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Projection Matrices

•Derive the projection matrices used for 
standard OpenGL projections

• Introduce oblique projections
• Introduce projection normalization

Objectives
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Normalization

•Rather than derive a different projection 
matrix for each type of projection, we can 
convert all projections to orthogonal 
projections with the default view volume

•This strategy allows us to use standard 
transformations in the pipeline and makes 
for efficient clipping
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Pipeline View

modelview
transformation

projection
transformation

perspective
division

clipping projection

nonsingular
4D → 3D

against default cube 3D → 2D
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Notes

•We stay in four-dimensional homogeneous 
coordinates through both the modelview and 
projection transformations

- Both these transformations are nonsingular
- Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple 
cube regardless of type of projection

•Delay final projection until end
- Important for hidden-surface removal to retain 

depth information as long as possible 



2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization ⇒ find transformation to convert
specified clipping volume to default
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Orthogonal Matrix

• Two steps
- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))
- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))
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Orthogonal Matrix
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Final Projection

• Set z =0 
• Equivalent to the homogeneous coordinate 

transformation

• Hence, general orthogonal projection in 4D is
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Oblique Projections

•The OpenGL projection functions cannot 
produce general parallel projections such as

•However if we look at the example of the 
cube it appears that the cube has been 
sheared

•Oblique Projection = Shear + Orthogonal 
Projection
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General Shear

top view side view
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Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case: 
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P = Morth STH(θ,φ) 
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Equivalency
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Effect on Clipping

•The projection matrix P = STH transforms 
the original clipping volume to the default 
clipping volume

top view

DOP DOP

near plane

far plane

object

clipping
volume

z = -1

z =  1

x = -1
x = 1

distorted object
(projects correctly)
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Simple Perspective

Consider a simple perspective with the COP at the 
origin, the near clipping plane at z = -1, and a 90 
degree field of view determined by the planes 
x = ± z, y = ± z
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Perspective Matrices

Simple projection matrix in homogeneous 
coordinates

Note that this matrix is independent of the 
far clipping plane
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Generalization
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after perspective division, the point (x, y, z, 1) goes to

x’’ = -x/z
y’’ = -y/z
z’’ = -(α+β/z)

which projects orthogonally to the desired point 
regardless of α and β
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Picking α and β

If we pick

α = 

β = 

nearfar
farnear

−
+

farnear
farnear*2

−
∗

the near plane  z= near is mapped to z = -1
the far plane z = far is mapped to z =1
and the sides x = ± z, y = ± z are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume
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Normalization 
Transformation

original clipping
volume original object new clipping

volume

distorted object
projects correctly
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Normalization and 
Hidden-Surface Removal

• Although our selection of the form of the 
perspective matrices may appear somewhat 
arbitrary, it was chosen so that if z1 > z2 in the 
original clipping volume then the for the 
transformed points z1’ > z2’

• Thus hidden surface removal works if we first 
apply the normalization transformation

• However, the formula z’’ = -(α+β/z) implies that the 
distances are distorted by the normalization 
which can cause numerical problems especially if 
the near distance is small
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OpenGL Perspective

•glFrustum allows for an unsymmetric
viewing frustum (although gluPerspective
does not)
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OpenGL Perspective Matrix

•The normalization in glFrustum requires 
an initial shear to form a right viewing 
pyramid, followed by a scaling to get the 
normalized perspective volume. Finally, 
the perspective matrix results in needing 
only a final orthogonal transformation

P = NSH

our previously defined
perspective matrix

shear and scale
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Why do we do it this way?

•Normalization allows for a single pipeline 
for both perspective and orthogonal 
viewing

•We stay in four dimensional 
homogeneous coordinates as long as 
possible to retain three-dimensional 
information needed for hidden-surface 
removal and shading

•We simplify clipping


