
1

1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Projection Matrices

•Derive the projection matrices used for
standard OpenGL projections

• Introduce oblique projections
• Introduce projection normalization

Objectives

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normalization

•Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

•This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pipeline View

modelview
transformation

projection
transformation

perspective
division

clipping projection

nonsingular
4D → 3D

against default cube 3D → 2D

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Notes

•We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

- Both these transformations are nonsingular
- Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple
cube regardless of type of projection

•Delay final projection until end
- Important for hidden-surface removal to retain

depth information as long as possible

2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert
specified clipping volume to default

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Orthogonal Matrix

• Two steps
- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))
- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
000
000
000

z

y

x

s
s

s

ST = S(sx, sy, sz) T(dx, dy, dz) =

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
d100
d010
d001

z

y

x

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Orthogonal Matrix

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
+

−

−
+

−
−

−
+

−
−

1000

200

020

002

nearfar
nearfar

farnear

bottomtop
bottomtop

bottomtop

rightleft
rightleft

leftright

=

P = ST =
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
00

00
00

zzz

yyy

xxx

dss
dss
dss

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Final Projection

• Set z =0
• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1000
0000
0010
0001

Morth =

P = MorthST

3

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Oblique Projections

•The OpenGL projection functions cannot
produce general parallel projections such as

•However if we look at the example of the
cube it appears that the cube has been
sheared

•Oblique Projection = Shear + Orthogonal
Projection

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

General Shear

top view side view

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡
−
−

1000
0100
0φcot10
0θcot01

H(θ,φ) =

P = Morth H(θ,φ)

P = Morth STH(θ,φ)

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Equivalency

4

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Effect on Clipping

•The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z = 1

x = -1
x = 1

distorted object
(projects correctly)

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Perspective

Consider a simple perspective with the COP at the
origin, the near clipping plane at z = -1, and a 90
degree field of view determined by the planes
x = ± z, y = ± z

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Perspective Matrices

Simple projection matrix in homogeneous
coordinates

Note that this matrix is independent of the
far clipping plane

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0100
0100
0010
0001

M =

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Generalization

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

− 0100
βα00
0010
0001

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = -x/z
y’’ = -y/z
z’’ = -(α+β/z)

which projects orthogonally to the desired point
regardless of α and β

5

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Picking α and β

If we pick

α =

β =

nearfar
farnear

−
+

farnear
farnear*2

−
∗

the near plane z= near is mapped to z = -1
the far plane z = far is mapped to z =1
and the sides x = ± z, y = ± z are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normalization
Transformation

original clipping
volume original object new clipping

volume

distorted object
projects correctly

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normalization and
Hidden-Surface Removal

• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first
apply the normalization transformation

• However, the formula z’’ = -(α+β/z) implies that the
distances are distorted by the normalization
which can cause numerical problems especially if
the near distance is small

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Perspective

•glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)

6

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Perspective Matrix

•The normalization in glFrustum requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally,
the perspective matrix results in needing
only a final orthogonal transformation

P = NSH

our previously defined
perspective matrix

shear and scale

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Why do we do it this way?

•Normalization allows for a single pipeline
for both perspective and orthogonal
viewing

•We stay in four dimensional
homogeneous coordinates as long as
possible to retain three-dimensional
information needed for hidden-surface
removal and shading

•We simplify clipping

