Projection Matrices

Objectives

* Derive the projection matrices used for
standard OpenGL projections

* Introduce oblique projections

*Introduce projection normalization

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

1

Normalization

* Rather than derive a different projection
matrix for each type of projection, we can
convert all projections to orthogonal
projections with the default view volume

* This strategy allows us to use standard
transformations in the pipeline and makes
for efficient clipping

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 2

Pipeline View

modelview projection perspective

—

transformation transformation division

/r/ 4D - 3D
nonsingula

[— -
against default cube 3D —2D

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

3

Notes

*We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

- Both these transformations are nonsingular
- Default to identity matrices (orthogonal view)

* Normalization lets us clip against simple
cube regardless of type of projection

* Delay final projection until end

- Important for hidden-surface removal to retain
depth information as long as possible

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ¢

Orthogonal Normalization

glOrtho(left,right,bottom, top,near, far)

normalization = find transformation to convert
specified clipping volume to default

{right,top,-far)
(1,1,-1)
—_—
L]
(left, bottom,-near) -1,-1,1}
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 5

Orthogonal Matrix

» Two steps
- Move center to origin
T(-(left+right)/2, -(bottom-+top)/2,(near+far)/2))
- Scale to have sides of length 2
S(2/(left-right),2/(top-bottom),2/(near-far))

Orthogonal Matrix

S, 0 0 sxdx
0 Sy 0 Sydy
P=ST=10 0 s, st
0 0 0 1
_ 2 0 0 left+ rfght
right —left left —right
0 2 0 _top +bottom
= top —bottom top —bottom
2 far + near
0 0
near — far far —near
0 0 0 1

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 7

s, 0 0 0]|l 0 0 d,
01 0 d
ST=S(s,. 5, 5,) T(d,, d,, d,) = 0 s, 00 Y
0 0 s, 0/|0 0 I d,
0 0 0 1[0 00 1
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 6
Final Projection
*Setz=0
 Equivalent to the homogeneous coordinate
transformation
1000
o1t oo
Mo = 0000
000 1

» Hence, general orthogonal projection in 4D is
P=M_,ST

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

8

Obligue Projections

* The OpenGL projection functions cannot
produce general parallel projections such as
A

*However if we look at the example of the
cube it appears that the cube has been
sheared

* Obligue Projection = Shear + Orthogonal
Projection

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 9

General Shear

-

Bock clipping plone
Ohbject

i\

Projection plane
\DOP

Front dlipping plane

Shear Matrix

xy shear (z values unchanged)

1 0 —cot6 O
H@O,p)= |0 1 —cote 0
0 0 1 0
0 0 0 1

Projection matrix
P =M, H(©O.9)

General case: P=M,,, STH(6,0)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE =

y /Iz. W
[
top view : -
p ©.%) ‘ side view
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 1

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Effect on Clipping

* The projection matrix P = STH transforms
the original clipping volume to the default
clipping volume

object top view z=1
| W
x=-1
far plane \ x=1

z=-1 \S
chpplng near plane distorted object
volume (projects correctly)
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE =

Simple Perspective

Consider a simple perspective with the COP at the
origin, the near clipping plane at z=-1, and a 90
degree field of view determined by the planes

X=+z,y=+z /
y %

z=far

/‘II,I,-H

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Perspective Matrices

Simple projection matrix in homogeneous
coordinates

10 0 0
Mo |01 00
00 1 0
00 -10

Note that this matrix is independent of the
far clipping plane

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Generalization

S O o =

S O = O
=]

S @ O O

after perspective division, the point (X, y, z, 1) goes to

X’ =-xlz
y’ =-ylz
2’ = -(at+p/z)
which projects orthogonally to the desired point

regardless of a and B
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Picking o and B

If we pick
_ near +far
far —near
_ 2*near * far

near — far

the near plane z= near is mapped to z=-1
the far plane z = far is mapped to z =1
and the sidesx=+z,y=+zare mappedtox=+1,y=+1

Hence the new clipping volume is the default clipping volume

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE v

Normalization
Transformation

distorted object
z=x z=x projects correctly
l z = -for \Z md
e a| B |-

2

original clipping -4,]

. . . =
volume orlglnal Ob_]eCt new chpplng
volume
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Normalization and
Hidden-Surface Removal

« Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z, >z, in the
original clipping volume then the for the
transformed points z," > z,’

* Thus hidden surface removal works if we first
apply the normalization transformation

* However, the formula z>* = -(a+p/z) implies that the
distances are distorted by the normalization
which can cause numerical problems especially if
the near distance is small

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

OpenGL Perspective

«glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)

ymcx' szX)

(Xrnin’ Yenin? Zmax) -

..
’

coP

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 2

OpenGL Perspective Matrix

* The normalization in glFrustum requires
an initial shear to form a right viewing
pyramid, followed by a scaling to get the
normalized perspective volume. Finally,
the perspective matrix results in needing
only a final orthogonal transformation

P = NSH

our previously defined
perspective matrix
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE =2

shear and scale

Why do we do it this way?

*Normalization allows for a single pipeline
for both perspective and orthogonal
viewing

*We stay in four dimensional
homogeneous coordinates as long as
possible to retain three-dimensional
information needed for hidden-surface
removal and shading

*We simplify clipping

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE =2

