Classical Viewing

Objectives

- Introduce the classical views
- Compare and contrast image formation by computer with how images have been formed by architects, artists, and engineers
- Learn the benefits and drawbacks of each type of view

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE

Planar Geometric Projections

- Standard projections project onto a plane
- Projectors are lines that either
- converge at a center of projection (COP)
- are parallel
- Such projections preserve lines
- but not necessarily angles
- Nonplanar projections are needed for applications such as map construction

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT SLAIE ${ }^{3}$

元

Classical Viewing

- Viewing requires three basic elements
- One or more objects
- A viewer with a projection surface
- Projectors that go from the object(s) to the projection surface
- Classical views are based on the relationship among these elements
- The viewer picks up the object and orients it how she would like to see it
- Each object is assumed to constructed from flat principal faces
- Buildings, polyhedra, manufactured objects

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{2}$

Classical Projections

Front elevation

Isometric
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Plan oblique

Three-point perspective KENT STATE ${ }^{4}$

Perspective vs Parallel

- Computer graphics treats all projections the same and implements them with a single pipeline
- Classical viewing developed different techniques for drawing each type of projection
- Fundamental distinction is between parallel and perspective viewing even though mathematically parallel viewing is the limit of perspective viewing

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }_{5}$

Parallel Projection

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{8}$

Orthographic Projection

Projectors are orthogonal to projection surface

Advantages and Disadvantages

- Preserves both distances and angles
- Shapes preserved
- Can be used for measurements
- Building plans
- Manuals
- Cannot see what object really looks like because many surfaces hidden from view
- Often we add the isometric

Multiview Orthographic Projection

- Projection plane parallel to principal face
- Usually form front, top, side views
isometric (not multiview orthographic view)

in CAD and architecture, we often display three multiviews plus isometric

Axonometric Projections

Allow projection plane to move relative to object
classify by how many angles of a corner of a projected cube are the same or no. of principal faces the projection plane is symmetric : $\theta_{2} \theta_{3}$ with respect to
none: trimetric
two: dimetric
three: isometric
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{12}$

Types of Axonometric Projections

Dimetric

Trimetric

Isometric

Advantages and Disadvantages

- Lines are scaled (foreshortened) but can find scaling factors
- Lines preserved but angles are not
- Projection of a circle in a plane not parallel to the projection plane is an ellipse
- Can see three principal faces of a box-like object
- Some optical illusions possible
- Parallel lines appear to diverge
- Does not look real because far objects are scaled the same as near objects
- Used in CAD applications

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{14}$

Advantages and Disadvantages

- Can pick the angles to emphasize a particular face
- Architecture: plan oblique, elevation oblique
- Angles in faces parallel to projection plane are preserved while we can still see "around" side

- In physical world, cannot create with simple camera; possible with bellows camera or special lens (architectural)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{16}$

Perspective Projection

Projectors coverge at center of projection

Three-Point Perspective

- No principal face parallel to projection plane
- Three vanishing points for cube

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{19}$

Vanishing Points

- Parallel lines (not parallel to the projection plane) on the object converge at a single point in the projection (the vanishing point)
- Drawing simple perspectives by hand uses these vanishing point(s)

Three-Point Perspective

- Ne principal face parallel to projection plane

Two-Point Perspective

- On principal direction parallel to projection plane
- Two vanishing points for cube

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{23}$

Two-Point Perspective

- One principal direction parallel to projection plane
- Two vanishing points for cube

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

One-Point Perspective

- One principal face parallel to projection plane
- One vanishing point for cube

Angel: Interactive Computer Graphics 4E © Addison-Wesley $2005 \quad$ KENT STATE ${ }^{24}$

Advantages and Disadvantages

- Objects further from viewer are projected smaller than the same sized objects closer to the viewer (diminution)
- Looks realistic
- Equal distances along a line are not projected into equal distances (nonuniform foreshortening)
- Angles preserved only in planes parallel to the projection plane
- More difficult to construct by hand than parallel projections (but not more difficult by computer)

Angel: Interactive Computer Graphics 4E © Addison-Wesley $2005 \quad$ KENT STATE ${ }^{25}$

