Transformations

Objectives

- Introduce standard transformations
- Rotation
- Translation
- Scaling
- Shear
- Derive homogeneous coordinate transformation matrices
- Learn to build arbitrary transformation matrices from simple transformations

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 1

General Transformations

A transformation maps points to other points and/or vectors to other vectors

Affine Transformations

- Line preserving
- Characteristic of many physically important transformations
- Rigid body transformations: rotation, translation
- Scaling, shear
- Importance in graphics is that we need only transform endpoints of line segments and let implementation draw line segment between the transformed endpoints

Angel: Interactive Computer Graphics 4E © Addison-Wesley $2005 \quad$ KENT STATE ${ }^{3}$

Pipeline Implementation

Notation

We will be working with both coordinate-free representations of transformations and representations within a particular frame
P,Q, R: points in an affine space
u, v, w: vectors in an affine space
α, β, γ : scalars
$\mathbf{p}, \mathbf{q}, \mathbf{r}$: representations of points -array of 4 scalars in homogeneous coordinates
$\mathbf{u}, \mathbf{v}, \mathbf{w}$: representations of points
-array of 4 scalars in homogeneous coordinates

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{5}$

Translation

- Move (translate, displace) a point to a new location

- Displacement determined by a vector d
- Three degrees of freedom
- P'=P+d

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{6}$

How many ways?

Although we can move a point to a new location in infinite ways, when we move many points there is usually only one way

by same vector
Angel: Interactive Computer Graphics $4 \mathrm{E} @$ Addison-Wesley 2005 KENT STATE ${ }^{7}$

Translation Using Representations

```
Using the homogeneous coordinate
    representation in some frame
        \(\mathbf{p}=\left[\begin{array}{lll}\mathrm{x} & \mathrm{y} & \mathrm{z}\end{array}\right]^{\mathrm{T}}\)
    \(\mathbf{p}^{\prime}=\left[\begin{array}{ll}x^{\prime} & y^{\prime} \\ z^{\prime} & 1\end{array}\right]^{\mathrm{T}}\)
    \(\mathbf{d}=\left[d x\right.\) dy dz 0] \({ }^{\mathrm{T}}\)
Hence \(\mathbf{p}^{\prime}=\mathbf{p}+\mathbf{d}\) or
    \(\begin{array}{ll}\mathrm{x}^{\prime}=\mathrm{x}+\mathrm{d}_{\mathrm{x}} & \text { note that this expression is in } \\ \text { four dimensions and expresses }\end{array}\)
    \(y^{\prime}=y+d_{y} \quad \begin{aligned} & \text { four } \\ & \text { point }=\text { vector }+ \text { point }\end{aligned}\)
    \(\mathrm{z}^{\prime}=\mathrm{z}+\mathrm{d}_{\mathrm{z}}\)
    Angel: Interactive Computer Graphics 4E @ Addison-Wesley 2005 KENT SIATE \({ }^{8}\)
```


Translation Matrix

We can also express translation using a 4×4 matrix \mathbf{T} in homogeneous coordinates $p^{\prime}=\mathbf{T p}$ where
$\mathbf{T}=\mathbf{T}\left(\mathrm{d}_{\mathrm{x}}, \mathrm{d}_{\mathrm{y}}, \mathrm{d}_{\mathrm{z}}\right)=\left[\begin{array}{cccc}1 & 0 & 0 & \mathrm{~d}_{\mathrm{x}} \\ 0 & 1 & 0 & \mathrm{~d}_{\mathrm{y}} \\ 0 & 0 & 1 & d_{z} \\ 0 & 0 & 0 & 1\end{array}\right]$
This form is better for implementation because all affine transformations can be expressed this way and multiple transformations can be concatenated together

Rotation about the z axis

- Rotation about z axis in three dimensions leaves all points with the same z
- Equivalent to rotation in two dimensions in planes of constant z
$\mathrm{x}^{\prime}=\mathrm{x} \cos \theta-\mathrm{y} \sin \theta$
$\mathrm{y}^{\prime}=\mathrm{x} \sin \theta+\mathrm{y} \cos \theta$
$\mathrm{z}^{\prime}=\mathrm{z}$
- or in homogeneous coordinates

$$
\mathbf{p}^{\prime}=\mathbf{R}_{\mathbf{z}}(\theta) \mathbf{p}
$$

Rotation (2D)

Consider rotation about the origin by θ degrees

- radius stays the same, angle increases by θ

$\xrightarrow[\rightarrow]{ } \rightarrow \begin{aligned} x & =r \cos \phi \\ y & =r \sin \phi\end{aligned}$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{10}$

Rotation about x and y axes

- Same argument as for rotation about z axis
- For rotation about x axis, x is unchanged
- For rotation about y axis, y is unchanged

$$
\mathbf{R}=\mathbf{R}_{\mathrm{X}}(\theta)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & -\sin \theta & 0 \\
0 & \sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{R}=\mathbf{R}_{\mathrm{y}}(\theta)=\left[\begin{array}{cccc}
\cos \theta & 0 & \sin \theta & 0 \\
0 & 1 & 0 & 0 \\
-\sin \theta & 0 & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{13}$
Expand or contract along each axis (fixed point of origin)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{14}$

Inverses

- Although we could compute inverse matrices by general formulas, we can use simple geometric observations
- Translation: $\mathbf{T}^{-1}\left(d_{x}, d_{y}, d_{z}\right)=\mathbf{T}\left(-d_{x},-d_{y},-d_{z}\right)$
- Rotation: $\mathbf{R}^{-1}(\theta)=\mathbf{R}(-\theta)$
- Holds for any rotation matrix
- Note that since $\cos (-\theta)=\cos (\theta)$ and $\sin (-\theta)=-\sin (\theta)$ $\mathbf{R}^{-1}(\theta)=\mathbf{R}^{\mathrm{T}}(\theta)$
- Scaling: $\mathbf{S}^{-1}\left(s_{x}, s_{y}, s_{z}\right)=\mathbf{S}\left(1 / s_{x}, 1 / s_{y}, 1 / s_{z}\right)$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{16}$

Concatenation

- We can form arbitrary affine transformation matrices by multiplying together rotation, translation, and scaling matrices
- Because the same transformation is applied to many vertices, the cost of forming a matrix $\mathbf{M}=\mathbf{A B C D}$ is not significant compared to the cost of computing Mp for many vertices \mathbf{p}
- The difficult part is how to form a desired transformation from the specifications in the application

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{17}$

General Rotation About the Origin

A rotation by θ about an arbitrary axis can be decomposed into the concatenation of rotations about the x, y, and z axes

$$
\mathbf{R}(\theta)=\mathbf{R}_{\mathrm{z}}\left(\theta_{\mathrm{z}}\right) \mathbf{R}_{\mathrm{y}}\left(\theta_{\mathrm{y}}\right) \mathbf{R}_{\mathrm{x}}\left(\theta_{\mathrm{x}}\right)
$$

$\theta_{\mathrm{x}} \theta_{\mathrm{y}} \theta_{\mathrm{z}}$ are called the Euler angles
Note that rotations do not commute We can use rotations in another order but with different angles

Order of Transformations

- Note that matrix on the right is the first applied
- Mathematically, the following are equivalent

$$
\mathbf{p}^{\prime}=\mathbf{A B C} \mathbf{p}=\mathbf{A}(\mathbf{B}(\mathbf{C} \mathbf{p}))
$$

- Note many references use column matrices to represent points. In terms of column matrices

$$
\mathbf{p}^{\mathrm{T}}=\mathbf{p}^{\mathrm{T}} \mathbf{C}^{\mathrm{T}} \mathbf{B}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}}
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{18}$

Rotation About a Fixed Point other than the Origin

Move fixed point to origin
Rotate
Move fixed point back
$\mathbf{M}=\mathbf{T}\left(\mathrm{p}_{\mathrm{f}}\right) \mathbf{R}(\theta) \mathbf{T}\left(-\mathrm{p}_{\mathrm{f}}\right)$

Instancing

- In modeling, we often start with a simple object centered at the origin, oriented with the axis, and at a standard size
-We apply an instance transformation to its vertices to

Scale
Orient
Locate

- Equivalent to pulling faces in opposite directions

