

















## 





















- Replace  $(\mathbf{v} \cdot \mathbf{r})^{\alpha}$  by  $(\mathbf{n} \cdot \mathbf{h})^{\beta}$
- $\beta$  is chosen to match shineness
- ${\ }^{\bullet}$  Note that halfway angle is half of angle between r and v if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn-Phong or Blinn lighting model
  - Specified in OpenGL standard

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE 27













- •We can compute parametric normals for other simple cases
  - Quadrics
  - Parameteric polynomial surfaces
    - Bezier surface patches (Chapter 11)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE <sup>33</sup>