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Implementation

• Introduce basic implementation 
strategies

•Clipping 
•Scan conversion
• Introduce clipping algorithms for 
polygons

•Survey hidden-surface algorithms

Objectives
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Implementation (ctd)

•Survey Line Drawing Algorithms
- DDA
- Bresenham

Objectives
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Meta Algorithms

•Consider two approaches to rendering a 
scene with opaque objects

•For every pixel, determine which object that 
projects on the pixel is closest to the viewer 
and compute the shade of this pixel

- Ray tracing paradigm
•For every object, determine which pixels it 
covers and shade these pixels

- Pipeline approach
- Must keep track of depths
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Common Tasks

•Clipping
•Rasterization or scan conversion
•Antialiasing
•Transformations
•Hidden surface removal
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Clipping

• 2D against clipping window
• 3D against clipping volume
• Easy for line segments polygons
• Hard for curves and text

- Convert to lines and polygons first
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Clipping 2D Line Segments

•Brute force approach: compute 
intersections with all sides of clipping 
window

- Inefficient: one division per intersection
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Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible 
without computing intersections

•Start with four lines that determine the 
sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin
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The Cases

• Case 1: both endpoints of line segment inside all 
four lines

- Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on 
same side of some line

- Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin
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The Cases

• Case 3: One endpoint inside, one outside
- Must do at least one intersection

• Case 4: Both outside all lines but not on same 
side of any line

- May have part inside
- Must do at least one intersection

x = xmaxx = xmin

y = ymax
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Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions
•Computation of outcode requires at most 
4 subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise
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Using Outcodes

•Consider the 5 cases below
•AB: outcode(A) = outcode(B) = 0

- Accept line segment

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•CD: outcode (C)= 0, outcode(D)=0010≠ 0
- Compute intersection
- Location of 1 in outcode(D) determines which 

edge to intersect with
- Note if there were a segment from A to a point 

in a region with 2 ones in outcode, we might 
have to do two interesections
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Using Outcodes

•EF: outcode(E) logically ANDed with 
outcode(F) (bitwise) ≠ 0

- Both outcodes have a 1 bit in the same place
- Line segment is outside of corresponding side 

of clipping window
- reject
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Using Outcodes

•GH and IJ: same outcodes, neither zero 
but logical AND yields zero

•Shorten line segment by intersecting with 
one of sides of window

•Compute outcode of intersection (new 
endpoint of shortened line segment)

•Reexecute algorithm
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Efficiency

• In many applications, the clipping window 
is small relative to the size of the whole 
data base

- Most line segments are outside one or more 
side of the window and can be eliminated 
based on their outcodes

• Inefficiency when code has to be 
reexecuted for line segments that must be 
shortened in more than one step
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Cohen Sutherland in 3D

• Use 6-bit outcodes
• When needed, clip line segment against planes
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Liang-Barsky Clipping

• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the 
ordering of the values of α where the line determined by 
the line segment crosses the lines that determine the 
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2
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Liang-Barsky Clipping

• In (a): α4 > α3 > α2 > α1
- Intersect right, top, left, bottom: shorten

• In (b): α4 > α2 > α3 > α1 
- Intersect right, left, top, bottom: reject
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Advantages

•Can accept/reject as easily as with 
Cohen-Sutherland

•Decisions can be made without 
calculating intersections (without 
divisions)

•Using values of α, we do not have to use 
algorithm recursively as with C-S

•Extends to 3D
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Clipping and Normalization

•General clipping in 3D requires 
intersection of line segments against 
arbitrary plane

•Example: oblique view
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Plane-Line Intersections

• Intersection requires 6 multiplications and 
a division

)(
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Normalized Form

before normalization after normalization

Normalization is part of viewing (pre clipping)
but after normalization, we clip against sides of
right parallelepiped

Typical intersection calculation now requires only
a floating point subtraction, e.g. is x > xmax ?

top view
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Polygon Clipping

•Not as simple as line segment clipping
- Clipping a line segment yields at most one line 

segment
- Clipping a polygon can yield multiple polygons

•However, clipping a convex polygon can 
yield at most one other polygon
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Tessellation and Convexity

• One strategy is to replace nonconvex (concave) 
polygons with a set of triangular polygons (a 
tessellation)

• Also makes fill easier
• Tessellation code in GLU library
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Clipping as a Black Box

•Can consider line segment clipping as a 
process that takes in two vertices and 
produces either no vertices or the vertices 
of a clipped line segment
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Pipeline Clipping of Line 
Segments

•Clipping against each side of window is 
independent of other sides

- Can use four independent clippers in a pipeline
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Pipeline Clipping of Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency
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Bounding Boxes

• Rather than doing clipping on a complex 
polygon, we can use an axis-aligned bounding 
box or extent

- Smallest rectangle aligned with axes that 
encloses the polygon

- Simple to compute: max and min of x and y
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Bounding boxes

Can usually determine accept/reject based 
only on bounding box

reject

accept
requires detailed

clipping
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Clipping and Visibility

•Clipping has much in common with 
hidden-surface removal

• In both cases, we are trying to remove 
objects that are not visible to the camera

•Often we can use visibility or occlusion 
testing early in the process to eliminate as 
many polygons as possible before going 
through the entire pipeline

31Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n2) for n polygons

partially obscuring can draw independently
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Painter’s Algorithm

•Render polygons in back to front order so 
that polygons behind others are simply 
painted over

B behind A as seen by viewer Fill B then A
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Depth Sort

•Requires ordering of polygons first 
- O(n log n) calculation for ordering
- Not every polygon is either in front or behind all 

other polygons

• Order polygons and deal with 
easy cases first, harder later

Polygons sorted by 
distance from COP
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Easy Cases

•A lies behind all other polygons
- Can render

•Polygons overlap in z but not in either x or y
- Can render independently
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Hard Cases

Overlap in all directions
but one is fully on 
one side of the other

cyclic overlap

penetration
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Back-Face Removal (Culling)

θ•face is visible iff 90 ≥ θ ≥ -90
equivalently cos θ ≥ 0
or v • n ≥ 0

•plane of face has form ax + by +cz +d =0
but after normalization n = ( 0 0 1 0)T 

•need only test the sign of c

•In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects 
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Image Space Approach

• Look at each projector (nm for an n x m
frame buffer) and find closest of k
polygons

•Complexity O(nmk)
•Variations

- Ray tracing 
- z-buffer
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Z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store 
the depth of the closest object at each pixel 
found so far

• As we render each polygon, compare the depth 
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and 
update z buffer

39Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• If we work scan line by scan line as we 
move across a scan line, the depth 
changes satisfy a∆x+b∆y+c∆z=0
Along scan line 
∆y = 0
∆z = - ∆x

c
a

In screen space ∆x = 1
So only need (a const)

c
a
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Scan-Line Algorithm

•Can combine shading and hidden surface 
removal through scan line algorithm

scan line i: no need for depth 
information, can only be in no
or one polygon 

scan line j: need depth 
information only when in
more than one polygon 
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Implementation

•Need a data structure to store
- Flag for each polygon (inside/outside)
- Incremental structure for scan lines that stores 

which edges are encountered 
- Parameters for planes 
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Visibility Testing

• In many realtime applications, such as 
games, we want to eliminate as many 
objects as possible within the application

- Reduce burden on pipeline
- Reduce traffic on bus

•Partition space with Binary Spatial 
Partition (BSP) Tree
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Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F
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BSP Tree

•Can continue recursively 
- Plane of C separates B from A
- Plane of D separates E and F

•Can put this information in a BSP tree
- Use for visibility and occlusion testing 
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Rasterization

•Rasterization (scan conversion)
- Shade pixels that are inside object specified by 

a set of vertices
• Line segments
• Polygons: scan conversion = fill

•Shades determined by color, texture, 
shading model

•Here we study algorithms for determining 
the correct pixels starting with the vertices
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Rasterization or Scan 
Conversion of Lines

• Such a line should ideally have the 
following properties. 
- Straight, 
- pass through endpoints 
- smooth 
- independent of endpoint order 
- uniform brightness 
- brightness independent of slope 

- efficient
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Line Drawing - Algorithm 1

A Straightforward Implementation

Drawline(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
float y;
int x;

for (x=x1; x<=x2; x++) {
y = y1 +  (x-x1)*(y2-y1)/(x2-x1)
SetPixel(x, Round(y) );

}
}
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Scan Conversion of Line 
Segments

•Start with line segment in window 
coordinates with integer values for 
endpoints

•Assume implementation has a 
write_pixel function

y = mx + h

x
ym

∆
∆

=
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DDA Algorithm

• Digital Differential Analyzer
- DDA was a mechanical device for numerical 

solution of differential equations
- Line y=mx+ h satisfies differential equation

dy/dx = m = ∆y/∆x = y2-y1/x2-x1

• Along scan line ∆x = 1

For(x=x1; x<=x2, x++) {
y+=m;

write_pixel(x, round(y), line_color)
}

50Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing - Algorithm 2
A Better Implementation
DrawLine(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
float m,y;
int dx,dy,x;
dx = x2 - x1;
dy = y2 - y1;
m = dy/dx;
y = y1 + 0.5;
for (x=x1; x<=x2; x++) {
SetPixel(x, Floor(y) );
y = y + m;

}
}

51Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing Algorithm 
Comparison

• Advantages over Algorithm 1
- eliminates multiplication
- improves speed

• Disadvantages
- round-off error builds up
- get pixel drift
- rounding and fp arithmetic still time consuming
- works well only for |m| < 1
- need to loop in y for |m| > 1
- need to handle special cases
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Problem

•DDA = for each x plot pixel at closest y
- Problems for steep lines
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Using Symmetry

•Use for 1 ≥ m ≥ 0
•For m > 1, swap role of x and y

- For each y, plot closest x
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Based on Implicit 
Representation

• Explicit: y = f(x)
- y = m (x - x0) + y0  where m = dy/dx

• Implicit:  f(x,y) = 0
- F(x,y) = (x-x0)dy - (y-y0)dx
- if F(x,y) = 0   then (x,y) is on line
- F(x,y) > 0   then (x,y) is below line
- F(x,y) < 0   then (x,y) is above line
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Line Drawing - Midpoint 
Algorithm

• The Midpoint or Bresenham’s Algorithm
- Uses only integer calculations. It treats line 

drawing as a sequence of decisions. For each 
pixel that is drawn the next pixel will be either 
E or NE, as shown below. 
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Midpoint Algorithm

• The midpoint algorithm makes 
use of the the implicit definition of 
the line, F(x,y) = 0. The N/NE 
decisions are made as follows. 

• d = F(xp + 1, yp + 0.5)
- if d < 0 line below midpt choose E
- if d > 0 line above midpt choose NE

• if E is chosen 
- dnew = F(xp + 2, yp + 0.5)
- dnew -dold = F(xp + 2, yp + 0.5) -

• F(xp + 1, yp + 0.5)

- ∆d = dnew -dold = dy
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Midpoint Algorithm

• If NE is chosen
- dnew = F(xp + 2, yp + 1.5)
- ∆d = dy - dx

• Initialization
- dstart = F(x0 + 1, y0 + 0.5) = (x0 + 

1 - x0 ) dy - (y0 + 0.5 - y0)dx             
= dy - dx/2

• Integer only algorithm
- F’(x,y) = 2 F(x,y)   ;  d’ = 2d
- d’start = 2dy - dx
- ∆d’ = 2∆d 
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Midpoint Algorithm for x1 < x2 and 
slope <= 1

drawline(x1, y1, x2, y2, colour)
int x1, y1, x2, y2, colour;
{

int dx, dy, d, incE, incNE, x, y;

dx = x2 - x1;
dy = y2 - y1;
d = 2*dy - dx;
incE = 2*dy;
incNE = 2*(dy - dx);
y = y1;
for (x=x1; x<=x2; x++) {
setpixel(x, y, colour);
if (d>0) {
d = d + incNE;
y = y + 1;

} else {
d = d + incE;

} } } 
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General Bresenham’s
Algorithm

• To generalize to lines with arbitrary slope
- consider symmetry between various octants and 

quadrants
- for m > 1, interchange roles of x and y, that is step 

in y direction, and decide whether x value is above 
or below line

- if m > 1, and right endpoint is the first point, both x 
and y decrease. To ensure uniqueness, 
independent of direction, always choose upper (or 
lower) point if the line goes through the mid-point

- handle special cases without invoking algorithm:      
horizontal, vertical and diagonal lines
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Additional Issues

• End-point order
- cannot just interchange end-points
- does not work when we use line styles since we 

need the pattern to go the same way on all 
segments of a polygon

• varying the intensity of a line with the slope
- consider horizontal line and diagonal line
- both have same number of pixels
- diagonal √2 times horizontal line in length
- intensity per unit length less for diagonal
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Polygon Scan Conversion

•Scan Conversion = Fill
•How to tell inside from outside

- Convex easy
- Nonsimple difficult
- Odd even test

• Count edge crossings

- Winding number
odd-even fill
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Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if 
winding number ≠ 0

winding number = 2

winding number = 1
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Filling in the Frame Buffer

•Fill at end of pipeline
- Convex Polygons only
- Nonconvex polygons assumed to have been 

tessellated
- Shades (colors) have been computed for 

vertices (Gouraud shading)
- Combine with z-buffer algorithm

• March across scan lines interpolating shades
• Incremental work small
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Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span 
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Flood Fill

• Fill can be done recursively if we know a seed point 
located inside, currently background color (WHITE)

• Scan convert edges into buffer in edge/fill color 
(BLACK)

flood_fill(int x, int y) {
if(read_pixel(x,y)= = WHITE) {

write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);

}   }
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Scan Line Fill 

• Can also fill by maintaining a data structure of all 
intersections of polygons with scan lines

- Sort by scan line
- Fill each span

vertex order generated 
by vertex list desired order
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Scan Conversion 
Algorithm

• intersect each scan-line with all 
edges 

• sort intersections by increasing x 
coordinate

• calculate parity of intersections to 
determine in/out
- parity starts even - each intersection 

inverts 

• fill the 'in' pixels - those with odd 
parity

• General issues - how to handle 
intersection at integer and fractional 

l
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Scan Conversion 
Algorithm

• General issues - how to handle 
intersection at integer and fractional 
x values

• Special cases: 
- shared vertices lying on scan-lines -

double intersections 
• count ymin vertices but not ymax vertices in 

parity count

- do NOT count vertices of horizontal 
edges
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Fractional and Integer 
Intersections

• Fractional intersections
- if approaching intersection to the right to 

determine inside pixel
• take floor if inside, ceil if outside

• Integer intersections
- if leftmost pixel
- make interior, 
- rightmost exterior

70Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Spatial Coherence

• Efficiency can be improved by using 
spatial coherence

• Edges that intersect scan-line i are likely 
to intersect i+1 

• xi changes predictably from scan-line i to 
i+1 

• use an incremental algorithm that 
calculates the scan-line extrema from 
extrema of previous scan line by using
- xi+1 = xi + 1/m    where m is slope 
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Data Structure – Edge Table
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Aliasing

• Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa) 
produces aliased raster lines
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Antialiasing by Area 
Averaging

• Color multiple pixels for each x depending on 
coverage by ideal line

original antialiased

magnified
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Unweighted Area 
Sampling

• Assume background white - lines black
• Recognize that primitive has non-zero width

- even thinnest line is 1 pixel thick
• Consider line as (thin) rectangle

- covers different (square) pixels to different extent
• In most cases should not set a single pixel to black

- Set intensity of pixel differently for each pixel covered
- Only horizontal and vertical lines effect only 1 pixel 

per row
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Unweighted Area 
Sampling

• Simplest assumption on geometry of pixels
- nonoverlapping square tiles - grey scale display
- line contributes to intensity proportional to area of 

pixel’s tile covered
- pixel (2,1) is 70% black, (2,2) is 25% black
- makes line appear better at a distance
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Properties of Unweighted Area 
Sampling

• 1. Intensity decreases with increasing 
distance from pixel to edge

• 2. Primitives do not influence pixel they 
do not intersect

• 3. Equal areas contribute equal intensity
- distance from pixel center to area overlapped
- small area in corner contributes same as 

equal-sized area in center
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Polygon Aliasing

•Aliasing problems can be serious for 
polygons

- Jaggedness of edges
- Small polygons neglected
- Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color


