Node Hardware

- Improved microprocessor performance means availability of desktop PCs with performance of workstations (and of supercomputers of 10 years ago) at significantly lower cost.
- Parallel supercomputers are now equipped with COTS components, especially microprocessors.
- Increasing usage of SMP nodes with two to four processors.
- The average number of transistors on a chip is growing by about 40% per annum.
- The clock frequency growth rate is about 30% per annum.

Performance Convergence

![Graph showing performance convergence](image)
Three Basic Operations

- Instruction execution
 - Involves only CPU and registers
- Register loading
 - Load data from cache or memory into registers
 - Involves CPU, front-side bus, cache, memory
- Peripheral usage
 - Copying data through I/O bus from peripheral to memory
 - Involves peripheral, I/O bus, interface from I/O bus into peripheral and memory, memory

Commodity cluster node

- Processor (CPU)
- On processor registers
- Cache – 10 times faster than memory
- Memory
- Motherboard
- Bus
- Power Supply
- Network Interface Controller (NIC)
- Disk controller
- Disks
Processor

- Binary encoding determined by Instruction Set Architecture (ISA)
- Processors can share part of ISA but not have identical ISAs due to addition of features (instructions)
 - SSE and SSE2 are numerical instructions for PIII and P4
- Processor clock rate in MHz or GHz is number of clock ticks per second (up to 3GHz in 2003)
 - CPUs with different clock rates can perform equivalently
 - CPUs with same rate can perform differently
- Instructions per second / Floating point instructions per second (fps) depend also on ISA, and components on chip

Processor

- Cache mitigates the effect of much slower memory
- CPUs can have cache from kilobytes to 4 to 8 gigabytes
Processes

- Intel IA32 (x86) Processors
 - Pentium 3, Pentium4, Pentium Pro and Pentium Xeon
 - Athlon, AMD x86, Cyrix x86, etc.
- Digital Alpha 21364
 - Alpha 21364 processor integrates processing, memory controller, network interface into a single chip
- IBM PowerPC G5
- IA64
- Opteron
- Sun SPARC
- SGI MIPS
- HP PA-RISC
- Berkeley Intelligent RAM (IRAM) integrates processor and DRAM onto a single chip

IA32

- 32 bit instruction set
- Binary compatibility specification
 - Hardware may be very different but instruction set is the same
 - Pentium III, 4 and Athlon
- Additions to ISA include SSE and SSE2 (streaming SIMD extensions)
 - Can substantially increase performance
 - Important to consider
- Hyperthreading: multiple threads per CPU
 - Negatively impacts performance
 - Can be turned off
IA32

- Pentium 4
 - Designed for higher clock cycles, but less computing power per cycle
 - Also has SSE2 and Hyperthreading
- Pentium III
 - Has SSE and L2 cache on chip
 - Can be used in 2 CPU SMPs
 - Xeon can be used in 4 CPU SMPs
- Athlon
 - Processor architecture like PIII, bus like Compaq Alpha
 - Two 64KB L1 caches and one 256 KB L2 cache
 - Has SSE but not SSE2
 - Can be used in 2 CPU SMPs

HP/Compaq/DEC Alpha 21264

- True 64 bit architecture
- RISC (Reduced Instruction Set Computer)
 - Simple instructions at high clock rate
- Fastest for a long time
- Used in Cray T3D and T3E
- Popular in early and large clusters due to superior fp performance e.g. Los Alamos NL ASCI Q
Power PC G5

- IBM and Apple Mac
- 64 bit CPU running at over 2GHz (2003), 2.5GHz (2005)
- Up to 1.25GHz front-side bus
- Multiple functional units

IA64 Itanium

- New IS, cache design, fp processor
- Clock rates up to 1.6 GHz (2004), multiway fp instruction issue
- Aimed at 1 to 2 Gflops performance
 - HPServer rx 4610, 800 Mhz Itanium SPECfp2000 of 701
 - HP rx2600, 1.5 GHz I2, SPECfp2000 of 2119
 - I2 is significantly faster
- Both need efficient compilers to exploit EPIC (Explicitly Parallel Instruction Computing)
AMD Opteron

- Supports IA32 and IA64 ISA
- Can run legacy 32 bit codes
- Can access in excess of 4GB memory with new 64 bit instructions
- Integrated DDR memory controller
- Up to 3 high-performance "Hypertransport" interconnects with 6.4GB/sec bandwidth per CPU
- Early Opterons had SPECfp2000 of 1154
- Can have 2 CPU SMPs each with separate memory busses
- More popular than I2 for clusters (cost-performance)

Dual Core Processors

- Opteron
 - for servers by mid-2005
 - for clients late-2005
 - possibly Itanium by mid-2005
- One die with 2 CPU cores, each core has its own 1MB L2 cache
- Drops into existing AMD Opteron 940-pin sockets
- 2 CPU cores share the same memory and HyperTransport™ technology resources found in single core AMD Opteron processors
Memory (RAM)

- Standard Industry Memory Module (SIMM) – RDRAM and SDRAM
- Access to RAM is extremely slow compared to the speed of the processor
 - Memory busses (front side busses FSB) run at 100MHz to 800MHz
 - Memory speed metrics
 - Peak memory bandwidth: burst rate from RAM to CPU
 - Currently 1 to 4 GB/secs
 - FSB must be fast enough for this
- Extended Data Out (EDO)
 - Allow next access to begin while the previous data is still being read
- Fast page
 - Allow multiple adjacent accesses to be made more efficiently

RAM size

- RAM size determines size of problem that can be run at reasonable speed
- Alternatives:
 - Out-of-core calculations
 - Virtual memory
- Old rule of thumb
 - 1B RAM per 1 flop (gross approximation)
Chipsets

- North Bridge: FSB connects CPU, memory bus, AGP
- South Bridge: I/O bus bridge, disk & USB controllers

I/O Channels

- Bus from peripherals to main memory
- Connected by a bridge (PCI chipset) to memory
I/O Channels

- **PCI bus (1994)**
 - 32 bit/33MHz: 133MB/s peak, 125MB/s attained
 - 64 bit/66MHz: 500MB/s peak, 400-500M/s in practice

- **PCI-X**
 - 64bit/133MHz: 900MB/s - 1GB/s peak

- **PCI-X 2**
 - 64bit/PCI-X 266 and PCI-X 533, offering up to 4.3 gigabytes per second of bandwidth

- **PCI-X requires a controller for every slot - just too expensive for desktop deployment**

I/O Channels

- **AGP (not really a bus)**
 - High speed graphics adapters
 - Better peak than PCI and PCI-X
 - Not bus
 - Not symmetric – slower from graphics card to memory
 - Directly addresses main memory – can only support one device
 - AGP 2.0 (4x) peak 1GB/s to main memory, AGP 3.0 (8x) is 2.1 GB/s

- **Legacy Busses (Slow)**
 - ISA bus (AT bus)
 - Clocked at 5MHz and 8 bits wide
 - Clocked at 13MHz and 16 bits wide
 - VESA bus
 - 24/32 bits bus matched system’s clock speed
PCI-Express

- High-bandwidth, low pin count, serial, interconnect technology
- An assembly of serial, point-to-point wired, individually clocked ‘lanes’ each consisting of two data lines of 2.5Gb/s, one upstream and one downstream
- x1 : 2.5Gb/s (250MB/s) bidirectional for Gigabit Ethernet, TV Tuners, 1394a/b controllers, and general purpose I/O.
- x16 : 4GB/s bidirectional for video cards (double AGPx8)
- Express Card (successor to PCMCIA for laptops)
 - Supports x1 PCI-Express and Fast USB

PCI Bus v PCI Express Switch

Switch avoids bus contention/arbitration
Motherboard

- PCB (Printed Circuit Board)
- Next to CPU most important component for performance
- Sockets/connectors include:
 - CPU, Memory, PCI/PCI-X, AGP, Floppy disk
 - ATA and/or SCSI
 - Power
 - LEDs, speakers, switches, etc
 - External I/O
- Chips
 - System bus to memory
 - Peripheral bus to system bus
 - PROM with BIOS software

Motherboard

- Choice restricts
 - CPU
 - Clock speed
 - # of CPUs
 - Memory capacity, type
 - Disk interfaces
 - Number and types of I/O busses
Motherboards – I2

- Supermicro i2DML-8G2
- Dual I2
- Intel E8870 chipset
- 400 MHz FSB
- 64-bit 133/100 MHz PCI-X

http://www.supermicro.com/PRODUCT/MotherBoards/E8870/i2DML-8G2.htm

Motherboards - Opteron

- Tyan Thunder K7
- Dual Opteron
- AMD’s new 760MP chipset
- DDR memory support,
- 64-bit PCI slots,
- AGP Pro slot (and integrated VGA),
- dual LAN controllers,
- dual-channel Ultra160 SCSI,
Motherboards - Opteron

- Tyan Thunder K8S
- Dual Opteron
- Two 128-bit DDR memory buses
- Two independent PCI-X buses
- Two 64-bit 66/33 MHz (3.3-volt) PCI-X slots - from PCI-X bridge A
- Two 64-bit 133/100/66/33 MHz (3.3-volt) PCI-X slots - from PCI-X bridge B (closer to CPUs)
- One Legacy 32-bit 33MHz (5-volt) PCI slot 64-bit PCI slots
- dual LAN controllers,
- dual-channel Ultra160 SCSI,

Motherboards - Opteron

- Tyan Thunder K8WE
- Dual Opteron
- Three HyperTransport links support up to 6.4GB/s data transfer rate each link
- 144-bit DDR interface (128-bit data + 16 bit ECC)
- Supports up to 16GB of Registered DDR 400/333/266 memory
- dual LAN controllers,
- dual-channel Ultra160 SCSI,

Two x16 PCI Express FULL SPEED slots
- Slot1 PCI-E x16 from nForce Prof. 2200
- Slot3 PCI-E x16 from nForce Prof. 2050
- Two independent 64-bit PCI-X buses
- Slot 4 & 5: PCI-X 100 MHz max. (Bridge B)
- Slot 6: PCI-X 133 MHz max. (Bridge A)
- One 32-bit 33MHz PCI v2.3 (Slot 2)
BIOS

- Software that initializes system so can boot, does POST (power on self test) including memory test, SCSI and IDE bus initialization
- BIOS is motherboard specific
- Various BIOSes
 - PXE (Pre-execution environment) allows boot from network config and boot images
 - Uses DHCP and tftp
 - Can be in BIOS or ethernet card initialization code
 - LinuxBIOS streamlined but does not support all OSes
 - Linux and Windows 2000
 - Adv: source available, faster (<5 sec v 10 to 90 secs)

Local Hard Disks

- Disk busses: SCSI, IDE (EIDE or ATA), SATA (serial ATA)
- IDE controllers on motherboard support 2 busses of 2 devices each. Higher CPU utilization v SCSI.
 - Fastest UDMA133: 133 MB/s
- SCSI used in servers.
 - Faster (up to 320 MB/s), more devices, more expensive
- SATA: serial as opposed to parallel (ATA, SCSI)
 - 150 MB/s, smaller cables, 2 devices per bus, hot pluggable
 - Easier to increase bus speeds
- Disk platter speeds: 5400, 7200, 10000, 15000rpm
Local Hard Disks

• Overall improvement in disk access time has been less than 10% per year
• Amdahl's law
 – Speed-up obtained from faster processors is limited by the slowest system component
• Parallel I/O
 – Carry out I/O operations in parallel, supported by parallel file system based on hardware or software RAID

RAID

• Redundant Array of Inexpensive Disks
• Disk aggregate appear as single disk
• Adv: larger data, faster, redundancy
• Software (possibly high CPU utilization) or hardware
• RAID versions
 – RAID0: striping across multiple disks, faster reads & writes
 – RAID1: mirroring, 2 copies of data, faster read, slower write
 – RAID5: one disk for parity info, can recover data from disk failure, read faster, writes require checksum computation
• RAID used on cluster storage nodes
Nonlocal Storage

- Storage device bus traffic transferred over network
 - Net may be dedicated or shared
- iSCSI: SCSI encapsulated in IP
 - Possible bottleneck
 - FibreChannel similar but dedicated network and protocol
- Network file systems: NFS & PVFS
 - Data transmitted with filesystem semantics

Video

- Usually only to debug hardware & update BIOS
- Advanced not needed unless cluster used for visualization
 - e.g. tiled displays
 - Used to show regions of 3D visualizations
- AGP or PCI
 - Nvidia GeForce, ATI Radeon, Matrox
Tiled Display

- Series of cluster nodes outputting to projector
- Usually back projection
- Synchronization issues
 - Software synch
 - genlock

Peripherals

- Other peripherals not usually used in clusters
 - USB (1.1, 2.0), Firewire
 - USB might be used for keyboard/mice
- Legacy interfaces
 - Keyboard, mice, serial (RS232), parallel
Packaging – Cases

- Early clusters used desktop or tower cases
- Cooling not a problem
- Density low

Packaging – Rack Mount

- Low profile cases (1U, 2U, 3U, 4U)
- 1U = 1.75in high
- Designed for rack mount
- High density, good serviceability
- Need to be careful of cooling needs
Packaging – Blade Servers

- Machines packed as tightly as possible
- Very high density
- May have shared components e.g. power
- Blades specialized and not usually expandable
- Usually most expensive per unit option

Cluster Hardware Configuration

- Having chosen the hardware configuration, need to decide vendor
- Cluster vendors – integrated solutions, support
 - Large system vendors
 - Specialist vendors
- White boxes – use custom system vendors without cluster experience – hardware but not software maintenance
 - Specify exact parts
- DIY – specify and buy parts, and assemble yourself
Cluster Vendors

http://dmoz.org/Computers/Parallel_Computing/Beowulf/Vendors/

- Alinka
- Armari
- Aspen Systems
- Atipa
- GraphStream
- Linux NetworX
- Microway
- Penguin Computing
- PSSC Labs
- RackSaver
- RocketCalc

Large System Vendors
Cluster in Computer Science

- Fianna 32 dual PIII-450 nodes with Gigabit & 100Mbs Ethernet
- Cluster Ohio cluster: 8 nodes each with four 550 Megahertz Intel Pentium III Xeon with Myrinet
- RocketCalc clusters
 - 4 boards each with dual Intel Pentium Xeon 2.4 GHz processors with Gigabit Ethernet

Clusters at OSC 2004

- OSC IA32 Cluster
 - 128 compute and 16 I/O nodes each with
 - Two gigabytes of RAM
 - Two, 1.4 GHz AMD Athlon MPs, each with 256kB of secondary cache
- OSC Itanium 2 Cluster (includes SGI Altix 3000)
 - 32 processor SGI Altix 3000 for SMP and large memory applications
 - 128 parallel compute nodes
 - 900 Megahertz Intel Itanium 2 processors with 1.5MB of tertiary cache, 4GB RAM
 - 20 serial compute nodes with 20GB RAM
Clusters at OSC 2005

- OSC Pentium 4 Cluster
 - 252 compute and 16 I/O nodes each with
 - Four gigabytes of RAM
 - Two 2.4 GHz Pentium Xeon, each with 512kB of secondary cache
 - 100Base-T and 1000Base-T Ethernet
 - 112 with Infiniband 10Gb interface

- OSC Itanium 2 Cluster (includes SGI Altix 3000)
 - 32 processor SGI Altix 3000 for SMP and large memory applications
 - 128 parallel compute nodes
 - 900 Megahertz Intel Itanium 2 processors with 1.5MB of tertiary cache, 4GB RAM
 - 20 serial compute nodes with 12GB RAM

OSC – BALE Cluster

- 50 node dual purpose system
- Used to run classroom and when not in use to run graphics rendering jobs
 - Dual processor AMD system, Tyan Tiger MPX 760MPX Motherboard
 - 1.53GHz AMD Athlon 1800MP CPUs
 - Myrinet 2000 interface
 - Quadro4 900 XGL graphics board
Pitfalls

- Need to ensure adequate power and cooling
 - Otherwise unpredictable behavioral problems
- Use a console solution
 - Crash cart or KVM switch to see BIOS errors at boot
- Profile the target applications
 - Benchmarks a guide but no substitute
- Remember if you have 64 nodes you may have to do it 64 times
 - So saving small amounts by buying parts may not be cost effective