System Area Networks (SANs)

- Hardware
 - Nodes: Network Interface Card (NIC) on I/O bus (PCI, PCI-X, PCI-Express) or maybe on motherboard
 - Components
 - Hardware to interface with physical layer of network (copper or fiber)
 - Hardware to interface with I/O bus
 - Transmission rate limited by speed of I/O bus and network
 - Currently more by I/O bus

Network Interface Location

- NI location
 - Critical to performance and usability
 - NI1
 - transputer, most implemented at the prototype phase
 - NI2
 - best place for NI, but proprietary system buses
 - NI3
 - most common today, no way to support cache coherence

Data Transfer Process

General Architecture (III)

- NI-1
 - instruction set (special communication registers)
 - Transputer from INMOS
 - iWarp, related systolic architecture
 - not successful (too small market)
- NI-2
 - ideal (case of high performance bus)
 - system bus based NI
 - on cache-coherent NI registers
 - DMA can read/write from/to main memory using burst cycle
 - NI implementation only
NI on I/O bus

- **NI-3**
 - PCI (PCI-X or PCI-Express) based NI
 - use on any system w/ PCI(-X etc) I/O bus
 - PCI bus (1994)
 - 32 bit/33MHz : 133MB/s peak, 125MB/s attained
 - 64 bit/66MHz : 500MB/s peak, 400-500M/s in practice
 - PCI-X
 - 64bit/133MHz : 900MB/s - 1GB/s peak
 - PCI-X 2
 - 64bit/PCI-X 266 and PCI-X 533, up to 4.3 gigabytes per second of bandwidth
 - PCI-Express x1 : 2.5Gb/s
- Another disadvantage of the I/O bus location is the loss of some properties such as cache coherence

Network Links

- Vary from commodity LAN (ethernet) to SAN (Myrinet etc)
 - Fiber and Copper
 - Links can be half or full-duplex
 - Full duplex – no collisions
 - Half duplex – performance degraded due to collisions
 - Latency increases due to retransmissions
 - Aggregate bandwidth lower due to cost of collision detection
- Throughput/Latency important parameters
 - 10 Mbps, 100 Mbps, 1 Gbps, 10 Gbps Ethernet
 - Myrinet 2+2Gbps, Dolphin 2.6Gbps, SCI 3.2Gbps, Quadrics 6.6Gbps
 - Infiniband (10Gbps)

Links

- Fast Ethernet
 - 100 Mbps
 - CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
- HiPPI (High Performance Parallel Interface)
 - copper-based, 800/1600 Mbps over 32/64 bit lines
 - point-to-point channel
- ATM (Asynchronous Transfer Mode)
 - connection-oriented packet switching
 - fixed length (53 bytes cell)
 - suitable for WAN, 155/622 Mbps
- SCI (Scalable Coherent Interface)
 - IEEE standard 1596, hardware DSM support, 400MBs

Links

- ServerNet
 - 1 Gbps
 - originally, interconnection for high bandwidth I/O
- Myrinet
 - programmable microcontroller
 - 1.28 Gbps – 2 Gbps
- Memory Channel
 - 800 Mbps
 - virtual shared memory
 - strict message ordering
- Infiniband
 - 10 Gbps
Network Devices

- Hardware interconnecting links
- Main types: hubs, switches
 - Hubs
 - Only possible if link allows contention
 - Single broadcast domain, half-duplex links, inexpensive
 - Need collision/contention detection
 - In presence of contention throughput can drop to 35%
 - Common in 10/100 Mbps
 - Not suitable for clusters

Network Devices

- Switches
 - Predominant due to price drops/performance benefits
 - Switches build database mapping ethernet hardware address to port last seen on
 - Only first frame need be broadcast
 - Performance of switches
 - Backplane bandwidth e.g. 16 Gbps = 16 ports at 1 Gbps
 - Packets per second
 - Non-blocking
 - Small networks – one switch
 - Larger networks – require multiple switches
 - To reduce bottlenecks on inter-switch links, link aggregation or trunking can be used i.e use multiple links and treat as one

Hashing Problems in Trunked Links

- Hashing used to distribute traffic over links
- Sub-optimal in cluster due to:
 - Uniformity of hardware
 - Sequential IP and possibly NIC addresses
 - Round robin hashing: good traffic distribution but packet reordering causes problem for higher network layers
- Some switches e.g. Myricom use source routing
 - More scalable
 - Client need to maintain routes to all other clients
 - Leads to better overall performance

Aims

- Price vs. Performance
 - production volume, expensive physical layer, amount of storage
 - Fast/Gigabit Ethernet($0-$500) vs. Myrinet or ServerNet ($500 - $800 or more)
- Scalability
 - fixed topology vs. dynamic topology, shared media vs. private media
 - traditionally fixed network topology (mesh, hypercube)
 - clusters are more dynamic
 - network can tolerate the increased load and deliver nearly the same bandwidth latency
 - can afford larger number of nodes
Aims

- Reliability
 - CRC check level/provider, buffering storage for retransmission, protocol complexity
 - two classes of parallel computer
 - scientific and business computing
 - Networks can operate without software overhead
 - error free physical layer
 - CRC can be computed by NIC itself
 - error signaling (interrupt or status registers)
 - NIC side buffer

Fast Ethernet (I)

- 100 Mbps over UTP or fiber-optic cable
- MAC protocol: CSMA/CD (Carrier Sense Multiple Access with Collision Detection)

Fast Ethernet (II)

- Interconnection devices
 - Repeater
 - restore data and collision signal
 - amplify and regenerate signals
 - Hub
 - central point
 - repeat and copy: All can see it
 - Bridge
 - link adjacent LANs: datalink layer
 - filtering
 - forward to other segment
 - Router
 - link adjacent LANs: network layer
 - shortest path

Gigabit Ethernet Fundamentals

- Gigabit Ethernet (802.3z) 1Gbps
 - Modified Fiber Channel physical layer
 - Actual Bit Rate 1,250,000,000 bits/second!
- Media: Fiber (multimode,singlemode), UTP Cat 5
- Uses the 802.3 Ethernet frame format.
- Full-duplex (point to point) mode and/or half-duplex (switched) mode.
- Half-duplex mode
 - Uses enhanced CSMA/CD access method
 - requires carrier extension to 512 byte time slot to preserve 200m collision domain
 - thus wastes bandwidth
Gigabit Ethernet Fundamentals Cont.

- Support Fiber and Copper media.
 - 25 meters short link copper.
 - 100 meters horizontal copper.
 - 500 meters multimode fiber.
 - 3000 meters single mode fiber.
- Ethernet – Next Generation.
 - 10 Gigabit Ethernet (802.3ae).
 - http://www.10gea.org/

Myrinet (I)

- A SAN evolved from supercomputer technology
- A main product of Myricom (founded in 1994)
- Quite popular in the research community
 - all HW & SW specifications are open & public
- Based on 2 research projects
 - Mosaic by Caltech
 - a fine grain supercomputer, need a truly scalable interconnection network with lots of bandwidth
 - Atomic LAN by USC
 - based on Mosaic technology, a research prototype of Myrinet
- Initial Speed: 1.28 Gbps
- Good price/performance ratio

Myrinet (II)

- Host interface
 - LANai chip
 - a custom VLSI chip, a programmable microcontroller
 - control the data transfer between the host & the network
 - SRAM memory
 - Message data must first be written to the NI SRAM, before it can be injected into the network
 - (+) the great flexibility of the HW due to a programmable microcontroller,
 - (-) but can also be a bottleneck with respect to performance since the LANai runs only at moderate frequencies

Myrinet Host Interface
Myrinet (III)

- Link and Packet Layer
 - similar to ServerNet
 - full duplex 9 bit parallel channel in one direction running at 80MHz
 - network offer 160Mbyte/s physical bandwidth over one channel
 - two different cable type (SAN, LAN)
 - 3m SAN link, 10m LAN link
 - variable length data format
 - route with wormhole switching
 - source path routing
 - consist of routing header
 - special control symbols (STOP, GO)

Myrinet Flow Control (Slack Buffer Operation)

- Slack_A
- Slack_B

Myrinet (IV)

- Switches
 - 4, 8 and 16 ports, mixable SAN and LAN
 - Now modular switches for up to 128 or 256 nodes
 - any network topology
 - autodetect the absence of a link
 - starting up, host interface detects network topology automatically

- Error Handling
 - MTBF: million hours are reported
 - cable fault and node failure
 - alternative routing by LANai
 - prevent deadlock: time out generates a forward reset (FRES) signal

Performance of Message Layers over Myrinet

- BIP : Basic Interface for Parallelism
- PM : SCore Protocol Module - low-level high performance communication library
- AM : Active Messages

<table>
<thead>
<tr>
<th>Machine</th>
<th>API</th>
<th>Latency (μs)</th>
<th>Bandwidth (Mbit/s)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 MHz PPro</td>
<td>BIP</td>
<td>4.8</td>
<td>1009</td>
<td>LHPC</td>
</tr>
<tr>
<td>106 MHz Pentium</td>
<td>PM</td>
<td>7.2</td>
<td>941</td>
<td>RWCP</td>
</tr>
<tr>
<td>Ultra-1</td>
<td>AM</td>
<td>10</td>
<td>280</td>
<td>GAM</td>
</tr>
<tr>
<td>200 MHz PPro</td>
<td>TCP (Linux/BIP)</td>
<td>293</td>
<td>324</td>
<td>LHPC</td>
</tr>
<tr>
<td>200 MHz PPro</td>
<td>UDP (Linux/BIP)</td>
<td>271</td>
<td>271</td>
<td>Duke</td>
</tr>
<tr>
<td>DEC Alpha 500/256</td>
<td>TCP (Digital Unix)</td>
<td>404</td>
<td>404</td>
<td>Duke</td>
</tr>
</tbody>
</table>
Myrinet 2000

- Myrinet 2000 has nominal 2+2 Gigabits/s performance
- For Myrinet-2000 with MX-2G software, the following user level performance is typical

<table>
<thead>
<tr>
<th>Metric</th>
<th>Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>MX or MPI latency</td>
<td>3.2µs (D-card NICs)</td>
</tr>
<tr>
<td></td>
<td>2.6µs (E- or F-card NICs)</td>
</tr>
<tr>
<td>MX or MPI unidirectional data</td>
<td>247 MBytes/s (one-port NICs)</td>
</tr>
<tr>
<td>rate</td>
<td>495 MBytes/s (two-port NICs)</td>
</tr>
<tr>
<td>TCP/IP data rate (MX</td>
<td>1.98 Gbits/s (one-port NICs)</td>
</tr>
<tr>
<td>ethernet emulation)</td>
<td>3.95 Gbits/s (two-port NICs)</td>
</tr>
</tbody>
</table>

Myrinet-10G

- Myri-10G solutions are 10-Gigabit Ethernet compatible
- Cards utilize PCI-Express x8 slots
- In Ethernet mode are fully compliant with Ethernet standards
 - near-wire-rate TCP/IP and UDP/IP throughput (9.7-9.9 Gbits/s)
- Broader software support for 10-Gigabit Myrinet and Low-Latency 10-Gigabit Ethernet is MX (Myrinet Express)
 - low-latency, kernel-bypass communication using MPI and Sockets APIs
 - 2.3µs MPI latency with MPICH-MX, 1.2 GBytes/s one-way (PingPong) data rate, and 2.4 GBytes/s two-way (SendRecv)

I/O Architecture Trends

- I/O Moving Outside the Box
- Switched Fabrics Provide Scalability
- But Must Terminate Into a Common, Shared I/O Bus

Infiniband Architectural Goals

- Bandwidth tracking Moore’s Law or better
- Improved latency and fewer interrupts compared to current architectures
- Competitive cost for every tier of server market
- Unified interconnect for IPC, network I/O, storage I/O
- Scalable to hundreds-thousands of endpoints
- Message-based model
- Support emerging distributed applications
- Very high reliability and availability
- Complement to Internet computing strategies
- Practical to implement
InfiniBand™ Protocol Features

- Flow & rate control
 - Static rate control to control sources and destinations of different speeds
 - Credit based link-level flow control for efficient congestion avoidance
- Partitioning
 - For performance and functional isolation
 - Transparent I/O Sharing
- Multicasts
 - A single message is distributed by the fabric to multiple destinations
- Network topology
 - Subnet support
 - IPv6 GUIDs for unique end-point id
 - IPv6 addressing headers for global routing
 - Speed matched to the backbone
 - IP compatible fabric management

InfiniBand Components

- Link
- Switch
- Router
- Target Channel Adapter (TCA) – I/O devices
- Host Channel Adapter (HCA) - machines

InfiniBand™ Architecture (IBA)

Layered Architecture

- Provides forward and backward compatibility / inter-operability
- Allows layers to evolve at the rate technology evolves.
Infiniband Channel-Based I/O

- Logical, connection-based path between two address spaces
- Protected DMA engine at each end
- Driven by pairs of Work Queues

InfiniBand™ IPC

- Sockets
 - Match IPC Hardware to Legacy Software Needs
- Fast IPC
 - OS Vendor Provided
 - Native HW Performance
- I/O Transport
 - Message Based
 - General Purpose Transport

Infiniband Message & Connection Concepts

- Message Types
 - Send / Receive
 - Remote Direct Memory Access (RDMA)
 - Reads
 - Writes
 - Optional
 - Atomic (Compare&Swap, Fetch&Add)
 - Multicast

- Connection Types
 - Reliable
 - Acknowledged
 - Unreliable
 - Unacknowledged
 - Connected
 - Specific queue pair relationship
 - Datagram
 - Indirect destination

Message

- Applications, drivers, devices, adapters, etc. execute transactions via logical units of work termed messages.
- Messages are moved via the InfiniBand™ technology transport layer.
- H/W-based memory / resource protection to prevent unauthorized access
- Message semantics supported are:
 - Memory - RDMA Read / Write
 - Channel - Send / Receive
 - Atomics (optional functionality)
 - Multicast (optional functionality)
Packet

- InfiniBand™ technology H/W provides automatic message segmentation and re-assembly via packets
- End-to-end fabric unit of transfer
- Routable unit of transfer
- End-to-end unit of acknowledgment for reliable transport services
 - H/W-based timeouts and per QP packet sequence numbers
 - Sequence number space is large to support, e.g. long distance
 - End-to-end unit of recovery for hard failures, e.g. cable disconnect

InfiniBand Link

- Link
 - Full duplex
 - Point-to-point
 - 1-bit (1X) – 2.5Gbps
 - 4-bit (4X) – 10Gbps
 - 12-bit (12X) – 30Gbps
- Copper Cable, Optical Fiber, and printed circuit.
- Vendor Specific.
- May be used in Parallel.
- Latency about 1.3 to 2.6 microsec

Double and Quad Rate

- InfiniBand standard supports double and quad data speeds, for 5 Gbit/s or 10 Gbit/s respectively
- Single rate have been available for some time
- Double rate have recently become available

<table>
<thead>
<tr>
<th>Rate</th>
<th>Double</th>
<th>Quad</th>
</tr>
</thead>
<tbody>
<tr>
<td>1x</td>
<td>4Gbits/s</td>
<td>8Gbits/s</td>
</tr>
<tr>
<td>4x</td>
<td>16Gbits/s</td>
<td>32Gbits/s</td>
</tr>
<tr>
<td>12x</td>
<td>48Gbits/s</td>
<td>96Gbits/s</td>
</tr>
</tbody>
</table>

InfiniBand Switch

- Switch
 - Local network routing
 - Implements up to 255 ports
 - Local Route Header
 - 16-bit Source Local ID
 - 16-bit Destination Local ID
 - Port 0
 - Forwarding table
 - Service Level to Virtual Lane mapping table
 - Non-multiplexed
 - Full-multiplexed

Infiniband Switch

- Switches route packets only within a single subnet to reduce complexity and solution cost.
- Optional switch-based multicast for unreliable, datagram service.

Infiniband Router

- Superset of InfiniBand™ technology Switch functionality.
- Provides routing between subnets.
 - Subnetting improves scalability, management, etc.
 - Subnets leverage IP subnet architecture / concepts.
- Independent Hardware Vendors may provide a variety of value-add solutions across a wide range of price / performance points.
- Routers may join InfiniBand technology fabric instances to same or disparate fabrics (disparate support is optional).
 - Disparate fabric support allows InfiniBand™ technology subnets to be joined using alternative, intermediate fabrics.
 - Optional multiple protocol support via raw packet over a consolidated data center fabric to remote end nodes.

InfiniBand Target Channel Adapter

- Target Channel Adapter (TCA)
 - Network Interface Card
 - Connects I/O devices
 - Subnet manager
 - Assigns Local IDs

Diagram from [16]
InfiniBand Host Channel Adapter

- Host Channel Adapter
 - Network Interface Card
 - Connects Processors
 - May have memory (0-512MB)
 - Subnet manager agent
 - Assigns Local IDs
 - Location of subnet manager

Infiniband Message-level Flow Control

- Prevents a transport-level "Receive Buffer Empty" NAK.
- Message Level Flow control is invoked for:
 - Sends to a Queue Pair with no Receive Buffer Posted
 - Sends or RDMA accesses to memory that is paged out.
- Reliable Connection:
 - ReceiverNotReady & ReceiverReady frames pace the flow of data.
 - Flow control is invisible to the client.
- Reliable Datagram:
 - ReceiverNotReady NAK indicates message wasn't received.
 - Flow control is visible to the client.
- Unreliable Datagram & Raw Packet:
 - No flow control.

Infiniband Link Characteristics: Addressing

- GUID (Globally Unique Identifier) - Each TCA, HCA, Switch, and Router has a single unique GUID.
- Local ID (LID) - Subnet-unique, 16-bit ID used to identify and route a packet to an endnode port within a single subnet.
- IP Address - Global-unique 128-bit IPv6 ID used to identify an endnode by applications and to route packets between subnets.
 - Each switch and router has one or more LIDs and IPv6 addresses that are used when it is the destination endnode for management messages.

Packet Header Ordering

- LRH - Local Route Header
- GRH - Global Route Header
- BTH - Base Transport Header
- ExTH - Extended Transport Header
- Ex Op Payload
- I-CRC - Invariant CRC (32-bit)
- V-CRC - Variant CRC (16-bit)
Data Integrity

- **I-CRC** - Invariant CRC (32-bit)
 - covers only the fields that do not change from hop to hop
- **V-CRC** - Variant CRC (16-bit)
 - provides link-level data integrity between two hops
- InfiniBand includes the I-CRC so that if a bit error is introduced within a device, the error will always be detected.

Local Route Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>VL</td>
<td>4</td>
</tr>
<tr>
<td>Vers</td>
<td>4</td>
</tr>
<tr>
<td>NH</td>
<td>2</td>
</tr>
<tr>
<td>Rsv</td>
<td>5</td>
</tr>
<tr>
<td>Pkt Len</td>
<td>11</td>
</tr>
<tr>
<td>Source LID</td>
<td>16</td>
</tr>
<tr>
<td>Destination LID</td>
<td>16</td>
</tr>
</tbody>
</table>

- LRH used to route packets within subnets.
- **VL** - Actual Virtual Lane Used
- **Vers** - LRH Version
- **NH** - Next Header - indicates next header
 - InfiniBand™ technology transport, GRH, IPv6 (raw), Ethertype (raw)
- Destination LID - Subnet Local Destination Address Identifier
- Rsv - Reserve Field
- Pkt Len - Packet Length (multiple of 4 bytes - up to 8KB)
- Source LID - Subnet Local Source Address Identifier

Global Route Header

<table>
<thead>
<tr>
<th>Field</th>
<th>Bits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vers</td>
<td>4</td>
</tr>
<tr>
<td>TC</td>
<td>8</td>
</tr>
<tr>
<td>Flow ID</td>
<td>20</td>
</tr>
<tr>
<td>Pkt Len</td>
<td>16</td>
</tr>
<tr>
<td>NHdr</td>
<td>8</td>
</tr>
<tr>
<td>Hop</td>
<td>8</td>
</tr>
<tr>
<td>Source IPv6 Address</td>
<td>128</td>
</tr>
<tr>
<td>Destination IPv6 Address</td>
<td>128</td>
</tr>
</tbody>
</table>

- GRH used to route packets between subnets.
- GRH is defined per RFC 2460. This is the base IPv6 header.
- Present in all packets if the LRH Next Header = GRH.
- Each end node shall be assigned an unique IPv6 address
- Applications target an end node by its IPv6 address
- An end node may be assigned multiple IPv6 addresses

Infiniband Link Level Flow Control

- Credit-based link-level flow control
- Link Receivers grant packet receive buffer space credits per VL
- Multiple Virtual Lanes (VLs) on each Physical link provide:
 - Priority arbitration, with VLs assigned priority scheme.
 - Alleviation of head-of-line blocking.
Infiniband Link Characteristics

- 2.5 Gbaud signaling rate
 - Auto-negotiation for future higher speed signaling
- All links full-duplex
- 1, 4, and 12 wide link widths
- Common backplane connector(s)
 - With auto-negotiation to mutually acceptable width

<table>
<thead>
<tr>
<th>Link Width</th>
<th>Signaling Rate</th>
<th>Bandwidth Unidirectional</th>
<th>Bandwidth Bidirectional</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.5 Gbaud</td>
<td>250 MBytes/s</td>
<td>500 MBytes/s</td>
</tr>
<tr>
<td>4</td>
<td>2.5 Gbaud</td>
<td>1 GByte/s</td>
<td>2 GByte/s</td>
</tr>
<tr>
<td>12</td>
<td>2.5 Gbaud</td>
<td>3 GBytes/s</td>
<td>6 GBytes/s</td>
</tr>
</tbody>
</table>

Infiniband Software Characteristics

Overview

- Software interface to transport layer
 - Verbs specification
- Major specification topics
 - Partitioning
 - Work Request management
 - Memory management

Infiniband Verb layer

- Application
- Operating System
- Driver
- Hardware
- API: defined by OSV
- Verb: defined by specification
- Driver + Channel Adapter = Channel functionality
- Link: defined by specification

Management Characteristics Infrastructure

- Fabric Management
- Partition Management
- Channel Establishment
- IO Resource Management
- Baseboard Mgmt
- SNMP
 - Fabric Topology & Fabric health
 - Communication policy enforcement
 - Connection primitives
 - Device enumeration, device mgmt
 - Enabling instrumentation in-band
 - Native support of SNMP

Dept of Computer Science
Kent State University

2/13/2007
Communications are “well known”

- QP 0 is Fabric Mgmt
- VL 15, QP 0 is reserved for fabric management
- QP 1 is General Service Interface
- GSI can forward packets to interested applications via packet handler interface
- Can also send redirect response to originator of MAD to refer to preferred QP

Subnet Manager

- SM can reside on any port of endnode, switch or router and can be implemented in hardware or in software.
- Discovers the subnet topology, assigns LIDs, GIDs, establishes pathways, and ensures its continued operation.
- All channel adapters and switches must implement an Subnet Management Agent (SMA) for handling communication with the subnet manager.
- There must be at least one subnet manager present to manage initialization and to reconfigure the subnet when a link goes up or down.
- An arbitration scheme selects a master subnet manager and other subnet managers operate in standby mode.

Infiniband Transport Characteristics Services

- When a QP (Queue Pair) is created it is set to provide one of the following services:
 - Reliable Connection
 - Unreliable Connection
 - Reliable Datagram
 - Unreliable Datagram
 - Multicast (optional)
 - Raw Packet (optional)
- Definition: “Reliable”
 - HW generates acknowledgments for every packet.
 - HW generates / checks packet sequence numbers
 - HW rejects duplicates, detects missing packets
 - Client transparent recovery from most fabric level errors.

Infiniband Sample Packet Exchange - Reliable Transports

- H/W generated ACKs
- Seq. # within ACK
- Cumulative ACKs
Infiniband Reliable Connection

One-to-one QP relationship between source end node and destination end node.

Provides:
- RDMA Support
- Send / Receive Support
- Atomic Support
- H/W generated ACKs
- Strong Packet Ordering
- Arbitrary message size, i.e. multi-packet messages

Infiniband Unreliable Connection

One-to-one QP relationship between source end node and destination end node.

Provides:
- No RDMA Read Support
- Send / Receive Support
- No Atomic Support
- No H/W generated ACKs
- Source provides incrementing sequence numbers - no packet ordering guaranteed at the destination.
- Arbitrary message size, i.e. multi-packet messages

Infiniband Reliable Datagram

One-to-many QP relationship between source end node and destination end node. Optional H/W implementation.

Provides:
- RDMA R/W Support
- Send / Receive Support
- Optional Atomic Support
- H/W generated ACKs.
- Strong Packet Ordering between any two end nodes
- QP Scalability
- Limited message size

Infiniband Unreliable Datagram

One-to-many QP relationship between source end node and destination end node.

Provides:
- No RDMA Support
- Send / Receive Support
- No Atomic Support
- No H/W generated ACKs
- No Packet Ordering
- Good QP Scalability
- Limited message size
Infiniband Unreliable Multicast

One-to-many QP relationship between source and destinations end nodes. Optional functionality.

Provides:
- Automatic packet replication within switches and routers - reduces number of packets injected into the subnet
- Send / Receive Support
- No RDMA Support
- No Atomic Support
- No H/W generated ACKs
- No Packet Ordering between end nodes
- Limited message size

Network Topology

- Easy Case: Single switch connecting all hosts
 - All hosts are equally well connected
- Multiple switches
 - Hosts on the same switch enjoy lower latency to one another
 - Depending on the topology packets between hosts not on the same switch experience greater latency
 - Links between switches may be aggregated to improve throughput

Topology

- Paths may not be fixed between hosts
- Performance metric: Bisection Bandwidth
 - Maximum bandwidth an arbitrary half of the nodes can use to the other half
- Full bisection bandwidth - may be desired
 - Need interconnect switches to maintain bandwidth
 - Often use 2 types of switches - ones that connect nodes and ones that connect other switches

Network Software

- User Level Communication Libraries e.g. MPI
- Implemented over transport layer and driver layer
- Protocols determine the syntax and functionality of the communications sessions including issues like
 - Media contention
 - Addressing
 - Fragmentation
 - Reliable Delivery
 - Ordered Delivery
 - Flow Control
Layer Functionality

- Ethernet: collision detection and avoidance
 - MAC level addressing
- IP: IP addressing (32 bit) and fragmentation
 - Also specifies transport layer (TCP, UDP, etc)
 - ARP maps IP addresses to Ethernet addresses
- TCP: reliable in-order delivery
- UDP: same functionality as IP but made available to users - unreliable datagram
 - Used for audio, video and where application provides reliable delivery
- GM: Myrinet driver, firmware, user library
 - Provides reliable in-order delivery, source routing
 - Kernel driver provides Ethernet emulation

Protocol Stacks and Drivers

- Protocol Stacks: software implementation of protocols
 - Provide interface for users e.g. socket in Unix
- Network Drivers: software that allows NIC to be used
 - Initialize NIC (registers, link auto-negotiation)
 - Send/receive frames
- Steps in sending
 - Application makes system call
 - Data processed by layers of protocol stack (e.g. TCP and IP)
 - Driver called to copy data across I/O bus and transmit
 - Some processing may be done on card to improve performance (e.g. checksum)

Receiving

- NIC receives data from link
- May do some processing on card
- NIC causes interrupt
- Kernel calls interrupt handler to copy data from NIC to system memory via I/O bus
- Protocol stack processes data and passes to application
- Interrupts cause context switches and reduce computational performance
- High-speed NIC may implement interrupt coalescing
 - Only interrupts every 10 or 100 packets
 - Reduces overhead but increases latency

Hardware Performance

- Three terms
 - Latency: time from sender to receiver
 - Important for synchronization (4-100 microsecs)
 - Bandwidth: rate of data transmission
 - Links (100Mbps – 10Gbps)
 - Switches (bandwidth and packets per second (PPS))
 - Topology of network
 - Bisection bandwidth
- Importance of each depends on application
Software Performance - Factors

- **Data Copies:**
 - One possibility: application to system memory to NIC
 - Optimization: copy from application to NIC directly
 - User level networking (VIA)
 - Hardware stack processing on NIC

- **TCP checksums**
 - Early GE used CPU – slowed network performance and caused CPU overhead

- **Interrupt processing**
 - Interrupt coalescing
 - Protocol stack processing in NIC hardware

- Addressed in high end NICs (interconnects such as Myrinet more so than Ethernet)

Network Choice – Cost, Performance, Servicibility

- **Cost**: $0 to $1000-$2000 per node
 - Expensive network means fewer nodes

- **Performance**: many applications require particular performance

- **Servicibility**: above 32 or 64 nodes some solutions may become unwieldy

- If have known applications could benchmark
 - Communications needs vary from rare to almost constantly