
1

1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Computer Viewing

• Introduce the mathematics of projection
• Introduce OpenGL viewing functions
•Look at alternate viewing APIs

Objectives

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Computer Viewing

•There are three aspects of the viewing
process, all of which are implemented in
the pipeline,

- Positioning the camera
• Setting the model-view matrix

- Selecting a lens
• Setting the projection matrix

- Clipping
• Setting the view volume

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The OpenGL Camera

• In OpenGL, initially the object and camera
frames are the same

- Default model-view matrix is an identity

•The camera is located at origin and points
in the negative z direction

•OpenGL also specifies a default view
volume that is a cube with sides of length 2
centered at the origin

- Default projection matrix is an identity

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Default Projection

Default projection is orthogonal

clipped out

z=0

2

2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Moving the Camera Frame

• If we want to visualize object with both positive and
negative z values we can either

- Move the camera in the positive z direction
• Translate the camera frame

- Move the objects in the negative z direction
• Translate the world frame

•Both of these views are equivalent and are
determined by the model-view matrix

- Want a translation (glTranslatef(0.0,0.0,-d);)
where d > 0

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Moving Camera back
from Origin

default frames

frames after translation by –d
d > 0

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Moving the Camera

•We can move the camera to any desired
position by a sequence of rotations and
translations

•Example: side view
- Rotate the camera
- Move it away from origin
- Model-view matrix C = TR

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL code

•Remember that last transformation
specified is first to be applied

glMatrixMode(GL_MODELVIEW)
glLoadIdentity();
glTranslatef(0.0, 0.0, -d);
glRotatef(90.0, 0.0, 1.0, 0.0);

3

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The LookAt Function

• The GLU library contains the function gluLookAt
to form the required modelview matrix through a
simple interface

• Note the need for setting an up direction
• Still need to initialize

- Can concatenate with modeling transformations
• Example: isometric view of cube aligned with axes

glMatrixMode(GL_MODELVIEW):
glLoadIdentity();
gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0. 0.0);

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

gluLookAt
glLookAt(eyex, eyey, eyez, atx, aty, atz, upx, upy, upz)

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Other Viewing APIs

•The LookAt function is only one possible
API for positioning the camera

•Others include
- View reference point, view plane normal, view

up (PHIGS, GKS-3D) (see 5.3.2)
- Yaw, pitch, roll (see 5.3.4)
- Elevation, azimuth, twist (see 5.3.4)
- Direction angles

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Projections and
Normalization

•The default projection in the eye (camera)
frame is orthogonal

•For points within the default view volume

•Most graphics systems use view normalization
- All other views are converted to the default view by

transformations that determine the projection matrix
- Allows use of the same pipeline for all views

xp = x
yp = y
zp = 0

4

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Homogeneous Coordinate
Representation

xp = x
yp = y
zp = 0
wp = 1

pp = Mp

M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0000
0010
0001

In practice, we can let M = I and set
the z term to zero later

default orthographic projection

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Perspective

•Center of projection at the origin
•Projection plane z = d, d < 0

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Perspective Equations

Consider top and side views

xp =

dz
x
/

dz
x
/

yp =
dz

y
/

zp = d

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Homogeneous
Coordinate Form

M =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

0/100
0100
0010
0001

d

consider q = Mp where

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1
z
y
x

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

dz
z
y
x

/

p = ⇒ q =

5

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Perspective Division

•However w ≠ 1, so we must divide by w to
return from homogeneous coordinates

•This perspective division yields

the desired perspective equations
•We will consider the corresponding clipping
volume with the OpenGL functions

xp =
dz

x
/

yp =
dz

y
/

zp = d

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Orthogonal
Viewing

glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Perspective

glFrustum(left,right,bottom,top,near,far)

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Field of View

•With glFrustum it is often difficult to get the
desired view

•gluPerpective(fovy, aspect, near, far)
often provides a better interface

fovy – angle in
up direction

aspect = w/h

front plane

