : : ;t

q1
1 ; : : : ;t1

K ; : : : ;t
qK
K g, and

R= fr1; : : : ; rng. Let also ai
k 2 feven, oddg, respectivelyl ik, be the

parity requirement, respectively the prescribed upper bound, on the
number of buffers on the path between sourcesk and sinkt i

k.
Let pxy be a rectilinear path connecting pointsx andy of a planar

region and avoiding all rectangular obstacles given in the region. De-
note byd(x;y) the length of a shortest such path. LetG= (V;E) be a
graph with vertex setV = S[T[R. The edge setE contains all edges
of typevv, v2R(such an edge is called a loop). Two different vertices
x andy are adjacent (i.e.,xy2 E) if and only if L� d(x;y)�U .

A path p= (sk;v1;v2; : : : ;vl ;t i
k) in G between sourcesk and sinkt i

k
(k= 1; : : : ;K, i = 1; : : : ;qk) is arestricted(sk;t i

k)-pathif
� vi 2 R for eachi = 1; : : : ; l ,
� the parity ofl is ai

k,
� l � l ik,
� there can be some pairs of different indicesi; j 2 f1; : : : ; lg such

thatvi = vj ; in this case we must haveji� j j= 1.

A feasible Steiner treefor netNk is a Steiner treeTk in G connecting
terminalssk;t1

k ; : : : ;t
qk
k such that, for everyi = 1; : : : ;qk, the path ofTk

connectingsk to t i
k is a restricted(sk;t i

k)-path as defined above.
Define capacities on all vertices ofG by

c(v) :=

�
1; if v2 S[T
capacity of buffer blockv; if v2 R

Let Tk be the set of all feasible Steiner trees for netNk, and letT =SK
k=1Tk. For eachT 2 Tk, k = 1; : : : ;K, defineg(T) := gk, wheregk

is the importance ofNk.
The GRBB problem is then equivalent to the following integer

linear program:

maximize ∑T2T g(T) fT
subject to

∑T2T πT(v) fT � c(v) 8v2V

fT 2 f0;1g 8T 2 T .
wherefT = 1 if the treeT is used in the solution andfT = 0 otherwise,
andπT(v) is the number of occurrences ofv in T, i.e.,

πT(v) :=

8<
:

0; if v =2 T
1; if v2 T and loopvv is not inT
2; if v2 T and loopvv is in T

Our approach will be to solve the relaxation of the above integer
program obtained by replacing the integrality constraint withfT � 0
8T 2 T ; we will then use randomized rounding to obtain an integer
solution. We will refer to this relaxation as theMultiterminal Multi-
commodity Flow Linear Program(MTMCF LP).

Although the MTMCF LP is solvable in polynomial time (using,
e.g., the ellipsoid algorithm), exact algorithms are highly impractical.
On the other hand, the MTMCF LP is a special case ofpacking LP,
and can thus be efficiently approximated within any desired accuracy
using the recent combinatorial algorithm of Garg and K¨onemann [8].
In this paper we give a significantly faster approximation algorithm
based on a speed-up idea due to Fleischer [7]. Fleischer’s idea, orig-
inally proposed for approximating the maximum edge-capacitated
MCF, has been recently extended [1, 6] to edge-capacitatedmultiter-
minal MCF andvertex-capacitatedMCF, respectively. Here we take
this approach further and show how to use it for efficient approxima-
tion of vertex-capacitated multiterminalmulticommodity flow.

III. A PPROXIMATION OFVERTEX-CAPACITATED MTMCF

Our MTMCF approximation algorithm simultaneously solves the
MTMCF LP and itsdual LP; the dual solution is used in proving the
approximation guarantee of the algorithm. The dual of the MTMCF
LP is:

minimize ∑v2V w(v)c(v)

subject to 1
g(T) ∑v2T w(v)� 1 8T 2 T
w(v)� 0 8v2V.

The dual LP can be viewed as an assignment of non-negative weights,
w(�), to the vertices ofG such that the weight of any treeT 2 T is at
least 1; the objective is to minimize the sum∑v2V w(v)c(v). Here, the
weight, weight(T), of the treeT is the sum of the weights of vertices
forming this tree (if the tree uses a loopvv then vertexv contributes
twice to this sum) divided by the importanceg(T) of this tree.

DenoteD(w) = ∑v2V w(v)c(v) and letα(w) be the weight of a
minimum weight tree fromT (with respect tow(�)). The dual prob-
lem is equivalent to finding a weight functionw : V ! R+ such

that β =
D(w)
α(w) is minimized. In the following we will assume that

minfgk : k= 1; : : : ;Kg= 1—this can be easily achieved by scaling—
and will denote byΓ the maximumgk. Our algorithm for MTMCF
approximation is given in Fig. 1.

In the algorithm,fk(v) denotes how many times vertexv is visited
by feasible Steiner trees used to connect netNk, and f denotes the total
number of feasible Steiner trees used by the algorithm. The algorithm
associates a weight with each vertex, and in each iteration it uses a
minimum weight treeT 2 Tk to connect the pins of some netNk.
When treeT is selected, the algorithm multiplies the weight of every
vertex inT by 1+ ε

c(v) for a fixedε (if this tree uses a loopvv, then

the weight ofv is multiplied by 1+ 2ε
c(v)). Initially, every vertexv has

weightδ for some constantδ. Thus, the more often is a vertex used,
the larger its weight, which implies that often used vertices are less
likely to be part of future minimum weight trees.

Input: Graph G with K nets N1; : : : ;NK , vertex capacities c(v)
Output: MTMCF value, f , and flows fk(v) 2 [0;1], k = 1; : : : ;K,
v2V(G) satisfying capacity constraints

Set f = 0

Set w(v) = δ for all v2V

Set fk(v) = 0 for all v2V and k = 1; : : : ;K

For i = 1 to log1+2ε
1+2ε

δ do

For k= 1 to K do

Find a minimum weight tree T in Tk.
While weight(T)< minf1=Γ;δ=Γ(1+2ε)ig do

f = f +1;
For all v2 T, if T uses a loop vv then set

fk(v) = fk(v)+2 and w(v) = w(v)(1+ 2ε
c(v)); else set

fk(v) = fk(v)+1 and w(v) = w(v)(1+ ε
c(v))

Find a minimum weight tree T in Tk

End while

End for

End for

Output f
2 log1+2ε

1+2ε
δ

, and fk(v)
2 log1+2ε

1+2ε
δ

for each v2V and k = 1; : : : ;K

Fig. 1. The fractional tree-routing algorithm

According to Garg and K¨onemann’s approximation algorithm [8],
each iteration must use a lightest (with respect to current weight func-
tion w(�)) tree fromT if the weight of this tree is less than 1=Γ. The
algorithm then stops aftert iterations wheret is the smallest num-
ber such thatα(w), computed with respect to vertex weightsw(�) of
this iteration, is at least 1=Γ. We extend an idea due to Fleischer [7]
to our vertex-capacitated MTMCF problem to reduce the number of
minimum weight tree computations during the algorithm. Instead of
finding the lightest tree inT in each iteration (which essentially in-
volvesK shortest-path computations) we settle for some tree within
a factor of (1+2ε) of the lightest, and show that this still leads to a
similar approximation guarantee.

Let wi�1(�) be the weight function at the beginning of theith it-
eration. We havew0(v) = δ for eachv 2 V. For brevity denote
α(wi) and D(wi) by α(i) and D(i), respectively. Following Fleis-
cher, we cycle through the nets, sticking with a net until the light-
est feasible Steiner tree for that net is above a 1+ 2ε factor times a
lower bound estimate of the overall lightest tree. Letᾱ(i) be a lower
bound onα(i). To start, we set̄α(0) = δ=Γ. As long as there is
someT 2 T with weight(T) � minf1=Γ;(1+2ε)ᾱ(i)g, we use tree
T. When this no longer holds, we know that the weight of the lightest
tree is at least(1+ 2ε)ᾱ(i), and so we set̄α(i + 1) = (1+ 2ε)ᾱ(i).
Thus, throughout the course of the algorithm,ᾱ takes on values in
the setfδ=Γ(1+ 2ε)igi2N . Sinceα(0) � δ=Γ andα(t � 1) < 1=Γ,
α(t) < (1+ 2ε)=Γ. Thus, when we stop,̄α(t) is between 1=Γ and
(1+ 2ε)=Γ. Each increase of̄α is by a 1+ 2ε factor, hence the
number of increases of̄α is log1+2ε

1+2ε
δ (and the final value ofi is

blog1+2ε
1+2ε

δ c).
Between updates tōα, the algorithm proceeds by considering each

net one by one. As long as the lightest feasible Steiner treeT for
netNk has weight less than the minimum of 1+2ε times the current
value ofᾱ and 1=Γ, this lightest treeT is used to connect the pins of
the netNk. WhenminT2Tk

weight(T)� (1+2ε)ᾱ, netNk+1 is consid-
ered. After allK nets are considered,̄α is updated. A total of at most
K log1+2ε

1+2ε
δ minimum weight feasible Steiner tree computations

are used to updateα over the course of the algorithm.

Theorem 1 The algorithm in Fig. 1 is a(1+ω)-approximation algo-

rithm for the MTMCF LP by choosingδ = (1+2ε)((1+2ε)LΓ)�
1
2ε

and ε < minf:07; 1+ω�Γ)
8Γ g, where L is the number of vertices in the

longest feasible Steiner tree of G connecting any net.

Proof. Our proof is an adaptation of the proof of Garg and
Könemann [8] (see also Fleischer [7]). First we show that the val-
ues fk(v)

2log1+2ε
1+2ε

δ
(v2V, k= 1; : : : ;K), computed by the algorithm, are

feasible, i.e., 1
2log1+2ε

1+2ε
δ

∑K
k=1 fk(v) � c(v) and hence we do not ex-

ceed the capacity of any vertexv of G. Consider an arbitrary vertexv
of G and letM = ∑K

k=1 fk(v) denotes how many times the vertexv was
used by all feasible Steiner trees found by algorithm. For every two
times that the vertexv was used by feasible Steiner trees, the weight
of v increased by a factor of at least(1+ 2ε

c(v)). Sincew0(v) = δ, it

follows thatwt(v) � δ(1+ 2ε
c(v))

M
2 . Simplifying this expression, we

get

wt(v)� δ(1+
2ε

c(v)
)

M
2 = δ((1+

2ε
c(v)

)c(v))
M

2c(v) � δ(1+2ε)
M

2c(v) :

The last time we increased the weight ofv, it was on a feasible
Steiner tree of weight less than 1=Γ. Hence, the weight ofv was
less than 1. Since in each iteration we increase the vertex weight by
factor of at most(1+2ε), the final weight ofv is at most(1+2ε).
Consequently,

δ(1+2ε)
M

2c(v) �wt(v)� 1+2ε; i.e., M � c(v)2log1+2ε
1+2ε

δ
:

Now we show that the ratio of the values of the dual and the primal
solutions,γ = β

f 2log1+2ε
1+2ε

δ , is at most(1+ω).
For each iterationi � 1 we have

D(i) = ∑
v2V

wi(v)c(v) = ∑
v2V

wi�1(v)c(v)+ ε ∑
v2T

wi�1(v)�

D(i�1)+ ε(1+2ε)Γα(i�1):

Note that, if T used a loopvv, then v contributes to the sum
∑v2T wi�1(v) twice (sincewi(v) = wi�1(v)(1+

2ε
c(v))).

Then,

D(i)�D(0)� ε(1+2ε)Γ
i

∑
j=1

α(j�1):

Consider the weight functionwi(�)�w0(�). We haveα(wi �w0)�
α(wi)�δL, whereL is the number of vertices in the longest feasible
Steiner tree ofG connecting any net.

Consequently, ifα(wi)�δL > 0, then

β�
D(wi �w0)

α(wi �w0)
�

D(i)�D(0)
α(i)�δL

�
ε(1+2ε)Γ∑i

j=1 α(j�1)

α(i)�δL
:

Thus, in any case (for the caseα(wi)�δL � 0, it is trivial) we have

α(i)� δL+
ε(1+2ε)Γ

β

i

∑
j=1

α(j�1)�

(1+
ε(1+2ε)Γ

β
)i�1(δL+

ε(1+2ε)Γ
β

α(0))�

(1+
ε(1+2ε)Γ

β
)i�1(δL+

ε(1+2ε)Γ
β

δL) =

δL(1+
ε(1+2ε)Γ

β
)i � δLe

iε(1+2ε)Γ
β :

For the last inequality the fact 1+x� ex for x� 0 is used.
Since we stop at iterationt with α(t)� 1=Γ, andt = f , we get

1=Γ � α(t)� δLe
tε(1+2ε)Γ

β = δLe
f ε(1+2ε)Γ

β :

Hence,
β
f
�

ε(1+2ε)Γ
ln(δLΓ)�1 :

Now, for the ratioγ we obtain

γ =
β
f
2log1+2ε

1+2ε
δ

�

2ε(1+2ε)Γ log1+2ε
1+2ε

δ
ln(δLΓ)�1 =

2ε(1+2ε)Γ ln 1+2ε
δ

ln(1+2ε) ln(δLΓ)�1 :

Since we have chosenδ = (1 + 2ε)((1 + 2ε)LΓ)
�1
2ε , we get

ln 1+2ε
δ

ln(δLΓ)�1 = 1
1�2ε and hence,

γ�
2ε(1+2ε)Γ

(1�2ε) ln(1+2ε)
� (1+2ε)(1�2ε)�2Γ:

Here we used that ln(1+x)� x�x2=2 (by Taylor series expansion of
ln(1+x)).

Since (1+ 2ε)(1� 2ε)�2 is at most(1+ 8ε), for ε < :07, and
(1+ 8ε)Γ should be no more than our approximation ratio(1+ω),
we are done.

In the algorithm in Fig. 1 we need to solve the following problem.
Let Gk (k= 1; : : : ;K) be a subgraph of the graphG induced by vertices
fsk;t1

k ; : : : ;t
qk
k g[R (recall that each vertexv2 R has a loopvv2 E).

Let also each vertexv of Gk have a non-negative weightw(v). Find a
minimum weight treeTk in Gk connectingsk with t1

k ; : : : ;t
qk
k such that,

for eachi = 1; : : : ;qk, the path ofTk betweensk andt i
k passes through

even (odd, depending onai
k) number of vertices, and that number of

vertices does not exceedl ik. This path may contain a loop, in this case
the weight of the vertex at which the loop is attached will contribute
twice to the weight of the treeTk.

Let Lk = maxfl1k ; : : : ; l
qk
k g. We reduce this problem to the

usual shortest directed rooted Steiner tree problem on an edge-
weighted directed acyclic graph (dag)Dk with V(Dk) = fskg [
fri; j j 1� i � n, 1� j � Lkg[ft1

k ; : : : ;t
qk
k g andE(Dk) = E1[E2[

E3, where

E1 = f(sk; ri;1) j 1� i � n, (sk; ri) 2 E(G)g

E2 = f(ri; j ; ri0 ; j+1) j 1� i; i0 � n, 1� j < Lk,

(ri ; ri0) 2 E(G)g

E3 = f(ri; j ;t
h
k) j 1� i � n, 1� h� qk, 1� j � l hk ,

j � ah
k(mod 2),(ri ;th

k) 2 E(G)g

If the cost of each arc(x;y) in Dk is given byw(x), it is easy to see
that finding the minimum weight tree inTk reduces to finding a min-
imum cost directed rooted Steiner tree (DRST) inDk. Generally, the
directed rooted Steiner tree problemasks, for a given directed edge-
weighted graphH = (X;U), a specified rootr 2 X, and a set of ter-
minalsY � X, to find the minimum cost arborescence rooted atr and
spanning all the vertices inY (in other wordsr should have a directed
path to every vertex inY). Unfortunately, the fact thatDk is acyclic
does not help. There is a simple reduction for this problem from arbi-
trary directed graphs to acyclic graphs. As far as we know, the best re-
sult for the DRST problem is due to Charikar et al. [3] which says that
anO(log2qk)-approximate solution can be found in quasi-polynomial
time O(n3logqk). Since this is very inefficient, we need to find some

Input: Multiterminal flows fk(e) 2 [0;1], k = 1; : : : ;K, e2 E(G)
Output: Set of trees Tk 2 Tk

For each k = 1; : : : ;K, with probability fk, do

Tk fskg

For each sink t i
k in Nk do

P /0; v t i
k

While v =2 Tk do
Pick arc (u;v) with probability fk(u;v)= fk(v)
P P[f(u;v)g; v u

End while
Tk Tk[P

End for

End for

Fig. 2. Randomized MTMCF rounding algorithm

other ways to compute such trees. One approach, used by Albrecht [1]
for edge-capacitated MTMCF approximation, is to compute (exactly
or approximately) a DRST once, then use in each of the following
iterations minimum directedspanningtrees (with respect to the up-
dated edge lengths) in the graph induced byfsk;t1

k ; : : : ;t
qk
k ; p1; :::; psg,

wherep1; : : : ; ps are the Steiner points of the original DRST. To find
a minimum spanning directed tree in directed acyclic graphs, one can
use a very simple procedure: for each vertex choose a shortest incom-
ing arc, then, after running this procedure, recursively delete all leaves
that are not sinks of the netNk.

IV. ROUNDING THE FRACTIONAL MTMCF

In the previous section we presented an algorithm for approxi-
mating the optimum multiterminal multicommodity flow (MTMCF)
within any desired accuracy. The optimum MTMCF gives an upper-
bound on the maximum number of routable nets (connections). In
this section we show how to use the approximate MTMCF to route
an almost optimal number of nets (resp. connections). Our construc-
tion is based on the randomized rounding technique of Raghavan and
Thomson [16], in particular, on the random-walk based algorithm for
rounding multicommodity flow [15] (see also [12]).

The MCF rounding algorithm in [15] chooses a set of source-sink
pairs by including each pair(s;t) with a probability equal to the flow
from s to t. Then, for each chosen pair,(s;t), the algorithm per-
forms a random-walk froms to t, based on probabilities given by
edge-flows. In our MTMCF rounding algorithm (see Figure 2), a net
Nk = (sk;t1

k ; : : : ;t
qk
k) is also routed with probability equal to the net’s

total flow, fk = ∑T2Tk
fT . Since we need to construct a tree con-

necting all sinkst i
k to the sourcesk, we route the net by performing

backwardrandom walks from each sink until reaching eithersk or a
vertex on a path already included in the tree. Thus, if the net has only
one sink, our rounding algorithm becomes identical to the algorithm
in [15], except for the direction of the random walk.

Ensuring that no vertex capacities are exceeded can be accom-
plished in two ways. Following [12], one way is to solve the MTMCF
LP with capacities scaled down by a small factor that guarantees that
the rounded solution will meet theoriginal capacities with very high
probability. A simpler approach, the so-calledgreedy-deletion algo-
rithm [6], is to repeatedly drop routed nets that visit over-used vertices
until feasibility is achieved. We implement a modification of the sec-
ond approach: instead of dropping an entire tree, we drop only the
sinks which use paths through over-used vertices.

Input: Graph G with K nets N1; : : : ;NK , vertex capacities c(v)
Output: Set of trees Tk 2 Tk

For each k= 1; : : : ;K, do

Tk fskg

For each sink t i
k in Nk do

Using a backward BFS search, find a shortest path P from
t i
k to Tk in G using only vertices v with c(v) > 0; if no such
path exists let P= /0

Tk Tk[P
For each vertex v in P, c(v) c(v)�1

End for

End for

Fig. 3. The multiterminal greedy (MTG) routing algorithm

V. I MPLEMENTED ALGORITHMS

In this section we describe the implemented algorithms for the
Global Routing via Buffer Blocks problem.

Greedy Routing Algorithms
We have implemented 3 greedy algorithms for the GRBB problem.

The first algorithm [5, 6] starts by decomposing each multiterminal
net into 2-terminal nets. Then, the algorithm attempts to route the 2-
terminal nets one by one, using for routing a shortest available path
from the net’s source to its sink, if such a path exists. We will refer to
this algorithm as theforward 2-terminal greedy(F-2TG) algorithm.

The second greedy algorithm, referred to as themultiterminal
Greedy(MTG) algorithm, routes multiterminal nets without splitting
(Fig. 3). In this algorithm we also attempt to route the sinks of a
net one by one. For a given net, the algorithm starts with a tree con-
taining only the net’s source, then iteratively adds shortest paths from
each sink to the already constructed tree.

The third algorithm, thebackward 2-terminal greedy(B-2TG),
works as F-2TG, except for the fact that shortest paths are computed
backward, from sinks toward sources and not from sources toward
sinks. Notice that B-2TG becomes identical to MTG when applied to
2-terminal nets.

Flow Rounding Algorithms
We have implemented two flow rounding algorithms. The first is

the MCF rounding algorithm of Dragan et al. [6] , which we will refer
to as 2TMCF. It starts by decomposing each multiterminal net into 2-
terminal nets, and then casts the GRBB problem as an integer MCF
problem.

The second algorithm is based on MTMCF rounding (Fig. 4). Our
current implementation decomposes larger nets into 3-terminal nets
before applying the MTMCF routing algorithm, we will refer to this
implementation as 3TMCF. For 3-terminal nets we can find the op-
timum directed routed Steiner tree efficiently, and we do not need to
resort to the approximations suggested at the end of Section III.

VI. I MPLEMENTATION EXPERIENCE

All experiments were conducted on a SGI Origin 2000 with 16
195MHz MIPS R10000 processors—only one of which is actually
used by the sequential implementations included in our comparison—
and 4 G-Bytes of internal memory, running under IRIX 6.4 IP27.
Timing was performed using low-level Unix interval timers, under
similar load conditions for all experiments. All algorithms were coded
in C and compiled usinggcc version egcs-2.91.66 with-O4 opti-
mization.

Input: Graph G with K nets N1; : : : ;NK , vertex capacities c(v)
Output: Set of trees Tk 2 Tk

Find an approximate MTMCF using the algorithm in Fig. 1

Round the approximate MTMCF using the algorithm in Fig. 2

Use greedy deletion to find a feasible integer solution

Use the MTG algorithm in Fig. 3 on the unrouted nets to find a
maximal routing

Fig. 4. The MTMCF routing algorithm

The three test cases used in our experiments were extracted from
the next-generation microprocessor chip at SGI. We used an opti-
mized floorplan of the circuit blocks and also optimized the loca-
tion of the source/sink pin locations based on coarse timing bud-
gets. We usedU = 4000µm, and variedL between 500µm and
2000µm. Path-length upper-bounds were computed with the formula
lk = dist(sk;tk)/1000. In all test cases considered the number of nets
was large (close to 5000), and the number of buffer blocks small (50),
with relatively large capacity (400 buffers per block); such values are
typical for this application [6].

Table I gives the number of routed sinks and the running time on
the three instances by each of the algorithms included in our compar-
ison. Figure VII plots the solution quality versus the CPU time (in
seconds, excluding I/O and memory allocation) for each algorithm.

The first surprising thing to notice is that B-2TG gives noticeably
better results than F-2TG, despite the fact that the two algorithms are
nearly identical (they both add paths of the same length until some
of the vertices use up the full capacity).4 Perhaps not so surprising
is the fact that the multiterminal greedy algorithm is better than both
F-2TG and B-2TG. Notice that the running time of all three greedy
algorithms is virtually the same, so MTG is the clear choice among
them.

Our experiments clearly demonstrate the high quality of the solu-
tions obtained by flow rounding methods. Significant improvement
over the best of the greedy methods is possible even with a very small
increase in running time, proof that even very coarse MCF/MTMCF
approximations give helpful hints to the randomized rounding proce-
dure. Since randomized rounding is very fast, faster in fact than any
of the greedy algorithms, the MCF/MTMCF algorithms can be further
improved by running randomized rounding with the same fractional
flow a large number of times and taking the best of the rounded solu-
tions; our current implementation does not exploit this idea.

Finally, our experiments show that even a limited use of multiter-
minal nets (decomposition into nets of size 3) gives improvements
over the already very high-quality MCF algorithm of Dragan et al.
[6]. In fact, the 3TMCF algorithm outperforms the MCF algorithm in
[6] even when the same time budget is given to both algorithms.

VII. C ONCLUSIONS ANDFUTURE DIRECTIONS

In this paper, we addressed the problem of how to perform buffer-
ing of globalmultiterminalnets given an existing buffer block plan.
We gave a provably good algorithm based on a novel approach
to MTMCF approximation inspired by recent results of Garg and
Könemann [8] and Fleischer [7] on edge-capacitated MCF. Our
MTMCF algorithm outperforms existing algorithms for the problem

4We presume that the advantage for computing backward shortest paths, as opposed
to forward shortest paths, is that the former gives a set of paths that are better spread out
in the vicinity of the source of a large net. If the sinks of such a net are grouped in a
small number of clusters, which is typically the case in real designs, the forward greedy
algorithm is likely to use a small number of neighbors of the source for all these paths,
thus leading to the faster exhaustion of the available capacity in these vertices.

TABLE I
PERCENT OF SINKS CONNECTED(BOLDFACE) AND CPU TIME ON 3 INDUSTRIAL TEST CASES

Instance GREEDY 2TMCF 3TMCF
ID Nets Sinks N/S F-2TG B-2TG MTG ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04 ε = 0:02 ε = 0:64 ε = 0:32 ε = 0:16 ε = 0:08 ε = 0:04 ε = 0:02

i1 4764 6038 2.27
89.5
0.58

90.6
0.54

93.5
0.53

94.8
2.84

95.8
12.13

96.5
39.50

96.6
139.83

96.8
600.89

96.8
2321.67

95.7
16.57

96.8
53.62

97.3
203.03

97.5
817.59

97.6
3166.03

97.6
12736.22

i2 4925 6296 2.28
89.9
0.84

91.6
0.58

93.6
0.55

96.2
4.35

97.1
11.34

97.4
40.55

97.5
156.89

97.6
690.31

97.6
2604.34

97.0
19.50

98.0
64.13

98.4
242.17

98.5
942.34

98.6
3721.95

98.4
14854.06

i3 4938 6321 2.28
89.8
0.65

91.5
0.59

93.3
0.54

96.2
3.37

96.9
11.08

97.3
40.84

97.3
163.32

97.5
730.95

97.5
2638.04

96.8
18.99

97.8
66.12

98.3
246.29

98.4
956.83

98.4
3813.42

98.3
15088.50

[5, 6], and has been validated on top-level layouts extracted from a
recent high-end microprocessor design.

Ongoing work is aimed at increasing the space of methodologies
to which our new techniques apply. As presented here, our work is
clearly targeted to very early global wireplanning activity. In other
words, the application domain is pre-synthesis chip planning: pre-
scribed repeater intervals are driven only by coarse estimates of Miller
coupling factors, repeater sizing, and source impedance or sink ca-
pacitance. The presented formulation also does not address timing
criticalities or budgets except via net weighting (prioritization); this
is fortunately fairly common for initial wireplanning that breaks the
“chicken-egg” problem of budgeting between-block and within-block
paths in pre-synthesis RTL planning with aggressive global wire op-
timization.5

We are presently extending our approach in the following ways.
(1) Handling routing congestion, e.g., by introducing capacitated “vir-
tual” nodes in the flow graph. (2) Handling timing criticality and bud-
gets is another goal; our ideas include better use of net ordering and
weighting, and post-processing of the solution to eliminate unneeded
repeaters. (It is also possible to attempt to introduce layer awareness,
source and sink parasitic awareness, etc., but this risks losing the fla-
vor of early feasibility checking with available buffer block plans.)
Here, maintaining provable solution quality is a key issue. (3) Fi-
nally, since accurate treatment of multiterminal nets is the key moti-
vation for our present work, we are implementing better heuristics for
net decomposition into 2- and/or 3-terminal groups; we are also im-
plementing optimal graph Steiner solutions for up to 4-terminal nets,
to assess the associated quality-runtime tradeoffs.

REFERENCES

[1] Ch. Albrecht, “Provably good global routing by a new approximation
algorithm for multicommodity flow”,Proc. ISPD, 2000.

[2] R. C. Carden and C.-K. Cheng, “A global router using an efficient ap-
proximate multicommodity multiterminal flow algorithm”,Proc. DAC,
1991, pp. 316-321.

[3] M. Charikar, Ch. Chekuri, T. Cheung, Z. Dai, A. Goel, and S. Che-
ung, “Approximation algorithms for directed Steiner problems”,J. Al-
gorithms, 33 (1999), 73-91.

[4] J. Cong, L. He, C.-K. Koh and P. H. Madden, “Performance optimization
of VLSI interconnect layout”,Integration21 (1996), pp. 1-94.

[5] J. Cong, T. Kong and D. Z. Pan, “Buffer block planning for interconnect-
driven floorplanning”,Proc. ICCAD, Nov. 1999, pp. 358-363.

[6] F. F. Dragan, A. B. Kahng, I. I. M˘andoiu, S. Muddu and A. Zelikovsky,
“Provably good global buffering using an available buffer block plan”,
Proc. ICCAD’2000.

[7] L. K. Fleischer, “Approximating fractional multicommodity flow inde-
pendent of the number of commodities”,Proc. 40th Annual Symposium
on Foundations of Computer Science, Oct. 1999, pp. 24-31.

5In other words, maximal repeater insertion allows maximum timing budgets for
within-block timing paths, and this permits blocks to go through synthesis, place and
route with more aggressive area targets. A strategy of uniform buffering of as many
global nets as possible also helps control signal integrity and delay uncertainty problems.

89

90

91

92

93

94

95

96

97

98

0.25 1 4 16 64 256 1024 4096 16384

C
on

ne
ct

ed
 s

in
ks

 (
%

 o
f a

ll
si

nk
s)

CPU seconds

F-2TG
B-2TG

MTG
2TMCF
3TMCF

Fig. 5. Percent of sinks connected vs. time on test case i1

[8] N. Garg and J. K¨onemann, “Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems”,Proc. 39th Annual
Symposium on Foundations of Computer Science, Nov. 1998, pp. 300-
309.

[9] J. Huang, X.-L. Hong, C.-K. Cheng and E. S. Kuh, “An efficient timing-
driven global routing algorithm”,Proc. DAC, 1993, pp. 596-600.

[10] A. B. Kahng, S. Muddu, E. Sarto and R. Sharma, “Interconnect tuning
strategies for high-performance ICs”,Proc. DATE, Feb. 1998.

[11] J. Lillis, C. K. Cheng and T. T. Y. Lin, “Optimal wire sizing and buffer
insertion for low power and a generalized delay model”,Proc. ICCAD,
1995, pp. 138-143.

[12] R. Motwani, J. Naor, and P. Raghavan, “Randomized approximation al-
gorithms in combinatorial optimization”, InApproximation algorithms
for NP-hard problems(Boston, MA, 1997), D. Hochbaum, Ed., PWS
Publishing, pp. 144–191.

[13] A.P.-C. Ng, P. Raghavan, and C.D. Thomson, “Experimental results for
a linear program global router”.Computers and Artificial Intelligence, 6
(1987), pp. 229–242.

[14] T. Okamoto and J. Cong, “Buffered Steiner tree construction with wire
sizing for interconnect layout optimization”,Proc. ICCAD, 1996, pp.
44-49.

[15] P. Raghavan and C.D. Thomson, “Provably good routing in graphs: reg-
ular arrays”,Proc. 7th ACM Symp. on Theory of Computing(1985), pp.
79–87.

[16] P. Raghavan and C.D. Thomson, “Randomized rounding”,Combinator-
ica, 7 (1987), pp. 365–374.

[17] E. Shragowitz and S. Keel, “A global router based on a multicommodity
flow model”, Integration5(1) (1987), pp. 3-16.

[18] X. Tang and D. F. Wong, “Planning buffer locations by network flows”,
Proc. ISPD, April 2000.

