Projection Matrices

Objectives

- Derive the projection matrices used for standard OpenGL projections
- Introduce oblique projections
- Introduce projection normalization

Normalization

- Rather than derive a different projection matrix for each type of projection, we can convert all projections to orthogonal projections with the default view volume
- This strategy allows us to use standard transformations in the pipeline and makes for efficient clipping

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{3}$

Notes

- We stay in four-dimensional homogeneous coordinates through both the modelview and projection transformations
- Both these transformations are nonsingular
- Default to identity matrices (orthogonal view)
- Normalization lets us clip against simple cube regardless of type of projection
- Delay final projection until end
- Important for hidden-surface removal to retain depth information as long as possible

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{4}$

Orthogonal Normalization

glortho(left, right, bottom, top, near, far)
normalization \Rightarrow find transformation to convert specified clipping volume to default

Orthogonal Matrix

$$
\begin{aligned}
& \mathbf{P}=\mathbf{S T}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & s_{x} d_{x} \\
0 & s_{y} & 0 & s_{y} d_{y} \\
0 & 0 & s_{z} & s_{z} d_{z} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\frac{2}{\text { right-left }} & 0 & 0 \\
0 & \frac{2}{\text { top-bottom }} & 0 \\
0 & 0 & \frac{2}{\text { near-far }} \\
0 & 0 & 0
\end{array}\right. \\
& \left.\begin{array}{c}
-\frac{\text { left }+ \text { right }}{\text { left }- \text { right }} \\
-\frac{\text { top }+ \text { bottom }}{\text { top }- \text { bottom }} \\
\frac{\text { far }+ \text { near }}{\text { far }- \text { near }} \\
1
\end{array}\right]
\end{aligned}
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE

Orthogonal Matrix

- Two steps
- Move center to origin

T(-(left+right)/2, -(bottom+top)/2,(near+far)/2))

- Scale to have sides of length 2

S(2/(left-right),2/(top-bottom),2/(near-far))

$$
\mathbf{S T}=\mathbf{S}\left(\mathrm{s}_{x}, s_{y}, s_{z}\right) \mathbf{T}\left(d_{x}, d_{y}, d_{z}\right)=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & d_{x} \\
0 & 1 & 0 & d_{y} \\
0 & 0 & 1 & d_{z} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Angel: Interactive Computer Graphics 4E © Addison-Westey 2005 KENT STATE ${ }^{6}$

Final Projection

- Set $z=0$
- Equivalent to the homogeneous coordinate transformation

$$
\mathbf{M}_{\text {orth }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- Hence, general orthogonal projection in 4D is $\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{S T}$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{8}$

Oblique Projections

-The OpenGL projection functions cannot produce general parallel projections such as

- However if we look at the example of the cube it appears that the cube has been sheared
- Oblique Projection = Shear + Orthogonal Projection

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{9}$

General Shear

Shear Matrix

Equivalency
$x y$ shear (z values unchanged)
$\mathbf{H}(\theta, \phi)=\left[\begin{array}{cccc}1 & 0 & -\cot \theta & 0 \\ 0 & 1 & -\cot \varphi & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$

Projection matrix

$$
\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{H}(\theta, \phi)
$$

General case: $\mathbf{P}=\mathbf{M}_{\text {orth }} \mathbf{S T H}(\theta, \phi)$

[^0]KENT STATE ${ }^{11}$

Effect on Clipping

- The projection matrix $\mathbf{P}=\mathbf{S T H}$ transforms the original clipping volume to the default clipping volume

Simple Perspective

Consider a simple perspective with the COP at the origin, the near clipping plane at $z=-1$, and a 90 degree field of view determined by the planes

$$
x= \pm z, y= \pm z
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{14}$

Perspective Matrices

Simple projection matrix in homogeneous coordinates

$$
\mathbf{M}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 0
\end{array}\right]
$$

Note that this matrix is independent of the far clipping plane

Generalization

$$
\mathbf{N}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \alpha & \beta \\
0 & 0 & -1 & 0
\end{array}\right]
$$

after perspective division, the point $(x, y, z, 1)$ goes to

$$
\begin{aligned}
& x^{\prime},=-x / z \\
& y^{\prime \prime}=-y / z \\
& z^{\prime}=-(\alpha+\beta / z)
\end{aligned}
$$

which projects orthogonally to the desired point regardless of α and β
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{16}$

Picking α and β

If we pick

$$
\begin{aligned}
& \alpha=\frac{\text { near }+ \text { far }}{\text { far }- \text { near }} \\
& \beta=\frac{2 * \text { near } * \text { far }}{\text { near }- \text { far }}
\end{aligned}
$$

the near plane $z=$ near is mapped to $z=-1$
the far plane $z=$ far is mapped to $z=1$
and the sides $x= \pm z, y= \pm z$ are mapped to $x= \pm 1, y= \pm 1$
Hence the new clipping volume is the default clipping volume

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{17}$
Angel: Interactive Computer Graphics 4E © Addison-Wesley $2005 \quad$ KENT STATE ${ }^{18}$

Normalization and Hidden-Surface Removal

- Although our selection of the form of the perspective matrices may appear somewhat arbitrary, it was chosen so that if $z_{1}>z_{2}$ in the original clipping volume then the for the transformed points $z_{1}{ }^{\prime}>z_{2}{ }^{\prime}$
- Thus hidden surface removal works if we first apply the normalization transformation
- However, the formula $z^{\prime \prime}=-(\alpha+\beta / z)$ implies that the distances are distorted by the normalization which can cause numerical problems especially if the near distance is small

OpenGL Perspective

- glFrustum allows for an unsymmetric viewing frustum (although gluPerspective does not)

[^1]
OpenGL Perspective Matrix

- The normalization in glFrustum requires an initial shear to form a right viewing pyramid, followed by a scaling to get the normalized perspective volume. Finally, the perspective matrix results in needing only a final orthogonal transformation

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{21}$

Why do we do it this way?

- Normalization allows for a single pipeline for both perspective and orthogonal viewing
-We stay in four dimensional homogeneous coordinates as long as possible to retain three-dimensional information needed for hidden-surface removal and shading
-We simplify clipping

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{22}$

[^0]: Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

[^1]: Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{20}$

