
1

1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Compositing and Blending

• Learn to use the A component in RGBA
color for

- Blending for translucent surfaces
- Compositing images
- Antialiasing

Objectives

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Opacity and Transparency

• Opaque surfaces permit no light to pass through
• Transparent surfaces permit all light to pass
• Translucent surfaces pass some light

translucency = 1 – opacity (α)

opaque surface α =1

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Physical Models

• Dealing with translucency in a physically correct
manner is difficult due to

- the complexity of the internal interactions of
light and matter

- Using a pipeline renderer
- Revert to writing model

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Writing Model

• Use A component of RGBA (or RGBα) color to
store opacity

• During rendering we can expand our writing
model to use RGBA values

Color Buffer

destination
component

blend

destination blending
factor

source blending factor
source

component

2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Blending Equation

• We can define source and destination blending
factors for each component

• source and destination colors
s = [sr, sg, sb, sα]
d = [dr, dg, db, dα]

• Source and destination blending factors
b = [br, bg, bb, bα]
c = [cr, cg, cb, cα]

Blend as
d’ = [br sr+ cr dr, bg sg+ cg dg , bb sb+ cb db , bα sα+ cα dα]

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Blending and
Compositing

• Must enable blending and pick source and
destination factors

glEnable(GL_BLEND)

glBlendFunc(source_factor,
destination_factor)

• Only certain factors supported
-GL_ZERO, GL_ONE
-GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA
-GL_DST_ALPHA, GL_ONE_MINUS_DST_ALPHA

- See Redbook for complete list

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Example

• Suppose that we start with the opaque background
color (R0,G0,B0,1)

- This color becomes the initial destination color
• We now want to blend in a translucent polygon with

color (R1,G1,B1,α1)
• Select GL_SRC_ALPHA and GL_ONE_MINUS_SRC_ALPHA

as the source and destination blending factors
R’

1 = α1 R1 +(1- α1) R0, ……
• Note this formula is correct if polygon is either

opaque or transparent
8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clamping and Accuracy

•All the components (RGBA) are clamped
and stay in the range (0,1)

•However, in a typical system, RGBA
values are only stored to 8 bits

- Can easily loose accuracy if we add many
components together

- Example: add together n images
• Divide all color components by n to avoid clamping
• Blend with source factor = 1, destination factor = 1
• But division by n loses bits

3

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Order Dependency

• Is this image correct?
- Probably not
- Polygons are rendered
in the order they pass
down the pipeline
- Blending functions
are order dependent

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Opaque and Translucent
Polygons

• Suppose that we have a group of polygons
some of which are opaque and some translucent

• How do we use hidden-surface removal?
• Opaque polygons block all polygons behind

them and affect the depth buffer
• Translucent polygons should not affect depth

buffer
- Render with glDepthMask(GL_FALSE) which makes

depth buffer read-only

• Sort polygons first to remove order dependency

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fog

• We can composite with a fixed color and have
the blending factors depend on depth

- Simulates a fog effect
• Blend source color Cs and fog color Cf by

Cs’=f Cs + (1-f) Cf

• f is the fog factor
- Exponential
- Gaussian
- Linear (depth cueing)

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fog Functions

4

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Fog Functions

Fog density function
f = exp(-0.5 α2)

is setup in OpenGL with

GLfloat fcolor[4] = {……}:

glEnable(GL_FOG);
glFogf(GL_FOG_MODE, GL_EXP);
glFogf(GL_FOG_DENSITY, 0.5);
glFOgv(GL_FOG, fcolor);

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Aliasing

• Ideal raster line is one pixel wide
•All line segments, other than vertical and
horizontal segments, partially cover pixels

•Simple algorithms color
only whole pixels
•Lead to the “jaggies”
or aliasing
•Similar issue for polygons

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Antialiasing

• Can try to color a pixel by adding a fraction of its
color to the frame buffer

- Fraction depends on percentage of pixel
covered by fragment

- Fraction depends on whether there is overlap

no overlap overlap

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Probabilistic View - Area
Averaging

• Use average area α1+α2-α1α2 as blending factor

5

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

OpenGL Antialiasing

•Can enable separately for points, lines, or
polygons

glEnable(GL_POINT_SMOOTH);
glEnable(GL_LINE_SMOOTH);
glEnable(GL_POLYGON_SMOOTH);

glEnable(GL_BLEND);
glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Accumulation Buffer

• Compositing and blending are limited by
resolution of the frame buffer

- Typically 8 bits per color component
• The accumulation buffer is a high resolution

buffer (16 or more bits per component) that
avoids this problem

• Write into it or read from it with a scale factor
• Slower than direct compositing into the frame

buffer

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Applications

•Compositing
• Image Filtering (convolution)
•Whole scene antialiasing
•Motion effects

