
1

1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Input and Interaction

• Introduce the basic input devices
- Physical Devices
- Logical Devices
- Input Modes

•Event-driven input
• Introduce double buffering for smooth 
animations

•Programming event input with GLUT

Objectives

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Project Sketchpad

• Ivan Sutherland (MIT 1963) established 
the basic interactive paradigm that 
characterizes interactive computer 
graphics:

- User sees an object on the display
- User points to (picks) the object with an input 

device (light pen, mouse, trackball)
- Object changes (moves, rotates, morphs)
- Repeat

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Graphical Input

•Devices can be described either by
- Physical properties

• Mouse
• Keyboard
• Trackball

- Logical Properties
• What is returned to program via API

– A position
– An object identifier

•Modes
- How and when input is obtained

• Request or event

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Physical Devices

mouse trackball light pen

data tablet joy stick space ball



2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Incremental (Relative) Devices

•Devices such as the data tablet return a 
position directly to the operating system

•Devices such as the mouse, trackball, and 
joy stick return incremental inputs (or 
velocities) to the operating system

- Must integrate these inputs to obtain an 
absolute position

• Rotation of cylinders in mouse
• Roll of trackball
• Difficult to obtain absolute position
• Can get variable sensitivity 

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Logical Devices

•Consider the C and C++ code
- C++: cin >> x;
- C: scanf (“%d”, &x);

•What is the input device?
- Can’t tell from the code
- Could be keyboard, file, output from another 

program
•The code provides logical input

- A number (an int) is returned to the program 
regardless of the physical device

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Graphical Logical Devices

• Graphical input is more varied than input to 
standard programs which is usually numbers, 
characters, or bits

• Two older APIs (GKS, PHIGS) defined six types 
of logical input

- Locator: return a position
- Pick: return ID of an object
- Keyboard: return strings of characters
- Stroke: return array of positions
- Valuator: return floating point number
- Choice: return one of n items

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

X Window Input for OpenGL

• The X Window System introduced a client-server 
model for a network of workstations

- Client: OpenGL program
- Graphics Server: bitmap display with a pointing 

device and a keyboard



3

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Input Modes

• Input devices contain a trigger which can 
be used to send a signal to the operating 
system

- Button on mouse
- Pressing or releasing a key

•When triggered, input devices return 
information (their measure) to the system

- Mouse returns position information
- Keyboard returns ASCII code

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Request Mode

• Input provided to program only when user 
triggers the device

•Typical of keyboard input
- Can erase (backspace), edit, correct until enter 

(return) key (the trigger) is depressed

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Event Mode

•Most systems have more than one input 
device, each of which can be triggered at 
an arbitrary time by a user

•Each trigger generates an event whose 
measure is put in an event queue which 
can be examined by the user program

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Event Types

•Window: resize, expose, iconify
•Mouse: click one or more buttons
•Motion: move mouse
•Keyboard: press or release a key
• Idle: nonevent

- Define what should be done if no other event is 
in queue



4

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Callbacks

•Programming interface for event-driven 
input

•Define a callback function for each type of 
event the graphics system recognizes

•This user-supplied function is executed 
when the event occurs

•GLUT example: 
glutMouseFunc(mymouse)

mouse callback function
14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

GLUT callbacks

GLUT recognizes a subset of the events 
recognized by any particular window 
system (Windows, X, Macintosh)

-glutDisplayFunc
-glutMouseFunc
-glutReshapeFunc
-glutKeyboardFunc
-glutIdleFunc
-glutMotionFunc, 
glutPassiveMotionFunc

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

GLUT Event Loop

• Recall that the last line in main.c for a program 
using GLUT must be
glutMainLoop();

which puts the program in an infinite event loop
• In each pass through the event loop, GLUT 

- looks at the events in the queue
- for each event in the queue, GLUT executes the 

appropriate callback function if one is defined
- if no callback is defined for the event, the event is 

ignored

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The display callback

• The display callback is executed whenever 
GLUT determines that the window should be 
refreshed, for example

- When the window is first opened
- When the window is reshaped
- When a window is exposed
- When the user program decides it wants to change the 

display
• In main.c

-glutDisplayFunc(mydisplay) identifies the 
function to be executed

- Every GLUT program must have a display callback



5

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Posting redisplays

• Many events may invoke the display callback 
function

- Can lead to multiple executions of the display callback on a 
single pass through the event loop

• We can avoid this problem by instead using
glutPostRedisplay();

which sets a flag. 
• GLUT checks to see if the flag is set at the end of 

the event loop
• If set then the display callback function is executed

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Animating a Display

• When we redraw the display through the display 
callback, we usually start by clearing the window

-glClear()

then draw the altered display
• Problem: the drawing of information in the frame 

buffer is decoupled from the display of its 
contents 

- Graphics systems use dual ported memory
• Hence we can see partially drawn display

- See the program single_double.c for an example 
with a rotating cube

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Double Buffering

• Instead of one color buffer, we use two
- Front Buffer: one that is displayed but not written to
- Back Buffer: one that is written to but not displayed

• Program then requests a double buffer in main.c
-glutInitDisplayMode(GL_RGB | GL_DOUBLE)
- At the end of the display callback buffers are swapped
void mydisplay()
{

glClear(GL_COLOR_BUFFER_BIT|….)
.
/* draw graphics here */
.

glutSwapBuffers()
}

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using the idle callback

• The idle callback is executed whenever there are no 
events in the event queue

-glutIdleFunc(myidle)
- Useful for animations
void myidle() {
/* change something */

t += dt
glutPostRedisplay();

}

Void mydisplay() {
glClear();

/* draw something that depends on t */
glutSwapBuffers();

}



6

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using globals

• The form of all GLUT callbacks is fixed
- void mydisplay()
- void mymouse(GLint button, GLint state, 
GLint x, GLint y)

• Must use globals to pass information to callbacks

float t; /*global */

void mydisplay()
{
/* draw something that depends on t
}


