
1

1Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Implementation

• Introduce basic implementation
strategies

•Clipping
•Scan conversion
• Introduce clipping algorithms for
polygons

•Survey hidden-surface algorithms

Objectives

2Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Implementation (ctd)

•Survey Line Drawing Algorithms
- DDA
- Bresenham

Objectives

3Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Meta Algorithms

•Consider two approaches to rendering a
scene with opaque objects

•For every pixel, determine which object that
projects on the pixel is closest to the viewer
and compute the shade of this pixel

- Ray tracing paradigm
•For every object, determine which pixels it
covers and shade these pixels

- Pipeline approach
- Must keep track of depths

4Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Common Tasks

•Clipping
•Rasterization or scan conversion
•Antialiasing
•Transformations
•Hidden surface removal

2

5Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping

• 2D against clipping window
• 3D against clipping volume
• Easy for line segments polygons
• Hard for curves and text

- Convert to lines and polygons first

6Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping 2D Line Segments

•Brute force approach: compute
intersections with all sides of clipping
window

- Inefficient: one division per intersection

7Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Cohen-Sutherland Algorithm

• Idea: eliminate as many cases as possible
without computing intersections

•Start with four lines that determine the
sides of the clipping window

x = xmaxx = xmin

y = ymax

y = ymin

8Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The Cases

• Case 1: both endpoints of line segment inside all
four lines

- Draw (accept) line segment as is

• Case 2: both endpoints outside all lines and on
same side of some line

- Discard (reject) the line segment

x = xmaxx = xmin

y = ymax

y = ymin

3

9Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

The Cases

• Case 3: One endpoint inside, one outside
- Must do at least one intersection

• Case 4: Both outside all lines but not on same
side of any line

- May have part inside
- Must do at least one intersection

x = xmaxx = xmin

y = ymax

10Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Defining Outcodes

•For each endpoint, define an outcode

•Outcodes divide space into 9 regions
•Computation of outcode requires at most
4 subtractions

b0b1b2b3

b0 = 1 if y > ymax, 0 otherwise
b1 = 1 if y < ymin, 0 otherwise
b2 = 1 if x > xmax, 0 otherwise
b3 = 1 if x < xmin, 0 otherwise

11Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•Consider the 5 cases below
•AB: outcode(A) = outcode(B) = 0

- Accept line segment

12Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•CD: outcode (C)= 0, outcode(D)=0010≠ 0
- Compute intersection
- Location of 1 in outcode(D) determines which

edge to intersect with
- Note if there were a segment from A to a point

in a region with 2 ones in outcode, we might
have to do two interesections

4

13Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•EF: outcode(E) logically ANDed with
outcode(F) (bitwise) ≠ 0

- Both outcodes have a 1 bit in the same place
- Line segment is outside of corresponding side

of clipping window
- reject

14Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Outcodes

•GH and IJ: same outcodes, neither zero
but logical AND yields zero

•Shorten line segment by intersecting with
one of sides of window

•Compute outcode of intersection (new
endpoint of shortened line segment)

•Reexecute algorithm

15Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• In many applications, the clipping window
is small relative to the size of the whole
data base

- Most line segments are outside one or more
side of the window and can be eliminated
based on their outcodes

• Inefficiency when code has to be
reexecuted for line segments that must be
shortened in more than one step

16Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Cohen Sutherland in 3D

• Use 6-bit outcodes
• When needed, clip line segment against planes

5

17Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Liang-Barsky Clipping

• Consider the parametric form of a line segment

• We can distinguish between the cases by looking at the
ordering of the values of α where the line determined by
the line segment crosses the lines that determine the
window

p(α) = (1-α)p1+ αp2 1 ≥ α ≥ 0

p1

p2

18Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Liang-Barsky Clipping

• In (a): α4 > α3 > α2 > α1
- Intersect right, top, left, bottom: shorten

• In (b): α4 > α2 > α3 > α1
- Intersect right, left, top, bottom: reject

19Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Advantages

•Can accept/reject as easily as with
Cohen-Sutherland

•Decisions can be made without
calculating intersections (without
divisions)

•Using values of α, we do not have to use
algorithm recursively as with C-S

•Extends to 3D

20Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping and Normalization

•General clipping in 3D requires
intersection of line segments against
arbitrary plane

•Example: oblique view

6

21Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Plane-Line Intersections

• Intersection requires 6 multiplications and
a division

)(
)(

12

1

ppn
ppn

a o

−•
−•

=

22Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Normalized Form

before normalization after normalization

Normalization is part of viewing (pre clipping)
but after normalization, we clip against sides of
right parallelepiped

Typical intersection calculation now requires only
a floating point subtraction, e.g. is x > xmax ?

top view

23Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Clipping

•Not as simple as line segment clipping
- Clipping a line segment yields at most one line

segment
- Clipping a polygon can yield multiple polygons

•However, clipping a convex polygon can
yield at most one other polygon

24Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Tessellation and Convexity

• One strategy is to replace nonconvex (concave)
polygons with a set of triangular polygons (a
tessellation)

• Also makes fill easier
• Tessellation code in GLU library

7

25Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping as a Black Box

•Can consider line segment clipping as a
process that takes in two vertices and
produces either no vertices or the vertices
of a clipped line segment

26Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pipeline Clipping of Line
Segments

•Clipping against each side of window is
independent of other sides

- Can use four independent clippers in a pipeline

27Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Pipeline Clipping of Polygons

• Three dimensions: add front and back clippers
• Strategy used in SGI Geometry Engine
• Small increase in latency

28Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Bounding Boxes

• Rather than doing clipping on a complex
polygon, we can use an axis-aligned bounding
box or extent

- Smallest rectangle aligned with axes that
encloses the polygon

- Simple to compute: max and min of x and y

8

29Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Bounding boxes

Can usually determine accept/reject based
only on bounding box

reject

accept
requires detailed

clipping

30Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Clipping and Visibility

•Clipping has much in common with
hidden-surface removal

• In both cases, we are trying to remove
objects that are not visible to the camera

•Often we can use visibility or occlusion
testing early in the process to eliminate as
many polygons as possible before going
through the entire pipeline

31Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hidden Surface Removal

•Object-space approach: use pairwise
testing between polygons (objects)

•Worst case complexity O(n2) for n polygons

partially obscuring can draw independently

32Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Painter’s Algorithm

•Render polygons in back to front order so
that polygons behind others are simply
painted over

B behind A as seen by viewer Fill B then A

9

33Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Depth Sort

•Requires ordering of polygons first
- O(n log n) calculation for ordering
- Not every polygon is either in front or behind all

other polygons

• Order polygons and deal with
easy cases first, harder later

Polygons sorted by
distance from COP

34Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Easy Cases

•A lies behind all other polygons
- Can render

•Polygons overlap in z but not in either x or y
- Can render independently

35Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Hard Cases

Overlap in all directions
but one is fully on
one side of the other

cyclic overlap

penetration

36Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Back-Face Removal (Culling)

θ•face is visible iff 90 ≥ θ ≥ -90
equivalently cos θ ≥ 0
or v • n ≥ 0

•plane of face has form ax + by +cz +d =0
but after normalization n = (0 0 1 0)T

•need only test the sign of c

•In OpenGL we can simply enable culling
but may not work correctly if we have nonconvex objects

10

37Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Image Space Approach

• Look at each projector (nm for an n x m
frame buffer) and find closest of k
polygons

•Complexity O(nmk)
•Variations

- Ray tracing
- z-buffer

38Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Z-Buffer Algorithm

• Use a buffer called the z or depth buffer to store
the depth of the closest object at each pixel
found so far

• As we render each polygon, compare the depth
of each pixel to depth in z buffer

• If less, place shade of pixel in color buffer and
update z buffer

39Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Efficiency

• If we work scan line by scan line as we
move across a scan line, the depth
changes satisfy a∆x+b∆y+c∆z=0
Along scan line
∆y = 0
∆z = - ∆x

c
a

In screen space ∆x = 1
So only need (a const)

c
a

40Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan-Line Algorithm

•Can combine shading and hidden surface
removal through scan line algorithm

scan line i: no need for depth
information, can only be in no
or one polygon

scan line j: need depth
information only when in
more than one polygon

11

41Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Implementation

•Need a data structure to store
- Flag for each polygon (inside/outside)
- Incremental structure for scan lines that stores

which edges are encountered
- Parameters for planes

42Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Visibility Testing

• In many realtime applications, such as
games, we want to eliminate as many
objects as possible within the application

- Reduce burden on pipeline
- Reduce traffic on bus

•Partition space with Binary Spatial
Partition (BSP) Tree

43Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Simple Example

consider 6 parallel polygons

top view

The plane of A separates B and C from D, E and F

44Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

BSP Tree

•Can continue recursively
- Plane of C separates B from A
- Plane of D separates E and F

•Can put this information in a BSP tree
- Use for visibility and occlusion testing

12

45Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rasterization

•Rasterization (scan conversion)
- Shade pixels that are inside object specified by

a set of vertices
• Line segments
• Polygons: scan conversion = fill

•Shades determined by color, texture,
shading model

•Here we study algorithms for determining
the correct pixels starting with the vertices

46Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Rasterization or Scan
Conversion of Lines

• Such a line should ideally have the
following properties.
- Straight,
- pass through endpoints
- smooth
- independent of endpoint order
- uniform brightness
- brightness independent of slope

- efficient

47Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing - Algorithm 1

A Straightforward Implementation

Drawline(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
float y;
int x;

for (x=x1; x<=x2; x++) {
y = y1 + (x-x1)*(y2-y1)/(x2-x1)
SetPixel(x, Round(y));

}
}

48Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Conversion of Line
Segments

•Start with line segment in window
coordinates with integer values for
endpoints

•Assume implementation has a
write_pixel function

y = mx + h

x
ym

∆
∆

=

13

49Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

DDA Algorithm

• Digital Differential Analyzer
- DDA was a mechanical device for numerical

solution of differential equations
- Line y=mx+ h satisfies differential equation

dy/dx = m = ∆y/∆x = y2-y1/x2-x1

• Along scan line ∆x = 1

For(x=x1; x<=x2, x++) {
y+=m;

write_pixel(x, round(y), line_color)
}

50Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing - Algorithm 2
A Better Implementation
DrawLine(x1,y1,x2,y2)
int x1,y1,x2,y2;
{
float m,y;
int dx,dy,x;
dx = x2 - x1;
dy = y2 - y1;
m = dy/dx;
y = y1 + 0.5;
for (x=x1; x<=x2; x++) {
SetPixel(x, Floor(y));
y = y + m;

}
}

51Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing Algorithm
Comparison

• Advantages over Algorithm 1
- eliminates multiplication
- improves speed

• Disadvantages
- round-off error builds up
- get pixel drift
- rounding and fp arithmetic still time consuming
- works well only for |m| < 1
- need to loop in y for |m| > 1
- need to handle special cases

52Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Problem

•DDA = for each x plot pixel at closest y
- Problems for steep lines

14

53Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Symmetry

•Use for 1 ≥ m ≥ 0
•For m > 1, swap role of x and y

- For each y, plot closest x

54Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Based on Implicit
Representation

• Explicit: y = f(x)
- y = m (x - x0) + y0 where m = dy/dx

• Implicit: f(x,y) = 0
- F(x,y) = (x-x0)dy - (y-y0)dx
- if F(x,y) = 0 then (x,y) is on line
- F(x,y) > 0 then (x,y) is below line
- F(x,y) < 0 then (x,y) is above line

55Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Line Drawing - Midpoint
Algorithm

• The Midpoint or Bresenham’s Algorithm
- Uses only integer calculations. It treats line

drawing as a sequence of decisions. For each
pixel that is drawn the next pixel will be either
E or NE, as shown below.

56Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Midpoint Algorithm

• The midpoint algorithm makes
use of the the implicit definition of
the line, F(x,y) = 0. The N/NE
decisions are made as follows.

• d = F(xp + 1, yp + 0.5)
- if d < 0 line below midpt choose E
- if d > 0 line above midpt choose NE

• if E is chosen
- dnew = F(xp + 2, yp + 0.5)
- dnew -dold = F(xp + 2, yp + 0.5) -

• F(xp + 1, yp + 0.5)

- ∆d = dnew -dold = dy

15

57Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Midpoint Algorithm

• If NE is chosen
- dnew = F(xp + 2, yp + 1.5)
- ∆d = dy - dx

• Initialization
- dstart = F(x0 + 1, y0 + 0.5) = (x0 +

1 - x0) dy - (y0 + 0.5 - y0)dx
= dy - dx/2

• Integer only algorithm
- F’(x,y) = 2 F(x,y) ; d’ = 2d
- d’start = 2dy - dx
- ∆d’ = 2∆d

58Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Midpoint Algorithm for x1 < x2 and
slope <= 1

drawline(x1, y1, x2, y2, colour)
int x1, y1, x2, y2, colour;
{

int dx, dy, d, incE, incNE, x, y;

dx = x2 - x1;
dy = y2 - y1;
d = 2*dy - dx;
incE = 2*dy;
incNE = 2*(dy - dx);
y = y1;
for (x=x1; x<=x2; x++) {
setpixel(x, y, colour);
if (d>0) {
d = d + incNE;
y = y + 1;

} else {
d = d + incE;

} } }

59Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

General Bresenham’s
Algorithm

• To generalize to lines with arbitrary slope
- consider symmetry between various octants and

quadrants
- for m > 1, interchange roles of x and y, that is step

in y direction, and decide whether x value is above
or below line

- if m > 1, and right endpoint is the first point, both x
and y decrease. To ensure uniqueness,
independent of direction, always choose upper (or
lower) point if the line goes through the mid-point

- handle special cases without invoking algorithm:
horizontal, vertical and diagonal lines

60Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Additional Issues

• End-point order
- cannot just interchange end-points
- does not work when we use line styles since we

need the pattern to go the same way on all
segments of a polygon

• varying the intensity of a line with the slope
- consider horizontal line and diagonal line
- both have same number of pixels
- diagonal √2 times horizontal line in length
- intensity per unit length less for diagonal

16

61Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Scan Conversion

•Scan Conversion = Fill
•How to tell inside from outside

- Convex easy
- Nonsimple difficult
- Odd even test

• Count edge crossings

- Winding number
odd-even fill

62Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Winding Number

•Count clockwise encirclements of point

•Alternate definition of inside: inside if
winding number ≠ 0

winding number = 2

winding number = 1

63Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Filling in the Frame Buffer

•Fill at end of pipeline
- Convex Polygons only
- Nonconvex polygons assumed to have been

tessellated
- Shades (colors) have been computed for

vertices (Gouraud shading)
- Combine with z-buffer algorithm

• March across scan lines interpolating shades
• Incremental work small

64Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Interpolation

span

C1

C3

C2

C5

C4
scan line

C1 C2 C3 specified by glColor or by vertex shading
C4 determined by interpolating between C1 and C2
C5 determined by interpolating between C2 and C3
interpolate between C4 and C5 along span

17

65Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Flood Fill

• Fill can be done recursively if we know a seed point
located inside, currently background color (WHITE)

• Scan convert edges into buffer in edge/fill color
(BLACK)

flood_fill(int x, int y) {
if(read_pixel(x,y)= = WHITE) {

write_pixel(x,y,BLACK);
flood_fill(x-1, y);
flood_fill(x+1, y);
flood_fill(x, y+1);
flood_fill(x, y-1);

} }
66Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Line Fill

• Can also fill by maintaining a data structure of all
intersections of polygons with scan lines

- Sort by scan line
- Fill each span

vertex order generated
by vertex list desired order

67Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Conversion
Algorithm

• intersect each scan-line with all
edges

• sort intersections by increasing x
coordinate

• calculate parity of intersections to
determine in/out
- parity starts even - each intersection

inverts

• fill the 'in' pixels - those with odd
parity

• General issues - how to handle
intersection at integer and fractional

l
68Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Scan Conversion
Algorithm

• General issues - how to handle
intersection at integer and fractional
x values

• Special cases:
- shared vertices lying on scan-lines -

double intersections
• count ymin vertices but not ymax vertices in

parity count

- do NOT count vertices of horizontal
edges

18

69Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Fractional and Integer
Intersections

• Fractional intersections
- if approaching intersection to the right to

determine inside pixel
• take floor if inside, ceil if outside

• Integer intersections
- if leftmost pixel
- make interior,
- rightmost exterior

70Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Using Spatial Coherence

• Efficiency can be improved by using
spatial coherence

• Edges that intersect scan-line i are likely
to intersect i+1

• xi changes predictably from scan-line i to
i+1

• use an incremental algorithm that
calculates the scan-line extrema from
extrema of previous scan line by using
- xi+1 = xi + 1/m where m is slope

71Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Data Structure – Edge Table

72Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Aliasing

• Ideal rasterized line should be 1 pixel wide

•Choosing best y for each x (or visa versa)
produces aliased raster lines

19

73Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Antialiasing by Area
Averaging

• Color multiple pixels for each x depending on
coverage by ideal line

original antialiased

magnified
74Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Unweighted Area
Sampling

• Assume background white - lines black
• Recognize that primitive has non-zero width

- even thinnest line is 1 pixel thick
• Consider line as (thin) rectangle

- covers different (square) pixels to different extent
• In most cases should not set a single pixel to black

- Set intensity of pixel differently for each pixel covered
- Only horizontal and vertical lines effect only 1 pixel

per row

75Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Unweighted Area
Sampling

• Simplest assumption on geometry of pixels
- nonoverlapping square tiles - grey scale display
- line contributes to intensity proportional to area of

pixel’s tile covered
- pixel (2,1) is 70% black, (2,2) is 25% black
- makes line appear better at a distance

76Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Properties of Unweighted Area
Sampling

• 1. Intensity decreases with increasing
distance from pixel to edge

• 2. Primitives do not influence pixel they
do not intersect

• 3. Equal areas contribute equal intensity
- distance from pixel center to area overlapped
- small area in corner contributes same as

equal-sized area in center

20

77Angel: Interactive Computer Graphics 4E © Addison-Wesley 2005

Polygon Aliasing

•Aliasing problems can be serious for
polygons

- Jaggedness of edges
- Small polygons neglected
- Need compositing so color
of one polygon does not
totally determine color of
pixel

All three polygons should contribute to color

