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Representation

• Introduce concepts such as dimension 
and basis

• Introduce coordinate systems for 
representing vectors spaces and frames 
for representing affine spaces

•Discuss change of frames and bases
• Introduce homogeneous coordinates

Objectives
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Linear Independence

•A set of vectors v1, v2, …, vn is linearly 
independent if 

α1v1+α2v2+.. αnvn=0 iff α1=α2=…=0
• If a set of vectors is linearly independent, 
we cannot represent one in terms of the 
others 

• If a set of vectors is linearly dependent, as 
least one can be written in terms of the 
others
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Dimension

• In a vector space, the maximum number of 
linearly independent vectors is fixed and is 
called the dimension of the space

• In an n-dimensional space, any set of n linearly 
independent vectors form a basis for the space

• Given a basis v1, v2,…., vn, any vector v can be 
written as

v=α1v1+ α2v2 +….+αnvn

where the {αi} are unique
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Representation

•Until now we have been able to work with 
geometric entities without using any frame 
of reference, such as a coordinate system

•Need a frame of reference to relate points 
and objects to our physical world. 

- For example, where is a point? Can’t answer 
without a reference system

- World coordinates
- Camera coordinates
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Coordinate Systems

• Consider a basis v1, v2,…., vn

• A vector is written v=α1v1+ α2v2 +….+αnvn

• The list of scalars {α1, α2, …. αn}is the 
representation of v with respect to the given 
basis

• We can write the representation as a row or 
column array of scalars
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Example

• v=2v1+3v2-4v3

• a=[2 3 –4]T

•Note that this representation is with 
respect to a particular basis

•For example, in OpenGL we start by 
representing vectors using the object  
basis but later the system needs a 
representation in terms of the camera or 
eye basis
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Coordinate Systems

•Which is correct?

•Both are because vectors have no fixed 
location

v
v
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Frames

•A coordinate system is insufficient to 
represent points

• If we work in an affine space we can add 
a single point, the origin, to the basis 
vectors to form a frame

P0

v1

v2

v3
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Representation in a Frame

•Frame determined by (P0, v1, v2, v3)
•Within this frame, every vector can be 
written as 

v=α1v1+ α2v2 +….+αnvn

•Every point can be written as
P = P0 + β1v1+ β2v2 +….+βnvn
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Confusing Points and Vectors

Consider the point and the vector
P = P0 + β1v1+ β2v2 +….+βnvn

v=α1v1+ α2v2 +….+αnvn

They appear to have the similar representations
p=[β1 β2 β3]           v=[α1 α2 α3]
which confuses the point with the vector
A vector has no position v

p
v

Vector can be placed anywhere
point: fixed
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A Single Representation 

If we define 0•P = 0 and 1•P =P then we can write
v=α1v1+ α2v2 +α3v3 = [α1 α2 α3 0 ] [v1 v2 v3 P0] T

P = P0 + β1v1+ β2v2 +β3v3= [β1 β2 β3 1 ] [v1 v2 v3 P0] T

Thus we obtain the four-dimensional 
homogeneous coordinate representation

v = [α1 α2 α3 0 ] T

p = [β1 β2 β3 1 ] T
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Homogeneous Coordinates

The homogeneous coordinates form  for a three 
dimensional point [x y z] is given as

p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w≠0) by
x←x’/w
y←y’/w
z←z’/w

If w=0, the representation is that of a vector
Note that homogeneous coordinates replace points in 

three dimensions by lines through the origin in four 
dimensions

For w=1, the representation of a point is [x y z 1]
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Homogeneous Coordinates 
and Computer Graphics

•Homogeneous coordinates are key to all 
computer graphics systems

- All standard transformations (rotation, 
translation, scaling) can be implemented with 
matrix multiplications using 4 x 4 matrices

- Hardware pipeline works with 4 dimensional 
representations

- For orthographic viewing, we can maintain w=0
for vectors and w=1 for points

- For perspective we need a perspective division
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Change of Coordinate 
Systems

•Consider two representations of a the 
same vector with respect to two different 
bases. The representations are 

w=α1v1+ α2v2 +α3v3 = [α1 α2 α3] [v1 v2 v3] T

=β1u1+ β2u2 +β3u3 = [β1 β2 β3] [u1 u2 u3] T

a= [α1 α2 α3 ]T

b= [β1 β2 β3]T

where
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Representing second 
basis in terms of first

Each of the basis vectors, u1,u2, u3, are 
vectors that can be represented in terms 
of the first basis

The coefficients define a 
3 x 3 matrix

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3

v
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Matrix Form 

Then     u = M v

and the two representations of w can be 
related by

w = bT u = bT Mv = aT v
Hence bT M = aT or

See text for numerical examples

a=MTb
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Change of Frames

• We can apply a similar process in homogeneous 
coordinates to the representations of both points 
and vectors

• Any point or vector can be represented in either 
frame

• We can represent Q0, u1, u2, u3 in terms of P0, v1, v2, v3

Consider two frames:
(P0, v1, v2, v3)
(Q0, u1, u2, u3) P0 v1

v2

v3

Q0

u1
u2

u3
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Representing One Frame in 
Terms of the Other

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3
Q0 = γ41v1+γ42v2+γ43v3 +γ44P0

Extending what we did with change of bases

defining a 4 x 4 matrix
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Working with Representations

Within the two frames any point or vector has a 
representation of the same form

a=[α1 α2 α3 α4 ] in the first frame
b=[β1 β2 β3 β4 ] in the second frame

where α4 = β4 = 1 for points and α4 = β4 = 0 for vectors and

The matrix M is 4 x 4 and specifies an affine 
transformation in homogeneous coordinates

a=MTb
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Affine Transformations

•Every linear transformation is equivalent 
to a change in frames

•Every affine transformation preserves 
lines

•However, an affine transformation has 
only 12 degrees of freedom because 4 of 
the elements in the matrix are fixed and 
are a subset of all possible 4 x 4 linear 
transformations
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The World and Camera 
Frames

• When we work with representations, we work 
with n-tuples or arrays of scalars

• Changes in frame are then defined by 4 x 4 
matrices

• In OpenGL, the base frame that we start with is 
the world frame 

• Eventually we represent entities in the camera 
frame by changing the world representation 
using the model-view matrix

• Initially these frames are the same (M=I)
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Other Coordinates

•Clip coordinates
- projected to clip coordinates
- cube centered around origin used for clipping

•Normalized device coordinates
- produced by division by w, called perspective 

division

•Window coordinates
- using viewport produce 3 dimensional 

representation in pixel units
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Moving the Camera 

If objects are on both sides of z=0, we must move 
camera frame
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