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Abstract: A distance-hereditary graph is a connected graph in which every induced path is isometric,
i.e., the distance of any two vertices in an induced path equals their distance in the graph. We present
a linear time labeling algorithm for the minimum cardinality connected r-dominating set and Steiner tree

problems on distance-hereditary graphs.
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1. INTRODUCTION

A distance-hereditary graph is a connected graph in
which every induced path is isometric, i.e., the distance
of any two vertices in an induced path equals their dis-
tance in the graph. These graphs were introduced by E.
Howorka [11], who gave the first characterizations of
distance-hereditary graphs. For instance, a connected
graph G is distance-hereditary if and only if every circuit
in G of length at least 5 has a pair of chords that cross
each other.

A dominating set D of agraph G = (V, E) is defined
as a set of vertices D c V such that every vertex in V is
either in D or is adjacent to some vertex in D. D is a
connected dominating set of G iff D dominates G and the
subgraph induced by D is connected. For a given graph
G and aset Sc V (of terminal vertices), a Seiner tree
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is a tree which spans all vertices of S. The Seiner tree
problem asks for a minimum cardinality Steiner tree.

There are many papers that investigated the Steiner
tree problem and the problem of finding minimum domi-
nating sets in graphs with (and without) additional re-
guirements to the dominating sets. The problems are, in
general, NP-complete. For more specia graphs, the situa-
tion is sometimes better (for a bibliography on domina-
tion, cf. [10] ; for arecent survey on special graph classes,
cf. [2]). In [5], D’Atri and Moscarini proposed
O(|V|E|) agorithms to solve the minimum cardinality
connected dominating set and Steiner tree problems on
distance-hereditary graphs.

Here, we study the following generalized domination
(r-domination) problem: Let (r(v.), ..., r(v,)) be a
seguence of nonnegative integers which is given together
with the input graph. For any two vertices u, v denote by
dist(u, v) the length (i.e., number of edges) of a shortest
path between u and v in G. A subset D c Visanr-
dominating set in G iff for every v € V thereisau € D
with dist(u, v) = r(v). D is a connected r-dominating
set of G iff D r-dominates G and the subgraph induced
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Fig. 1. Forbidden induced subgraphs in a distance-hereditary graph.

by D is connected. The connected r-domination problem
consists of finding a minimum cardinality connected r -
dominating set of G. It is easy to see that the Steiner
tree problem is a particular instance of the connected r -
domination problem when r (v) = 0 for any terminal ver-
tex and r(v) = oo for al other vertices.

In this paper, we present a linear-time labeling ago-
rithm for the connected r-domination and Steiner tree
problems on distance-hereditary graphs. The obtained re-
sult not only generalizes but also improves the corre-
sponding result of D’ Atri and Moscarini. Recall that effi-
cient algorithms for the connected r -domination problem
have been found also for strongly chordal graphs[4] and
dually chordal graphs [6] (see aso [3]).

2. TERMINOLOGY AND BASIC
PROPERTIES

We shal consider finite, smple loopless, undirected, and
connected graphs G = (V, E), whereV = {v;, ..., v,} is
the vertex set and E is the edge set of G, and we shdl use
more-or-less standard terminology from graph theory [8].

Let v be a vertex of G. We denote the neighborhood
of v, consisting of al vertices adjacent to v, by N(v), and
the closed neighborhood of v, the set N(v) U {v}, by
N[v]. The k-th neighborhood of v, denoted by N*(v), is
defined as the set of all vertices of distance k to v, i.e,,
N¥(v) = {u € V: dist(u, v) = k}.

A vertex v of Gisaleaf if [IN(v)| = 1. Two vertices
v and u are twins if they have the same neighborhood
[N(v) = N(u)] or the same closed neighborhood (N[v]
= N[u]). True twins are adjacent; false twins are not.
We denote by (S) the subgraph of G induced by the
verticesof SC V.

Severa interesting characterizations of distance-hered-
itary graphs in terms of the existence of particular kinds
of vertices (leaves, twins) and in terms of metric and
neighborhood properties and forbidden configurations
were provided by Bandelt and Mulder [1] and by D’ Atri
and Moscarini [5]. Some agorithmic aspects are consid-
ered in[5, 7, 9, 12, 13]. The following propositions list

the basic information on distance-hereditary graphs that
is needed in the sequel.

Proposition 1[1, 5]. For a graph G, the following con-
ditions are equivalent:

(1) G is distance-hereditary.

(2) The house, domino, fan (see Fig. 1) and the cycles
C, of length k = 5 are not induced subgraphs of G.

(3) Every induced subgraph of G contains a leaf or a
pair of twins.

(4) For arbitrary vertex x of G and every pair of vertices
v, U € N¥(x), that are in the same connected compo-
nent of the graph (V\N* *(x)), we have

N(v) N N2(x) = N(u) N N*(x).

Proposition 2 ([1]). For any vertexv of distance-heredi-
tary graph G if u, w are vertices in different components
of (N*(v)), then N(u) N N**(v) and N(w) N N¥ *(v)
are either digoint or one of the two sets is contained in
the other.

3. PRELIMINARY RESULTS

As we dready mentioned, every induced subgraph of a
distance-hereditary graph contains a leaf or a pair of
twins. In the subsequent linear-time algorithm for the
minimum connected r-dominating set problem on dis-
tance-hereditary graphs, these kinds of vertices turn out
to be important.

For the next two lemmas, let x be a leaf in graph G
and let y be its neighbor. Let also G — x = (V\{x}).

Lemma 1 [4, 6]. Assume that r(x) > 1. A subset D
c V\{x} is a minimum connected r-dominating set of
graph G if D is a minimum connected r’-dominating set
of graph G — xwithr’(v) = r(v) whenv = yand r'(y)
=min{r(y), r(x) — 1}.



Lemma 2[4, 6]. Assumethat r(x) = 0andr(u) =0
for some vertex u € V\{x}. A set D is a minimum
connected r-dominating set of graph Gif D =D’ U {x},
where D’ is a minimum connected r’-dominating set of
graph G — x with r’(v) = r(v) whenv = y and r’(y)
=0.

Instead of twins, next we consider some of their gener-
alizations. A vertex set Ac V of agraph G = (V, E) is
homogeneousiiff every vertex in V\ Ais adjacent to either
al or none of the vertices of A. A proper homogeneous
set is a homogeneous set A such that |A| = |V]|
— 2. Observe that two vertices are twins iff they form a
homogeneous set of size 2. Evidently, every vertex v
€ V\Aisequidistant from the vertices of ahomogeneous
set A.

For the next two lemmas, let A C V be a proper homo-
geneous set of graph G, and x be a vertex of A with r(x)

=min{r(y) :y € A}.

Lemma 3. Assume that either r(x) = 2 or r(x) = 1and
there exists a vertex v € V\A with dist(v, X) > r(v). A
subset D < (V\A) U {x} is a minimum connected r-
dominating set of graph G if D is a minimum connected
r-dominating set of graph ((V\A) U {x}).

Proof. First, we show that every connected r-domi-
nating set D of graph G’ = ((V\A) U {x})isdsoar-
dominating set of G. Consider a vertex u € D r-domi-
nating the vertex x in G'. If u # x or each vertex y
e A\{x} with r(y) = 1 is adjacent to x, then u r-
dominates all vertices of A. So, assume that u = x and
r(y) = 1 for some vertex y € A\ { x} nonadjacent to x.
In this case, we conclude that r(x) = 1 and there exists
avertex v € V\A such that dist(v, X) > r(v). Consider
now a path which connects in graph (D) the vertex x €
D and some vertex w € D r-dominating v. Since A is a
homogeneous set in G, the vertex from this path which
is adjacent to x r-dominates all vertices of A.

Now let D be a minimum connected r -dominating set
of graph G. Since A is a homogeneous set of G, every
vertex v € V\A is equidistant from the vertices of A. So,
inthecase D N A = {y}, theset D\{y} U {x} isa
connected r-dominating set of graph G. Analogously, if
|ID N A| = 2, then either D\A U {x}, when D\A =
@, or DNA U {x, z} with z € N(x)\A, otherwisg, is a
connected r-dominating set of graph G.

Thus, there is a minimum connected r -dominating set
D of graph G such that D < (V\A) U {x}. Since graph
G’ is a distance-preserving subgraph of G, set D is also
a connected r-dominating set of graph G'. [

Lemmad4. Assumethatr(x) = 0andr(u) = O for some
vertex u € VNA. A set D is a minimum connected r-
dominating set of graph Gif D = D' U {y € A:r(y)
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= 0}, where D’ is a minimum connected r-dominating
set of graph (VNA U {x}).

Proof. Evidently, D is a connected r-dominating set
of graph G whenever D’ is a connected r -dominating set
of graph G’ = (VNA U {x}). Also, if D is a minimum
connected r-dominating set of G, thenaset D’ = D\{y
€ A\{x} : r(y) = 0} is a connected r-dominating set
of G’ because every vertex of V\A is equidistant from
the vertices of the homogeneous set A. |

For the next two lemmas, let x be a vertex of graph G
such that N(x) forms a proper homogeneous set in G,
and y be a vertex of N(x) with r(y) = min{r(2) : z
e N(x)}.

Lemmab. Assumethatr(x) > r(y). Aset D c V\{x}
is a minimum connected r-dominating set of graph G if
D is a minimum connected r-dominating set of graph G
- X

Proof. Again, every connected r-dominating set D of
graph G — xisalso r-dominating in G. Assume now that
D is aminimum connected r -dominating set of graph G.
Let zbe any vertex of G with dist(x, z) = 2. Then, either
D whenx € D or D\ {x} U {z} otherwiseisaminimum
connected r-dominating set of graph G — x. Since N(x)
is a homogeneous set, N(x) C N(2z) holds. |

Lemma6. Assumethatr(x) = 0andr(u) = 0 for some
vertex u € VAN[X]. A set D is a minimum connected r-
dominating set of graph Gif D = D’ U {x}, where D’
is a minimum connected r’-dominating set of graph G —
xwith r’(v) = r(v) whenv = yand r’(y) = 0.

Proof. Obvioudly, if aset D’ is a connected r’'-domi-
nating set of graph G — x, thentheset D = D' U {x}
is a connected r-dominating set of graph G.

Let D be a minimum connected r-dominating set of
graph G. Since x and u must be in D, there exist two
verticesv € N(x) and z € VAN[x] with dist(x, z) = 2
belonging also to set D. So, every vertex w r-dominated
in G by vertex xisr-dominated also by an arbitrary vertex
of N(x) if w € VAN[xX] or by vertex z if w € N(x).
Hence, theset D\ { x, v} U {y} whenr(v) > 0or D\ { x}
when r(v) = r(y) = 0is a connected r’-dominating set
of graph G — x. |

These lemmas will be used in the correctness proof of
the subsequent algorithm which has a structure similar to
the linear-time recognition algorithm presented in [ 9] and
the linear-time algorithm for finding a minimum r-domi-
nating clique of a distance-hereditary graph presented
in[7].
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4. THE ALGORITHM

Algorithm CRD (Find a minimum connected r-domi-
nating set of a distance-hereditary graph)

Input: A distance-hereditary graph G = (V, E) and an

n-tuple (r(v4), ..., r(v,)) of nonnegative inte-
gers.

Output: A minimum connected r-dominating set CD

begin

of G.

(1) if foralv e Vr(v) > 0then

(2)

(3)
(4)

(5)
(6)
(7)
(8)
(9)
(10)

(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)

(19)

(20)
(21)
(22)
(23)

(24)

(25)

for an arbitrary vertex u € V build its i-th neigh-
borhoods N*(u), N?(u), ..., N¥(u);
fori=kk-1,...,2do
find the connected components A;, Ay, ..., A
of N'(u) N V;
in each component A pick a vertex x such that
r(x) = min{r(y) :y € A};
order the vertices of X = {X;, X2, ..., %} by
increasing degree d’(x) = [N(x) N N"*(u)[;
for all vertices x; € X taken by increasing de-
gree d’(x) do
if (r(x) =2o0rr(x)=1and € V\A
dist(x, v) > r(v)) then
delete from V all vertices of A\ {x};
inset B = N(x) N N"*u) NV pick a
vertex y such that r(y) = min{r(z) : z
€ B};
do case
caser(y) =landr(x) = 2
delete from V vertex x;;
caser(y) =2orr(y)=r(x) =1
and b € V\B dist(y, v) > r(v);
delete from V al vertices of (B
U {x)\{y};
put r(y) := min{r(x) — 1, r(y)};
if r(y) = 0 then goto outloop endif
otherwise /* r(y) = r(x) = 1 and ver-
tex y r-dominates all vertices of V\B*/
if (in set B there is a vertex w adja
cent to all vertices v € B\{w}

withr(v) = 1)
then CD := {w} else CD := {x, y}
endif
stop
endcase

else /* r(x) = 1 and vertex x r-domi-
nates all vertices of V\A */
if (inset A there is a vertex w adja-
cent to al verticesv € A\{w} with
r(v) = 1)
then CD := {w}

(26) elsechoosein set B = N(x) N N'=*(u)
N V a vertex w adjacent to all
verticesv € B\ {w} withr(v) = 1,

(27) if (there is such a vertex which r-
dominates aso al vertices from
V\B) then

(28) CD :={w}

(29) else CD := {x, y}, whereyisan ar-
bitrary vertex from B;

(30) endif

(31) endif

(32) stop

(33) endif

(34) endfor

(35) endfor

(36) stop with output CD := {u}
(37) else/* now r(u) = 0 for someu € V */

outloop:

(38) in the rest of graph G build the i-th neighbor-
hoods N*(u), ..., N(u) of vertex u with r(u)
=0;

(39) fori=k,k—1,...,2do

(40) repeat the steps (4), (5), (6);

(41) for all vertices x, € X taken by increasing de-

gree d’(x) do

(42) delete from V all vertices of Aj;

(43) inset B = N(x) N N~*(u) NV pick aver-

tex y such that r(y) = min{r(2) : z € B};

(44) if r(x) = 1then

(45) if r(y) = 1 then delete from V al verti-

cesv € B\{vy};

(46) put r(y) := min{r(x) — 1, r(y)}

47) endif

(48) else/* r(x) =0%*

(49) CD:=CD U {x€ A :r(x)=0};

(50) putr(y):=0

(51) endif

(52) endfor

(53) endfor /* now N[u] =V */

(54) CD:=CD U {veN[u]:r(v)=0};

(55) CD is a minimum connected r-dominating set
of G

(56) endif

end

Theorem. Algorithm CRD iscorrect and worksin linear
time O(| EJ).

Proof. The correctness proof of this algorithm is simi-
lar to the correctness proof of the correspondent algorithm
from [ 7] for the minimum r-dominating clique problem.

The time bound of the algorithm is obviously linear
[it is enough to note that during the work of the algorithm
the condition r(x) = 1 on line (8) will be true only
once].



The correctness proof is based on Lemmas 1-6 and
on the following claims:

(a) every connected component A of N'(u) [see line
(4)] is a proper homogeneous set of the current
graph;

(b) if xisavertex of N'(u) with minimal degree d’(x),
then B = N(x) N N'"*(u) is a homogeneous set of
the current graph.

Assertion (@) is a trivial consequence of Proposition
1(4). To prove assertion (b), we suppose that a vertex
z € V\B is adjacent to a vertex v of B and nonadjacent
to another vertex y € B. From the minimality of degree
d’(x), Proposition 2 and Proposition 1, we immediately
obtain that vertex z must be in N'"*(u)\N(x) and there
exists a vertex w € N'"?(u) such that y, v, z € N(w).
But in this case, vertices x, y, v, z, w induce a forbidden
subgraph (see Fig. 1), a contradiction.

Thus, by the lemmas, lines (8) —(17) and (42) —(51)
of the algorithm are correct. After the i-th step, we delete
all vertices from N'(u) and some vertices from N'~*(u)
with updating the radii of other vertices. So, we reduce
the initial minimum connected r -dominating set problem
to the same problem on a smaller graph or in lines (18) —
(30) find the solution of our problem.

If thecase‘'r (y) = r(x) = 1and vertex y r-dominates
al vertices of V\B’' [see line (18)] occurs, then the
vertices x;, y form a connected r -dominating set of graph
G. It remains to check whether graph G has a single
vertex r-dominating it. If such a vertex exists, it must be
in B. Since every vertex from V\B is equidistant from
the vertices of B, it is necessary (and sufficient) to check
the existence of vertex w € B r-dominating all vertices
of B\ {w}.

If the case *‘r(x) = 1 and vertex x r-dominates all
vertices of VAA" [seeline (23)] occurs, then the verti-
ces X, ¥, where y is an arbitrary vertex from N(x) N
N~*(u), form a connected r -dominating set of graph G.
Again, it remains to check whether graph G has a single
vertex r-dominating it. If such a vertex exists, it must be
inN[x] C Aj U B.

Thus, thefirst part of thealgorithm [lines (1) —(35)]
is correct. If this part ends up on line (36) [without
any vertex v with r(v) = 0], then, evidently, u is a
single vertex which r-dominates G and so line (36) is
also correct. The second part of the algorithm repeats
the lines of the first part, but with the additional condi-
tionr(u) = 0.

After line (53), we obtain that all remaining vertices
are adjacent to vertex u with r(u) = 0. The agorithm
simply collects al verticesv with r (v) = 0in CD. Thus,
the set CD is a minimum connected r -dominating set of
graph G. |
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Now consider the problem of finding aminimum cardi-
nality Steiner tree on distance-hereditary graphs. As we
already mentioned, this problem is a particular instance
of the connected r -domination problem. However, below,
we present a direct algorithm for the Steiner tree problem
which repeats the essence of the Algorithm CRD without
using a radius function.

Algorithm ST (Find a minimum cardinality Steiner tree
of a distance-hereditary graph)

Input: A distance-hereditary graph G = (V, E) and a
set SC V of terminal vertices.
Output: A minimum cardindity Steiner tree T(S, G).

begin
(1) foranarbitrary vertex u € Sbuild itsi-th neighbor-
hoods N*(u), N2(u), ..., N¥(u);

(2) fori=k,k—-1,...,2do

(3) if SN N'(u) # & then

(4) find the connected components A, A, ...,
A, of N'(u);

(5) in each component A; pick an arbitrary ver-
tex x;;

(6) order these components by increasing degree
d'(A) = IN(x) N N"Hu);

(7) for all components A, taken by increasing de-
gree d’(A) do

(8) put B := N(x) N N *(u);

(9) if (SNA +# @and SN B = &) then

(10) add an arbitrary vertex y from B to

set S

(11) endif

(12) endfor

(13) endif

(14) endfor

(15) T(S, G) := a spanning tree of graph (S);
end
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