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Abstract 
With the advance of high-speed network technologies, the availability and 
popularity of streaming media content over the Internet has grown rapidly 
in recent years. The delivery and caching of streaming media must be 
handled in a different fashion than that of traditional non-streaming 
objects such as HTML or image files, because of its distinct characteristics 
and user viewing patterns. We propose a novel scheme that provides users 
with the video summary (a number of key-frame images) before they 
download the file, and options for them to select the starting playback 
position. We introduce the content analysis service to achieve these 
functionalities. The video content analysis performs shot boundary 
detection, key-frame selection, and face detection and tracking. The results 
of the processing are a segmented video sequence and an XML-based 
meta-data describing the video content. We also design a caching system 
that utilizes our video abstraction and summarization technique. Our 
integrated video delivery and caching system combines content-aware 
segmentation, prefix caching, prefetching, and cooperative caching. We 
describe how our scheme can be applied in three proposed caching 
architectures. 

Keywords:  streaming media delivery, web caching, content distribution 
networks 

1 Introduction 
With the popularity growth of the Internet and the wide availability 
of high-speed network access, an increasing number of streaming 
media objects are being distributed over the Internet. Compared 
with just a few years ago, larger files are found on the web today 
because of improved video resolution and longer video length. 
Class lectures, news reports, sports highlights, movie trailers, 
commercial ads, and personal home videos are just a few examples 
of videos on the web.   

Conventional video streaming systems use a linear playback 
scheme that forces users to download from the beginning of a 
video. Users often need to download and view at least a portion of 
the video to decide if the content is what they expected. Even 
during the playback, users may wish to skip some of the parts and 
jump directly to a specific scene to save time or network 
bandwidth. Although fast-forward and rewind functionalities are 
provided by some streaming media servers, long delays and 
processing are experienced. Moreover, without the knowledge of 
what is contained in the video and the precise position of a video 
shot boundary, users usually fail to promptly locate the desired 
scenes they wish to watch. These problems and limitations have 
considerably affected user viewing experience and wasted network 
resources. A recent study [2] reports that almost half of the video 
requests stopped during near the beginning of the playback. This 
result indicates that an improved video delivery scheme needs to 
be developed to manage the user video browsing behavior.  

Web caching has been used to accelerate the delivery of web 
objects such as HTML files and images. Streaming video objects 

differ from these web objects in several ways. First, the size of 
video files is usually larger than non-streaming files by orders of 
magnitude. Storing the entire video file in a single proxy cache is 
therefore inefficient or even impossible. Second, video objects are 
mostly static contents with the WORM (Write Once Read Many) 
property. Hence, the cache consistency and coherency are not 
important issues in video caching. Moreover, user video access 
behavior and streaming media workload show different 
characteristics than those of non-streaming objects, as reported in 
[2] and [6]. Because of the special characteristic of streaming 
videos, a more suitable caching system that is different from 
traditional proxy caching systems must be developed. 

We propose an integrated interactive video delivery and caching 
system that provides users with a better viewing environment. The 
main goal of our work is to design a video system that supports 
and utilizes the automatic video analysis and summarization 
technique. The video analysis performed in our system includes 
shot boundary detection and key-frame selection. When a client 
requests a video, our system first shows the key-frames that 
summarize the video to the user, instead of streaming the video 
from the beginning. Users can quickly browse through the 
summary images to decide if they want to download any portion of 
the video. This key-frame provision helps the users avoid wasting 
time and network bandwidth on the video they are not interested 
in. Our system also enables users to easily select and jump to a 
scene. When a user decides to download the video after viewing 
the summary, the user can choose the starting playback position by 
selecting a key-frame. The clients can watch the video immediately 
from the segment they select. This feature is similar to chapters 
and “jump to a scene” features of a DVD player. The key 
difference is that on DVD this information is created by content 
providers. In today’s Internet, the content providers rarely offer 
this information, and hence we designed a system that makes video 
analysis and interactive video delivery a value-added service to 
content providers and end users. 

A video caching system is designed to take advantage of the high-
level information extracted from the video analysis. We utilize 
several well known caching techniques such as prefix caching, 
prefetching, and cooperative caching with the assumption that the 
video is segmented and spread across multiple proxies for cache 
sharing and cooperative caching. Segmentation facilitates the 
distribution and balance of server load, and allows the usage of a 
fine grain replacement algorithm. Prefix caching [23] is a scheme 
that stores only the beginning of the video to minimize storage. We 
apply this technique for each video segment to reduce the start-up 
latency. Prefetching [15] is performed at the client cache of our 
system to also reduce the delay. We propose three cooperative 
proxy architectures and illustrate the operation of video delivery 
and caching in each of the architectures. 
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The remainder of this paper is organized as follows. Section 2 
provides the overview of our system architecture. The video 
analysis technique is presented in Section 3, followed by video 
delivery and caching description in Section 4. We report the 
current status in Section 5, and conclude the paper in Section 6. 

2 System Architecture Overview 
Figure 1 depicts the overview of our proposed video delivery and 
caching system. Video is analyzed by an application proxy server, 
which can be installed by content providers as a gateway in front 
of their content servers or deployed by a third-party service 
provider that has the authorization to process the video on behalf 
of the content providers. In either approach, we assume a trust 
relationship between the application proxy server and the origin 
server, so the video is processed and value-added before it is 
distributed on the Internet.  

This architecture matches well with the business model of content 
distribution networks, with the video summarization and 
interactive delivery being provided as a value-added service to 
their customers, i.e., content providers. Note that this service is an 
off-line procedure performed before the video is replicated and 
distributed to the caching proxies at the edges of networks.  

[11] proposed another new layer of Internet infrastructure, called a 
content services network, this is built around content distribution 
networks. This layer consists of a network of cooperating 
application proxy servers that provide computational resources and 
value-added services to content providers or end users. The system 
interaction described in Figure 1 corresponds to the pre-
distribution service performed by a content services network on 
behalf of content providers as described in [11]. 

 

 
 

(1) Video is transferred from the origin server to the application proxy server that analyzes video content and performs value-added 
services. This application proxy server may be installed (and owned) by content providers as a gateway, or provided by a third-party 
content services provider that has the authorization to process the content on behalf of content providers. 

(2) The segmented video and the associated meta-data resulted from the services of application proxy server are distributed to video caching 
proxies at the edge of the Internet. This may be a service provided by content distribution networks. 

(3) Video is served from a caching proxy close to the client. In case of a local cache miss, it may communicate with other cooperative 
caches for a possible cache hit. 
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Figure 1: The system overview. The application proxy server is 
located near the origin server and performs content service on 
behalf of a content provider. 
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(1) Assuming the video is served from the origin server, the caching proxies, installed within local area networks by ISPs or corporations, will cache 
the video after it has been requested by a local client. 

(2) Because of the processing delay, the first client requesting the video does not receive the value-added video delivery services. 
(3) While the video is being cached, the caching proxies can send it to a cooperative application proxy server for video summarization and other 

value-added services. The subsequent client requests for the same video will receive the benefit of the services. 
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Figure 2: The system overview. The application proxy servers 
are located near the clients and perform content service on 
behalf of end users. 

Figure 2 shows the overview of another possible deployment 
scenario, where the application proxy server performs the video 
summarization on behalf of the clients. The application proxy 
server only processes the video that has been requested by a local 
user. After the video is downloaded, the caching proxy sends it to 
the application proxy server for video summarization and other 
content services. The video summarization could also be 
conducted while the video is being downloaded since our video 
analysis algorithm does not require the video to be fully 
downloaded in advance. Note that to perform summarization of the 
whole video, the caching proxy must continue to download the 
entire video even if the first user that requested the video object 
halts in the middle of the session. The limitation of this 
deployment scenario is that because of the processing delay, the 
first user is not able to receive the value-added services provided 
by the application proxy server, and the video is served in the form 
the origin server provides. This problem is similar to that of proxy 
caching where the client that first requests an object does not 
receive the benefic of caching. 

The system interaction described in Figure 2 corresponds to the 
post-distribution service performed by a content services network 
on behalf of end users as described in [11]. 

3 Content Analysis Services 
The video content analysis performs shot boundary detection, key-
frame selection, and face detection and tracking. The results of the 
processing are a segmented video sequence and an XML-based 
meta-data describing the video content. In this section, we discuss 
the video parsing techniques used in our application proxy server. 
In our study, we assume the streaming video files are of MPEG-1 
or MPEG-2 format. Since the principle encoding schemes for 
RealNetworks Media, Microsoft Windows Media, and Apple 
QuickTime are proprietary information and not released to the 
public, our algorithm has not been applied to those media formats. 
For a more detailed description of our video parsing technique, 
readers are referred to [12]. 

3.1 Shot Boundary Detection and Key-frame Selection 
In order to partition a long video sequence into smaller and 
meaningful components, we apply shot boundary detection to 
identify the discontinuities between different shots. Each shot 
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Figure 3: The results of video content analysis. The video is segmented into shots that can be managed separately. The key-frames 
from each shot are selected and clustered to form a hierarchical representation that is used to assist video delivery and caching. 

corresponds to a sequence of frames recorded contiguously and 
represents a continuous action in time and space. We have 
developed a very efficient and robust shot boundary detection 
scheme that operates directly on MPEG compressed data at real-
time processing speed [12]. The scheme first looks for a potential 
shot boundary within a group-of-pictures (GOP) by comparing the 
difference between two consecutive I-frames based on their DCT 
(Discrete Cosine Transform) information. A typical MPEG video 
sequence may have a structure of IBBPBBPBB (first GOP) 
IBBPBBPBB (second GOP), … When a potential shot boundary is 
detected, a further examination is applied to all the B- and P-
frames in-between to identify the exact location of a shot 
boundary. This examination only requires partial decompression of 
the video to retrieve the macro-block modes. Note that P-frame 
uses its preceding I- or P-frame as a reference to perform motion 
compensation, and B-frame uses both preceding and succeeding I- 
or P-frames as a reference. By checking the degree of such 
references from their macro-block modes, we can locate the 
precise shot boundary.  

The video is summarized through the selection of key-frames that 
represent the content of each video shot. In our system, key-frame 
selection is performed along with the video segmentation process. 
The algorithm selects the first frame in each shot that passes the 
image blur test as a key-frame. It finds a new key-frame by 
continuously searching for the next I-frame that is sufficiently 
different from the previous key-frame. The I-frames are compared 
with one another using the color information extracted from the 
frames. The required degree of difference for key-frame selection 
can be adjusted in the algorithm to control the approximate number 
of key-frames generated. Note that to be selected as a key-frame, 
each key-frame must satisfy a certain requirement to ensure it is 
not blurred [13]. Key-frames from each shot are clustered to form a 
hierarchical representation that provides multiple levels of 
granulations for video browsing and navigation [30]. Figure 3 
shows the results of video content analysis. 

3.2 Face Detection and Tracking 
People are often the most important objects in a video. Hence, the 
knowledge of who is in the video and in which part of the video 
they appear can make video delivery and client navigation more 
effective and efficient. We have incorporated face detection [22] 
and tracking techniques into our video parser. Face detection is 
applied on every I-frame and the location of detected faces is 
matched with the face locations currently under tracking. If a 
match is identified, the new location of a tracked face is updated 
and the detected face is labeled as the same person as the tracked 
one. Whenever there is an uncertainty for identifying a newly 
detected face or there is no match for a current tracked face, the 
face tracking is applied. The face tracking uses the motion 
information contained in the macro-blocks of P- and B-frames to 
predict face locations from the previous I-frame to the next I-
frame. Because face detection algorithm only detects frontal faces 
in scattered I-frames, face tracking is essential to identify the 
correspondence between these detected faces and associate them to 
the same person within a continuous video shot. The tracking stops 
when the projected face region leaves a scene or a shot boundary is 
detected.  

Face detection is also used to assist the selection of key-frames. 
When a new face is detected, the corresponding frame is selected 
as a key-frame. In addition, for a set of similar frames, face 
information is used to help select the best key-frame. That is, a 
frame that contains larger and better-positioned frontal faces with 
more people appearing inside will replace the previously selected 
key-frame if their contents are similar. 

 

3.3 Meta-data for Video Content Description 
The results of video content analysis are stored in a meta-data 
whose format is shown in Figure 4. This meta-data uses XML-
based language to describe the temporary structure and 
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summarization of video. In this example, the video has been 
segmented into 13 shots, with each shot represented by a key-
frame URL in the first-level cluster denoted by <kf_cluster level = 
“1”>. The range of each video shot is represented by begin and end 
tags. The seventh video shot, represented by kf-0000685.jpg, has 
more than a key-frame because it contains rapid scene changes. 
Those key-frames are put into the second-level cluster denoted by 
<kf_cluster, level = “1.7”> for further detailed browsing if 
necessary. The meta-data also contains the information about the 
coordinates of detected faces and their corresponding ranges in the 
video. The URLs for the video and a possible logo to be inserted 
are also included in the representation. 

This meta-data serves two purposes. First, upon the client’s 
request, the server sends this meta-data along with key-frame 
images to the client. The media player uses this information to 
render the video so that the user can browse the summary in 
advance of downloading the video file. In most scenarios, the 
summary contains enough information for the user to decide 
whether to download. If users find the summary (key-frames) 
uninteresting or do not see the expected content, they can decide 
not to download the file. In the case of using other existing 
applications, users must initiate the streaming session in order to 
view the content. When users do not appreciate the content and 
decide to stop in the middle of a session, bandwidth and power are 
wasted just to decide whether users want to access the video file. A 
study in [2] showed that nearly 45% of video file requests stopped 
the session during the first 5% of the video playback period. Based 
on this user access behavior, we believe providing users with the 
video summary can conserve network resources. Second, using the 
information provided in the meta-data, the client could 
communicate with the server to control how the video is streamed 
to the client. When the clients browse the summary (key-frames), 
they can select any particular frame that interests most. By clicking 
the specific key-frame, the client can view the video starting from 
the segment represented by the selected key-frame. Therefore, 
users can watch the interesting parts of the video without having to 
stream it from the beginning of the entire video. Note that each 
key-frame (or face) in the meta-data represents a video segment 
that can be played back independently and immediately. This 
requires a special handling on the server to ensure that the 
beginning of each video segment corresponds to a breakable point 
in the compressed video data. For MPEG-1 and MPEG-2 videos, 
this point is the beginning of an I-frame, as it does not depend on 
any previous frames to decode it. 

4 Video Delivery and Caching 
4.1 Goals and Design Overview 
Streaming media have different characteristics than non-streaming 
objects. Video files are much larger and their contents do not 
change. User access behavior and workload of video files and 
streaming media are shown to be different from those of non-
streaming objects [2], [6]. Based on these characteristics of 
streaming video files, we take an approach that is different from 
traditional proxy caching systems. The main goal of our work is to 
design an integrated video delivery and caching system that 
supports and utilizes the content analysis and summarization 
technique introduced in Section 3. The key technical components 
of our system, which we discuss below, are segmentation, prefix 
caching, prefetching, and cooperative caching. 

 <video structure>
<kf_cluster level="1">

<img src="kf-0000132.jpg" begin="132" end="227"/>
<img src="kf-0000228.jpg" begin="228" end="336"/>
<img src="kf-0000354.jpg">

<face coords="179,69,37,41">
<playback begin="337" end="385"/>

</face>
<playback begin="337" end="385"/>

</img>
<img src="kf-0000386.jpg" begin="386" end="458"/>
<img src="kf-0000459.jpg" begin="459" end="576"/>
<img src="kf-0000577.jpg" begin="577" end="684"/>
<img src="kf-0000685.jpg" begin="685" end="764"/>
<img src="kf-0000765.jpg" begin="765" end="800"/>
<img src="kf-0000801.jpg" begin="801" end="852"/>
<img src="kf-0000885.jpg" begin="853" end="894"/>
<img src="kf-0000912.jpg" begin="895" end="950"/>
<img src="kf-0000951.jpg" begin="951" end="992"/>
<img src="kf-0000993.jpg" begin="993" end="1008"/>

</kf_cluster>

<kf_cluster level="1.7">
<img src="kf-0000717.jpg" begin="717" end="764"/>
<img src="kf-0000762.jpg" begin="762" end="764"/>

</kf_cluster>

<video src="rtsp://www.hpl.hp.com/test.mpg"/>
<logo src="hp-logo.jpg" coords="6,6"/>

<video structure/>

Figure 4: An XML-based meta-data describing the 
information about the video. 

4.1.1 Content-aware Segmentation  
A video segmentation module divides the video into segments 
based on the result of shot boundary detection. Each segment 
corresponds to a continuously recorded sequence of frames and we 
can manage each segment separately. The segments of a video are 
spread across multiple proxies for cache sharing and cooperative 
caching. Note that in contrast with the simple equal-sized 
segmentation technique used in [1] and [10], the size of segments 
may vary in our system. It is desirable however, to have constraints 
on segment lengths, as having too many or too few segments may 
cause difficulties in object management.  

Segmenting the streaming media files has several advantages. By 
placing segments on several proxy caches, we can better distribute 
the load. In addition, spreading the video into several caches 
allows us to perform intelligent caching. Instead of taking an “all 
or nothing” approach where either the video file is stored in its 
entirety or not cached at all, we cache the streaming objects by 
segments, i.e., the cache replacement granularity is the segment. 
Therefore, at some instances, only popular parts of the video may 
be present at the caches of the network edges. We discuss the 
caching algorithm we use in Section 4.5. 

4.1.2 Prefix Caching  
Storing the entire video file into proxies may be inefficient as 
video files can be very large. This is particularly true if the cached 
streaming media object is not popular. Prefix caching [23] stores 
only the first few frames of the popular video files. When a client 
requests a video stream and the prefix is cached, the proxy delivers 
the prefix to the client while it requests the remainder of the video 
to the origin server. By caching the (large enough) prefix, the start-
up latency perceived by the user can be reduced. The challenge 
could be in determining the optimal prefix size. Items such as 
roundtrip delay, server-to-proxy latency, video specific parameters 
(e.g., size, bit rate, etc.), and retransmission rate of lost packets 
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must be considered in calculating the appropriate prefix length 
[23]. 

As our system has multiple segments for a video object, we adopt 
prefix caching for each cached segments. When users click one of 
the summary frames provided by our content analysis and 
summarization technique, our system delivers the specific segment 
immediately to the client (and not from the beginning of the video 
file, unless the user requested the first segment). Hence, we store 
the prefix of each segment to benefit from prefix caching in our 
system. 

4.1.3 Prefetching  
Prefetching [4], [15], [31] is another scheme to reduce the user 
perceived latency. Prefetching can increase the caching efficiency 
by predicting the client request pattern and caching the objects in 
advance of user requests. The sacrifice however, is the increase in 
traffic. Studies report other potential costs of prefetching. [26] 
shows that prefetching is beneficial only when traffic is lightly 
loaded and the prediction algorithm is very effective. [7] reports 
that prefetching affects the queueing behavior and increases 
network burstiness. Prefetching should be performed with extra 
cautions in streaming media delivery systems as they are dealing 
with much larger objects. 

We use prefetching at the client cache instead of the proxy cache. 
Prefetching scheme on the client side further reduces the startup 
latency. Since the user is browsing the video based on the meta-
data already downloaded, this interaction provides a window of 
opportunity for the client device to initiate a prefetching based on 
the availability of the resources such as bandwidth and storage in 
the client cache. The user’s browsing behavior provides more clues 
to help the prediction algorithm to be more effective. We propose 
the following prefetching algorithm that decides when and which 
portion of the video is downloaded while browsing. As shown in 
Figure 5, if the focus window of the user’s browser stays at certain 
section for more than t seconds, the first n bytes of each video 
segment within the window are prefetched.  

The duration t is proportional to the number of key frames showing 
in the browser window. In addition, the parameter pair (t, n) is 
designed to satisfy certain constraints posed by the resources 
limitation. For example, if the connection between the client and 
proxy is congested, the algorithm can choose to increase t and 
decrease n in order to reduce the prefetching frequency and 
payload, respectively. 

 

Streaming server Send the beginnings of video segments in 
the window of focus 

Client 

Meta-data & key-frames 

Segmented video 

Window of focus 

Initiate prefetching 

User 

Hierarchical structure 
of the video 

Figure 5: The video prefetching scheme. 

 

4.1.4 Cooperative Caching  
Cooperative caching [17], [27], [29] is widely studied and 
deployed in many content delivery systems, starting from Harvest 
[5] and Squid [24]. A number of proxies cooperate and share the 
cache with one another to improve the cache hit rate. When a 
proxy receives a request to an object that is missing from its cache, 
it checks whether the object is cached on other proxies within the 
cooperative network. The most well known schemes are broadcast 
probing [5], [24], [28], directory service based [8], [9], [21], and 
hash-partitioned namespace approach [25]. 

As our system divides the streaming media object into segments, it 
is natural that our system spreads them across several proxies and 
uses a web cache sharing technique. Our cooperative caching 
scheme needs an agent that determines and has the knowledge of 
which segment is cached on which proxy. The segment assignment 
policy is important as each segment has different sizes. Note that 
there are no duplicate segments cached on different proxies within 
our cooperative caching network.  

Our video delivery system can be implemented in various cache 
sharing architectures. They are centralized, distributed, and hybrid 
cooperative caching, and none uses a hierarchical cache structure. 
Each proposed scheme is examined in the following three sections. 

4.2 Video Delivery with Centralized Cooperative 
Caching 

In the centralized cooperative caching scheme, a master cache 
coordinates the interactions between the client and the cache array. 
For each video object, the master cache stores the key-frame and 
the prefix of each segment. In addition, the master cache assigns 
and knows the location of each segment, i.e., the information 
regarding which cache keeps which segment. The request from the 
client is redirected to the master cache. Upon a request, the master 
cache provides the key-frames to the client. When the client selects 
a certain segment, the master cache transmits the proper prefix to 
the client (and hence reduce the startup delay) while instructing the 
appropriate proxy, which cached the requested segment, to deliver 
the segment. The video stream is always delivered to the user 
through the master cache. 

For the illustration of this scheme, we use the following example 
that is also used in the description of the other two schemes. As 
shown in Figure 6, the video object is segmented into three 
sections and each segment is represented by a key-frame. The first 
segment is cached in the proxy cache C1, the second in C2, and the 
third in C3. The key-frames and prefixes are stored in the master 
cache along with the location information of each segment.  

Consider a client requests a video and browses through the key-
frames. Subsequently, the client requests to watch from the second 
segment, and continuously views through the third segment 
towards the end of the video. 

The interactions involved in the above scenario are explained as 
follows: 

1. The client requests a video. 

2. If the requested video is not in a cache, the master cache 
sends a request to the origin server. The video object is 
segmented and summarized in key-frames by the content 
analysis service (this process is performed by the 
application proxy server, as described in Section 2). The 
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master cache hosts the key-frames and prefixes and 
distributes the segments to appropriate proxy caches. It 
then sends the video summary to the client. Note that if 
the requested video is already in the cache, the master 
cache simply provides the video summary to the client. 

3. After browsing the summary, the client selects the 
segment #2 as the starting playback position. 

4. The master cache sends the prefix of segment #2 to the 
client and requests the rest of the segment from C2. 

5. C2 sends segment #2 to the master cache. 

6. The master cache forwards segment #2 to the client. 

7. Right after the completion of delivering segment #2, the 
master cache sends the prefix of segment #3 to the client 
and requests the rest of the segment from C3, similar to 
step 4. 

8. C3 sends the segment #3 to the master cache. 

9. The master cache forwards the segment #3 to the client. 

Note that the length of prefix stored by the master cache must be 
large enough to ensure the client does not experience delays 
between viewing the prefix and the rest of the segment. The 
segment assignment and distribution must be handled with care by 
the master cache. If the number of segmented portions is smaller 
than the number of proxies, segment distribution to overloaded 
caches should be avoided. On the other hand, if there are more 
video segments than the caches, intelligent assignment must be 
performed. For example, consider there are four segments to be 
spread across three proxy caches, and the second cache is the least 
loaded. Instead of assigning the segment #1 to cache #1, segment 
#2 to cache #2, segment #3 to cache #3, and segment #4 to cache 
#2, we can distribute the segment #1 to cache #1, segments #2 and 
#3 to cache #2, and segment #4 to cache #3. As users that watch 
segment #2 are likely to access segment #3 next as they are 
continuous, this assignment policy can reduce coordination 
processing and the control traffic between the master cache and 
proxies. 

Client

1 2

4

3 4

5
6 7

7 8

9

seg #1 seg #2 seg #3

C1 C2 C3

Master Cache

summary

prefix data

segment  data

prefix

C proxy cache

control message

Figure 6: A video delivery example in centralized cooperative 
caching. 
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Figure 7: A video delivery example in distributed cooperative 
caching. 

The centralized cooperative cache scheme is simple and easy to 
implement and manage. No communication is needed between 
proxy caches as the master cache holds all necessary information. 
Since every object and stream goes through the master cache, 
however, it can easily be overloaded and congested. In addition, 
the master cache creates the single point of failure problem.  

4.3 Video Delivery with Distributed Cooperative 
Caching 

A master cache does not exist in the distributed architecture. 
Instead, each proxy cache has a control unit that has the 
functionality of the master cache. In this architecture, the summary 
key-frames and the prefix of each segment are replicated and 
cached in each proxy. Each cache also holds the location 
information of all the segments. The proxies must communicate 
with each other to exchange this information. Schemes such as 
summary cache [8] or cache digest [21] can be used for this 
purpose.  

As shown in Figure 7, the client’s initial request is redirected to the 
entry point. The entry point serves as a gateway to the client and it 
could be as simple as a forwarder. The basic function of the entry 
point is to select a proxy that coordinates the caching and delivery 
of a video object for each request. The election algorithm can be a 
round robin mechanism, for example. When this proxy receives a 
request to the segment that it does not hold, it sends the prefix of 
the requested segment to the client and forwards or redirects the 
request to the appropriate proxy.  

Let us study the systematic process of this architecture using the 
same scenario as in Section 4.2.  

1. The client requests a video. 

2. The entry point receives the request and forwards it to 
the selected proxy (C2 in this example). 

3. If the C2 does not have the requested video, it sends a 
request to the origin server. The video object is 
segmented and summarized in key-frames by the content 
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analysis service. C2 distributes the segments to 
appropriate proxy caches and sends the key-frames and 
prefixes of the video to all the proxies. It then delivers 
the video summary to the client. Note that if the 
requested video is already in the cache, C2 simply 
provides the video summary to the client.  

4. After browsing the summary, the client selects segment 
#2 as the starting playback position. 

5. As C2 has cached segment #2, it delivers the entire 
segment to the client. 

6. Right after the completion of delivering segment #2, C2 
sends the prefix of segment #3 to the client and sends a 
request to C3 to deliver the rest of the segment to the 
client.  

7. C3 sends segment #3 directly to the client. 

In this architecture, all possible problems of having a master cache 
are eliminated. The cost is the added complexity for each proxy. 
Streaming server must be implemented in each control unit, as 
each proxy streams the video content to the client. Each proxy 
cache cannot hold as many video segments as in the centralized 
architecture since the storage is also used for caching the prefixes 
and key-frames. In addition, session handoff scheme must be 
implemented among the proxy caches. A simple entry point is also 
needed to handle the initial request from the client. 

4.4 Video Delivery with Hybrid Cooperative Caching 
In the centralized cooperative caching, the bulk of the video 
content is delivered through the master cache. This easily 
overloads the master cache. In the distributed scheme, each proxy 
needs added capability and coordination can be complex. In this 
section, we propose a hybrid architecture where a master cache is 
used, but its role is reduced to only controlling the interactions and 
delivering the key-frames and prefixes. The delivery of the video 
segments to the client is done directly by the proxy caches. 

Client

1 2

4

3
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6

8

seg #1 seg #2 seg #3

C1 C2 C3

7

Master Cache

4

7

prefix

summary

prefix data

segment  data

C proxy cache

control message

Figure 8: A video delivery example in hybrid cooperative 
caching. 

 

Figure 8 shows the interactions using the example scenario. 

1. The client requests a video. 

2. If the requested video is not in a cache, the master cache 
sends a request to the origin server. The video object is 
segmented and summarized in key-frames by the content 
analysis service. The master cache hosts the key-frames 
and prefixes and distributes the segments to appropriate 
proxy caches. It then sends the video summary to the 
client. Note that if the requested video is already in the 
cache, the master cache simply provides the video 
summary to the client. 

3.  After browsing the summary, the client selects segment 
#2 as the starting playback position. 

4. The master cache sends the prefix of segment #2 to the 
client and sends a request to C2 to deliver the rest of the 
segment to the client. 

5. C2 sends segment #2 directly to the client. 

6. Towards the end of sending of segment #2, C2 informs 
the master cache with the status.  

7. The master cache sends the prefix of segment #3 to the 
client and sends a request to C3 to deliver the rest of the 
segment to the client, similar to step 4.  

8. C3 sends segment #3 directly to the client. 

Since the bulk of the video is delivered directly from the proxy 
caches to the client, the master cache is less prone to overload, 
congestion, and failure. The master cache is mainly in charge of 
the control message exchanges. The connection handoff however, 
must be resolved as the clients request is sent to the master cache 
but the data delivery is from the proxy caches. Depending on the 
communication protocol used in the video access, the master cache 
should be able to hand the data delivery duty to the proxy caches. 
For example, if the communication is UDP based, the master cache 
can forward the client address with the request (e.g., in steps 4 and 
7). On the other hand, if the client is involved in a TCP session, we 
must resolve TCP handoff between the master cache and the proxy 
caches. 

4.5 Cache Replacement Granularity and Policy 
As segments of a video are spread across multiple proxies, 
granularity of our cache replacement scheme is segments. If certain 
segments of a video are popular, only popular segments are 
cached. This partial video caching differs from the “all or nothing” 
approach where the object is either cached in its entirety or not 
cached at all. A “cache hit” is measured in segments. Using the 
example scenario from Sections 4.2 to 4.4, when the client selects 
the segment #2 as the starting playback position and continues to 
view through segment #3, cache hits are recorded for both 
segments #2 and #3.  

Recent studies [2], [6] indicate that client requests to video files 
show strong temporal locality. A cache replacement algorithm 
such as LRU-k [14] can exploit temporal locality [1]. When the 
cache is full and a new item must be inserted, LRU-k replaces an 
object whose k-th previous request is the least recent. Hence, the 
LRU scheme is LRU-k with k = 1. Each proxy cache of our system 
runs this LRU-k scheme as the cache replacement algorithm.  
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The cache replacement takes place at two locations in our system: 
the master cache (or control units) and proxy caches. When a video 
segment is replaced by a proxy cache, the prefix of that segment 
remains in the master cache (in the centralized or hybrid 
architectures) or all the control units of proxy caches (in the 
distributed architecture). If there is a request to the replaced 
segment, the prefix can be sent to the client while the rest of the 
segment is requested to the origin server. When all the segments of 
a video are removed from caches, the key-frames and prefixes can 
also be deleted. Note that the prefix should not be removed before 
the actual segment is replaced. When the prefix of the segment 
does not exist, our system considers that the segment is not cached 
and hence it will not be accessed.  

There are also three levels of replacement: key-frame level, prefix 
level and segment level. A prefix is always physically stored along 
with a key-frame. On the other hand, a prefix is logically 
associated with a segment since it is the initial part of the segment. 
Since key-frames and prefixes consume less resource, we assign 
higher priorities to them. In the caching replacement algorithm, 
object of higher priority is less likely to be replaced. Therefore, a 
weighted LRU-k scheme can be applied considering the different 
priorities we assign to each level. 

5 Current Status  
We implemented a prototype system based on the RealNetworks 
software development kit (SDK) [18]. Several RealSystem plug-
ins are implemented to give the end users the control on the 
playback of a video stream. On the server side, a file-format plug-
in is implemented to provide the RealServer the ability to 
interactively deliver a MPEG video. On the client side, a rendering 
plug-in is implemented to enable the RealPlayer to render a MPEG 
video interactively. The file-format and rendering plug-ins use the 
XML-based meta-data to communicate with each other in the 
video streaming process. This system allows users to quickly 
browse through the entire video content by viewing key-frames 
and faces. Each key-frame and face represents a video segment 
that can be played back individually according to the user interests. 
Figure 9 (a) shows the snapshot of this system on a desktop PC. 
Note that two RealPlayer windows launch when the user clicks on 
a video that is processed and value-added by our application proxy 
server: one window shows the hierarchical video summary and the 
other window plays the video.  

To apply our technique to video streaming on a handheld computer 
with a small form factor, we implemented a video player using the 
Microsoft Foundation Class (MFC) [16] on the Windows CE 
platform. The player connects to the video server that is extended 
from the Apache web server. The player sends an HTTP request to 
the server with a special header specifying the starting point of the 
requested video. The server performs fseek or switches between 
different video segment files before packetizing the data. The 
server has the information about the byte location associated with 
the beginning of each video segment or where the individual 
segment is stored. Figure 9 (b) shows a picture of the interactive 
video delivery to a handheld computer (HP Jornada 720) with a 
wireless LAN connection. Because the screen is small, only two 
key-frames are shown each instance. When the user clicks on a 
particular key-frame, the left window is used to play the video and 
the right window continues to be used to browse the summary. 

 

Control  

Video summarization 

Video streaming 

(a) Interactive video delivery to a desktop PC. 

(b) Interactive video delivery to a handheld computer. 

 

Figure 9: A prototype system is implemented on (a) the SDK 
provided by RealNetworks System and (b) MFC on Windows 
CE platform.  

6 Conclusions 
We presented an integrated interactive video delivery and caching 
system that utilizes the content analysis services to provide better 
user interfaces and conserve network resources. The content 
analysis service performs shot boundary detection, key-frame 
selection, and face detection and tracking. When a client requests a 
streaming video file, our system initially provides the video 
summary to the user. The user quickly browses these summary 
images to decide whether to download the video. If the user selects 
to download, the user can also choose which part of the video to 
download. We believe our summary provision offers better video 
viewing environment to the users, and we expect user access 
behaviors to change.  

Our video system uses content-aware video segmentation, prefix 
caching, prefetching, and cooperative caching techniques to enable 
users to view any part of the cached video without long delays. By 
segmenting the video, we are able to use a fine grain cache 
replacement algorithm that exploits temporal locality and multi-
level caching. We described the operation of video delivery and 
caching mechanism on three proposed cooperative caching 
architectures: centralized, distributed, and hybrid. Our system is 
designed to utilize the content analysis service that is currently 
applied to videos of format MPEG-1 and MPEG-2. We believe 
that our system can also be used for other streaming formats. We 
can still perform segmentation, prefix caching, and cooperative 
caching to those video formats, even though we cannot apply 
content analysis and provide video summary to the users because 
of proprietary issues. 
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We currently have a content analysis service prototype 
implementation on the SDK provided by RealNetworks and MFC 
on the Windows CE environment. It operates on our desktop PCs 
and wireless mobile handheld computers. We are continuing our 
work in several ways. Simulation is in progress to evaluate the 
performance on three system architectures, various replacement 
algorithms, and the optimal k size in LRU-k. Based on the lessons 
we learn from simulation, we plan to implement our integrated 
video delivery and caching system on a real test-bed. 
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