Shading

Objectives

- Learn to shade objects so their images appear three-dimensional
- Introduce the types of light-material interactions
- Build a simple reflection model---the Phong model--- that can be used with real time graphics hardware

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Shading

-Why does the image of a real sphere look like

- Light-material interactions cause each point to have a different color or shade
- Need to consider
- Light sources
- Material properties
- Location of viewer
- Surface orientation

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE

Why we need shading

- Suppose we build a model of a sphere using many polygons and color it with glColor. We get something like
- But we want

Scattering

- Light strikes A
- Some scattered
- Some absorbed
- Some of scattered light strikes B
- Some scattered
- Some absorbed
- Some of this scattered
light strikes A and so on

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{4}$

Rendering Equation

-The infinite scattering and absorption of light can be described by the rendering equation

- Cannot be solved in general
- Ray tracing is a special case for perfectly reflecting surfaces
- Rendering equation is global and includes
- Shadows
- Multiple scattering from object to object

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{5}$

Local vs Global Rendering

- Correct shading requires a global calculation involving all objects and light sources
- Incompatible with pipeline model which shades each polygon independently (local rendering)
- However, in computer graphics, especially real time graphics, we are happy if things "look right"
- There exist many techniques for approximating global effects

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{6}$
Global Effects

Light-Material Interaction

- Light that strikes an object is partially absorbed and partially scattered (reflected)
-The amount reflected determines the color and brightness of the object
- A surface appears red under white light because
the red component of the light is reflected and the rest is absorbed
-The reflected light is scattered in a manner that depends on the smoothness and orientation of the surface

[^0]
Light Sources

General light sources are difficult to work with because we must integrate light coming from all points on the source

Simple Light Sources

- Ambient light
- Same amount of light everywhere in scene
- Can model contribution of many sources and reflecting surfaces
- Point source
- Model with position and color

KENT STATE ${ }^{11}$

Simple Light Sources

- Point source
- Model with position and color
- Distant source = infinite distance away (parallel)
- Spotlight
- Restrict light from ideal point source
- Ambient light
- Same amount of light everywhere in scene
- Can model contribution of many sources and reflecting surfaces

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{10}$

Simple Light Sources

- Spotlight

- Restrict light from ideal point source to range of angles
- Distant source
- Treat as infinite distance away
- rays are all parallel

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{12}$

Surface Types

- The smoother a surface, the more reflected light is concentrated in the direction a perfect mirror would reflect the light
- A very rough surface scatters light in all directions

smooth surface

rough surface

Ideal Reflector

- Normal is determined by local orientation
- Angle of incidence = angle of reflection
- The three vectors must be coplanar
- Thus (see 6.4.2)

$$
\mathbf{r}=\mathbf{2 (1 \cdot n) n - 1}
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{15}$

Phong Model

- A simple model that can be computed rapidly
- Has three components
- Diffuse
- Specular
- Ambient
- Uses four vectors
- To light source (I)
- To viewer or COP (v)
- Normal (n)
- Perfect reflector (r)

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{14}$

Lambertian Surface

- Perfectly diffuse reflector
- Light scattered equally in all directions
- Amount of light reflected is proportional to the vertical component of incoming light
- reflected light $\sim \cos \theta_{i}$
- $\cos \theta_{i}=\mathbf{l} \cdot \mathbf{n}$ if vectors normalized
- There are also three coefficients, $\mathrm{k}_{\mathrm{r}}, \mathrm{k}_{\mathrm{b}}, \mathrm{k}_{\mathrm{g}}$ that show how much of each color component is reflected

[^1]
Specular Surfaces

- Most surfaces are neither ideal diffusers nor perfectly specular (ideal reflectors)
- Smooth surfaces show specular highlights due to incoming light being reflected in directions concentrated close to the direction of a perfect reflection
specular
highlight

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{17}$

Modeling Specular Relections

- Phong proposed using a term that dropped off as the angle ϕ between the viewer and the ideal reflection increased

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{18}$

The Shininess Coefficient

- Light concentrated
more in narrow region
centered on perfect
reflector as α increases
- Values of α between
100 and 200
correspond to metals
- Values between 5 and
10 give surface that
look like plastic
Angel: Interactive Computer Graphics 4 EP © Addison-Wesley 2005
KENT STATE

Ambient Light

- Ambient light is the result of multiple interactions between (large) light sources and the objects in the environment
- Amount and color depend on both the color of the light(s) and the material properties of the object
- Add $\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$ to diffuse and specular terms

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{20}$

Distance Terms

- The light from a point source that reaches a surface is inversely proportional to the square of the distance between them
- We can add a factor of the form $1 /\left(a+b d+c d^{2}\right)$ to the diffuse and specular terms

-The constant and linear terms soften the effect of the point source

Material Properties

- Material properties match light source properties
- Nine absorbtion coefficients
- $\mathrm{k}_{\mathrm{dr}}, \mathrm{k}_{\mathrm{dg}}, \mathrm{k}_{\mathrm{db}}, \mathrm{k}_{\mathrm{sr}}, \mathrm{k}_{\mathrm{sg}}, \mathrm{k}_{\mathrm{sb}}, \mathrm{k}_{\mathrm{ar}}, \mathrm{k}_{\mathrm{ag}}, \mathrm{k}_{\mathrm{ab}}$
- Shininess coefficient α

Light Sources

- In the Phong Model, we add the results from each light source
- Each light source has separate diffuse, specular, and ambient terms to allow for maximum flexibility even though this form does not have a physical justification
- Separate red, green and blue components
- Hence, 9 coefficients for each point source
$-\mathrm{I}_{\mathrm{dr}}, \mathrm{I}_{\mathrm{d} g}, \mathrm{I}_{\mathrm{db}}, \mathrm{I}_{\mathrm{sr}}, \mathrm{I}_{\mathrm{sg}}, \mathrm{I}_{\mathrm{sb}}, \mathrm{I}_{\mathrm{ar}}, \mathrm{I}_{\mathrm{ag}}, \mathrm{I}_{\mathrm{ab}}$
Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005 KENT STATE ${ }^{22}$

Adding up the Components

For each light source and each color component, the Phong model can be written (without the distance terms) as
$\mathrm{I}=\mathrm{k}_{\mathrm{d}} \mathrm{I}_{\mathrm{d}} \mathbf{l} \cdot \mathbf{n}+\mathrm{k}_{\mathrm{s}} \mathrm{I}_{\mathrm{s}}(\mathbf{v} \cdot \mathbf{r})^{\alpha}+\mathrm{k}_{\mathrm{a}} \mathrm{I}_{\mathrm{a}}$
For each color component we add contributions from all sources

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{24}$

Modified Phong Model

- The specular term in the Phong model is problematic because it requires the calculation of a new reflection vector and view vector for each point on the surface
- Blinn suggested an approximation using the halfway vector that is more efficient

Using the halfway angle

- Replace ($\mathbf{v} \cdot \mathbf{r})^{\alpha}$ by $(\mathbf{n} \cdot \mathbf{h})^{\beta}$
- β is chosen to match shineness
- Note that halfway angle is half of angle between \mathbf{r} and \mathbf{v} if vectors are coplanar
- Resulting model is known as the modified Phong or Blinn-Phong or Blinn lighting model
- Specified in OpenGL standard

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{27}$

The Halfway Vector

- \mathbf{h} is normalized vector halfway between I and \mathbf{v}

$$
h=(\mathbf{l}+\mathbf{v}) /|\mathbf{l}+\mathbf{v}|
$$

Computation of Vectors

- \mathbf{l} and \mathbf{v} are specified by the application
- Can compute \mathbf{r} from \mathbf{l} and \mathbf{n}
- Problem is determining \mathbf{n}
- For simple surfaces it can be determined but how we determine \mathbf{n} differs depending on underlying representation of surface
- OpenGL leaves determination of normal to application
- Exception for GLU quadrics and Bezier surfaces (Chapter 11)

Normal to Sphere

- Implicit function $f(x, y . z)=x^{2}+y^{2}+z^{2}-1=0$
- or $f(\mathbf{p})=\mathbf{p} \cdot \mathbf{p}-1$
- Normal given by gradient
- $\mathrm{n}=[\partial \mathrm{f} / \partial \mathrm{x}, \partial \mathrm{f} / \partial \mathrm{y}, \partial \mathrm{f} / \partial \mathrm{z}]^{\mathrm{T}}=[2 \mathrm{x}, 2 \mathrm{y}, 2 \mathrm{z}]^{\mathrm{T}}=2 \mathrm{p}$
- Unit normal $\mathbf{n}=\mathbf{p}$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{31}$

Plane Normals

- Equation of plane: $a x+b y+c z+d=0$
- From Chapter 4 we know that plane is determined by three points p_{0}, p_{2}, p_{3} or normal n and p_{0}
- Normal can be obtained by

$$
\mathbf{n}=\left(p_{2}-p_{0}\right) \times\left(p_{1}-p_{0}\right)
$$

Parametric Form

- For sphere
$\mathrm{x}=\mathrm{x}(\mathrm{u}, \mathrm{v})=\cos \mathrm{u} \sin \mathrm{v}$
$y=y(u, v)=\cos u \cos v$
$z=z(u, v)=\sin u$
- Tangent plane determined by vectors

$$
\begin{aligned}
\partial \mathbf{p} / \partial \mathbf{u} & =[\partial \mathrm{x} / \partial \mathrm{u}, \partial \mathrm{y} / \partial \mathrm{u}, \partial \mathrm{z} / \partial \mathrm{u}] \mathrm{T} \\
\partial \mathbf{p} / \partial \mathrm{v} & =[\partial \mathrm{x} / \partial \mathrm{v}, \partial \mathrm{y} / \partial \mathrm{v}, \partial \mathrm{z} / \partial \mathrm{v}] \mathrm{T}
\end{aligned}
$$

- Normal given by cross product

$$
\mathbf{n}=\partial \mathbf{p} / \partial \mathbf{u} \times \partial \mathbf{p} / \partial \mathbf{v}
$$

Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
KENT STATE ${ }^{32}$

General Case

-We can compute parametric normals for other simple cases

- Quadrics
- Parameteric polynomial surfaces
- Bezier surface patches (Chapter 11)

[^0]: Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
 KENT STATE ${ }^{8}$

[^1]: Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005
 KENT STATE ${ }^{16}$

