

 1

An Interactive Video Delivery and Caching System Using Video Summarization
Sung-Ju Lee, Wei-Ying Ma, and Bo Shen

Hewlett-Packard Laboratories

1501 Page Mill Road
Palo Alto, CA 94304-1126

{sjlee, boshen}@hpl.hp.com; wyma@microsoft.com

Abstract
With the advance of high-speed network technologies, the availability and
popularity of streaming media content over the Internet has grown rapidly
in recent years. The delivery and caching of streaming media must be
handled in a different fashion than that of traditional non-streaming
objects such as HTML or image files, because of its distinct characteristics
and user viewing patterns. We propose a novel scheme that provides users
with the video summary (a number of key-frame images) before they
download the file, and options for them to select the starting playback
position. We introduce the content analysis service to achieve these
functionalities. The video content analysis performs shot boundary
detection, key-frame selection, and face detection and tracking. The results
of the processing are a segmented video sequence and an XML-based
meta-data describing the video content. We also design a caching system
that utilizes our video abstraction and summarization technique. Our
integrated video delivery and caching system combines content-aware
segmentation, prefix caching, prefetching, and cooperative caching. We
describe how our scheme can be applied in three proposed caching
architectures.

Keywords: streaming media delivery, web caching, content distribution
networks

1 Introduction
With the popularity growth of the Internet and the wide availability
of high-speed network access, an increasing number of streaming
media objects are being distributed over the Internet. Compared
with just a few years ago, larger files are found on the web today
because of improved video resolution and longer video length.
Class lectures, news reports, sports highlights, movie trailers,
commercial ads, and personal home videos are just a few examples
of videos on the web.

Conventional video streaming systems use a linear playback
scheme that forces users to download from the beginning of a
video. Users often need to download and view at least a portion of
the video to decide if the content is what they expected. Even
during the playback, users may wish to skip some of the parts and
jump directly to a specific scene to save time or network
bandwidth. Although fast-forward and rewind functionalities are
provided by some streaming media servers, long delays and
processing are experienced. Moreover, without the knowledge of
what is contained in the video and the precise position of a video
shot boundary, users usually fail to promptly locate the desired
scenes they wish to watch. These problems and limitations have
considerably affected user viewing experience and wasted network
resources. A recent study [2] reports that almost half of the video
requests stopped during near the beginning of the playback. This
result indicates that an improved video delivery scheme needs to
be developed to manage the user video browsing behavior.

Web caching has been used to accelerate the delivery of web
objects such as HTML files and images. Streaming video objects

differ from these web objects in several ways. First, the size of
video files is usually larger than non-streaming files by orders of
magnitude. Storing the entire video file in a single proxy cache is
therefore inefficient or even impossible. Second, video objects are
mostly static contents with the WORM (Write Once Read Many)
property. Hence, the cache consistency and coherency are not
important issues in video caching. Moreover, user video access
behavior and streaming media workload show different
characteristics than those of non-streaming objects, as reported in
[2] and [6]. Because of the special characteristic of streaming
videos, a more suitable caching system that is different from
traditional proxy caching systems must be developed.

We propose an integrated interactive video delivery and caching
system that provides users with a better viewing environment. The
main goal of our work is to design a video system that supports
and utilizes the automatic video analysis and summarization
technique. The video analysis performed in our system includes
shot boundary detection and key-frame selection. When a client
requests a video, our system first shows the key-frames that
summarize the video to the user, instead of streaming the video
from the beginning. Users can quickly browse through the
summary images to decide if they want to download any portion of
the video. This key-frame provision helps the users avoid wasting
time and network bandwidth on the video they are not interested
in. Our system also enables users to easily select and jump to a
scene. When a user decides to download the video after viewing
the summary, the user can choose the starting playback position by
selecting a key-frame. The clients can watch the video immediately
from the segment they select. This feature is similar to chapters
and “jump to a scene” features of a DVD player. The key
difference is that on DVD this information is created by content
providers. In today’s Internet, the content providers rarely offer
this information, and hence we designed a system that makes video
analysis and interactive video delivery a value-added service to
content providers and end users.

A video caching system is designed to take advantage of the high-
level information extracted from the video analysis. We utilize
several well known caching techniques such as prefix caching,
prefetching, and cooperative caching with the assumption that the
video is segmented and spread across multiple proxies for cache
sharing and cooperative caching. Segmentation facilitates the
distribution and balance of server load, and allows the usage of a
fine grain replacement algorithm. Prefix caching [23] is a scheme
that stores only the beginning of the video to minimize storage. We
apply this technique for each video segment to reduce the start-up
latency. Prefetching [15] is performed at the client cache of our
system to also reduce the delay. We propose three cooperative
proxy architectures and illustrate the operation of video delivery
and caching in each of the architectures.

 2

The remainder of this paper is organized as follows. Section 2
provides the overview of our system architecture. The video
analysis technique is presented in Section 3, followed by video
delivery and caching description in Section 4. We report the
current status in Section 5, and conclude the paper in Section 6.

2 System Architecture Overview
Figure 1 depicts the overview of our proposed video delivery and
caching system. Video is analyzed by an application proxy server,
which can be installed by content providers as a gateway in front
of their content servers or deployed by a third-party service
provider that has the authorization to process the video on behalf
of the content providers. In either approach, we assume a trust
relationship between the application proxy server and the origin
server, so the video is processed and value-added before it is
distributed on the Internet.

This architecture matches well with the business model of content
distribution networks, with the video summarization and
interactive delivery being provided as a value-added service to
their customers, i.e., content providers. Note that this service is an
off-line procedure performed before the video is replicated and
distributed to the caching proxies at the edges of networks.

[11] proposed another new layer of Internet infrastructure, called a
content services network, this is built around content distribution
networks. This layer consists of a network of cooperating
application proxy servers that provide computational resources and
value-added services to content providers or end users. The system
interaction described in Figure 1 corresponds to the pre-
distribution service performed by a content services network on
behalf of content providers as described in [11].

(1) Video is transferred from the origin server to the application proxy server that analyzes video content and performs value-added
services. This application proxy server may be installed (and owned) by content providers as a gateway, or provided by a third-party
content services provider that has the authorization to process the content on behalf of content providers.

(2) The segmented video and the associated meta-data resulted from the services of application proxy server are distributed to video caching
proxies at the edge of the Internet. This may be a service provided by content distribution networks.

(3) Video is served from a caching proxy close to the client. In case of a local cache miss, it may communicate with other cooperative
caches for a possible cache hit.

Origin Video Server

Internet
backbone

(1)

(2)

(2) (2)

Application Proxy Server
��Video abstraction and
summarization
��Other value-added services

Video Caching Proxies

Clients

(3)
(3)

(3)

Figure 1: The system overview. The application proxy server is
located near the origin server and performs content service on
behalf of a content provider.

Origin Video Server

Internet
backbone

(1) (1)

(2)

(1) Assuming the video is served from the origin server, the caching proxies, installed within local area networks by ISPs or corporations, will cache
the video after it has been requested by a local client.

(2) Because of the processing delay, the first client requesting the video does not receive the value-added video delivery services.
(3) While the video is being cached, the caching proxies can send it to a cooperative application proxy server for video summarization and other

value-added services. The subsequent client requests for the same video will receive the benefit of the services.

(3)

(3)

(1)

(2)

(2)

Application Proxy Server
��Video abstraction and

summarization
��Other value-added services

Video Caching Proxies

Clients

Figure 2: The system overview. The application proxy servers
are located near the clients and perform content service on
behalf of end users.

Figure 2 shows the overview of another possible deployment
scenario, where the application proxy server performs the video
summarization on behalf of the clients. The application proxy
server only processes the video that has been requested by a local
user. After the video is downloaded, the caching proxy sends it to
the application proxy server for video summarization and other
content services. The video summarization could also be
conducted while the video is being downloaded since our video
analysis algorithm does not require the video to be fully
downloaded in advance. Note that to perform summarization of the
whole video, the caching proxy must continue to download the
entire video even if the first user that requested the video object
halts in the middle of the session. The limitation of this
deployment scenario is that because of the processing delay, the
first user is not able to receive the value-added services provided
by the application proxy server, and the video is served in the form
the origin server provides. This problem is similar to that of proxy
caching where the client that first requests an object does not
receive the benefic of caching.

The system interaction described in Figure 2 corresponds to the
post-distribution service performed by a content services network
on behalf of end users as described in [11].

3 Content Analysis Services
The video content analysis performs shot boundary detection, key-
frame selection, and face detection and tracking. The results of the
processing are a segmented video sequence and an XML-based
meta-data describing the video content. In this section, we discuss
the video parsing techniques used in our application proxy server.
In our study, we assume the streaming video files are of MPEG-1
or MPEG-2 format. Since the principle encoding schemes for
RealNetworks Media, Microsoft Windows Media, and Apple
QuickTime are proprietary information and not released to the
public, our algorithm has not been applied to those media formats.
For a more detailed description of our video parsing technique,
readers are referred to [12].

3.1 Shot Boundary Detection and Key-frame Selection
In order to partition a long video sequence into smaller and
meaningful components, we apply shot boundary detection to
identify the discontinuities between different shots. Each shot

 3

Figure 3: The results of video content analysis. The video is segmented into shots that can be managed separately. The key-frames
from each shot are selected and clustered to form a hierarchical representation that is used to assist video delivery and caching.

corresponds to a sequence of frames recorded contiguously and
represents a continuous action in time and space. We have
developed a very efficient and robust shot boundary detection
scheme that operates directly on MPEG compressed data at real-
time processing speed [12]. The scheme first looks for a potential
shot boundary within a group-of-pictures (GOP) by comparing the
difference between two consecutive I-frames based on their DCT
(Discrete Cosine Transform) information. A typical MPEG video
sequence may have a structure of IBBPBBPBB (first GOP)
IBBPBBPBB (second GOP), … When a potential shot boundary is
detected, a further examination is applied to all the B- and P-
frames in-between to identify the exact location of a shot
boundary. This examination only requires partial decompression of
the video to retrieve the macro-block modes. Note that P-frame
uses its preceding I- or P-frame as a reference to perform motion
compensation, and B-frame uses both preceding and succeeding I-
or P-frames as a reference. By checking the degree of such
references from their macro-block modes, we can locate the
precise shot boundary.

The video is summarized through the selection of key-frames that
represent the content of each video shot. In our system, key-frame
selection is performed along with the video segmentation process.
The algorithm selects the first frame in each shot that passes the
image blur test as a key-frame. It finds a new key-frame by
continuously searching for the next I-frame that is sufficiently
different from the previous key-frame. The I-frames are compared
with one another using the color information extracted from the
frames. The required degree of difference for key-frame selection
can be adjusted in the algorithm to control the approximate number
of key-frames generated. Note that to be selected as a key-frame,
each key-frame must satisfy a certain requirement to ensure it is
not blurred [13]. Key-frames from each shot are clustered to form a
hierarchical representation that provides multiple levels of
granulations for video browsing and navigation [30]. Figure 3
shows the results of video content analysis.

3.2 Face Detection and Tracking
People are often the most important objects in a video. Hence, the
knowledge of who is in the video and in which part of the video
they appear can make video delivery and client navigation more
effective and efficient. We have incorporated face detection [22]
and tracking techniques into our video parser. Face detection is
applied on every I-frame and the location of detected faces is
matched with the face locations currently under tracking. If a
match is identified, the new location of a tracked face is updated
and the detected face is labeled as the same person as the tracked
one. Whenever there is an uncertainty for identifying a newly
detected face or there is no match for a current tracked face, the
face tracking is applied. The face tracking uses the motion
information contained in the macro-blocks of P- and B-frames to
predict face locations from the previous I-frame to the next I-
frame. Because face detection algorithm only detects frontal faces
in scattered I-frames, face tracking is essential to identify the
correspondence between these detected faces and associate them to
the same person within a continuous video shot. The tracking stops
when the projected face region leaves a scene or a shot boundary is
detected.

Face detection is also used to assist the selection of key-frames.
When a new face is detected, the corresponding frame is selected
as a key-frame. In addition, for a set of similar frames, face
information is used to help select the best key-frame. That is, a
frame that contains larger and better-positioned frontal faces with
more people appearing inside will replace the previously selected
key-frame if their contents are similar.

3.3 Meta-data for Video Content Description
The results of video content analysis are stored in a meta-data
whose format is shown in Figure 4. This meta-data uses XML-
based language to describe the temporary structure and

Detected faces and their corresponding
ranges appeared in the video

Segmented video with each shot
represented by a different color

Video abstraction and summarization based on a hierarchical
representation of keyframes selected from the video

Level 1

Level 2

 4

summarization of video. In this example, the video has been
segmented into 13 shots, with each shot represented by a key-
frame URL in the first-level cluster denoted by <kf_cluster level =
“1”>. The range of each video shot is represented by begin and end
tags. The seventh video shot, represented by kf-0000685.jpg, has
more than a key-frame because it contains rapid scene changes.
Those key-frames are put into the second-level cluster denoted by
<kf_cluster, level = “1.7”> for further detailed browsing if
necessary. The meta-data also contains the information about the
coordinates of detected faces and their corresponding ranges in the
video. The URLs for the video and a possible logo to be inserted
are also included in the representation.

This meta-data serves two purposes. First, upon the client’s
request, the server sends this meta-data along with key-frame
images to the client. The media player uses this information to
render the video so that the user can browse the summary in
advance of downloading the video file. In most scenarios, the
summary contains enough information for the user to decide
whether to download. If users find the summary (key-frames)
uninteresting or do not see the expected content, they can decide
not to download the file. In the case of using other existing
applications, users must initiate the streaming session in order to
view the content. When users do not appreciate the content and
decide to stop in the middle of a session, bandwidth and power are
wasted just to decide whether users want to access the video file. A
study in [2] showed that nearly 45% of video file requests stopped
the session during the first 5% of the video playback period. Based
on this user access behavior, we believe providing users with the
video summary can conserve network resources. Second, using the
information provided in the meta-data, the client could
communicate with the server to control how the video is streamed
to the client. When the clients browse the summary (key-frames),
they can select any particular frame that interests most. By clicking
the specific key-frame, the client can view the video starting from
the segment represented by the selected key-frame. Therefore,
users can watch the interesting parts of the video without having to
stream it from the beginning of the entire video. Note that each
key-frame (or face) in the meta-data represents a video segment
that can be played back independently and immediately. This
requires a special handling on the server to ensure that the
beginning of each video segment corresponds to a breakable point
in the compressed video data. For MPEG-1 and MPEG-2 videos,
this point is the beginning of an I-frame, as it does not depend on
any previous frames to decode it.

4 Video Delivery and Caching
4.1 Goals and Design Overview
Streaming media have different characteristics than non-streaming
objects. Video files are much larger and their contents do not
change. User access behavior and workload of video files and
streaming media are shown to be different from those of non-
streaming objects [2], [6]. Based on these characteristics of
streaming video files, we take an approach that is different from
traditional proxy caching systems. The main goal of our work is to
design an integrated video delivery and caching system that
supports and utilizes the content analysis and summarization
technique introduced in Section 3. The key technical components
of our system, which we discuss below, are segmentation, prefix
caching, prefetching, and cooperative caching.

 <video structure>
<kf_cluster level="1">

<face coords="179,69,37,41">
<playback begin="337" end="385"/>

</face>
<playback begin="337" end="385"/>

</kf_cluster>

<kf_cluster level="1.7">

</kf_cluster>

<video src="rtsp://www.hpl.hp.com/test.mpg"/>
<logo src="hp-logo.jpg" coords="6,6"/>

<video structure/>

Figure 4: An XML-based meta-data describing the
information about the video.

4.1.1 Content-aware Segmentation
A video segmentation module divides the video into segments
based on the result of shot boundary detection. Each segment
corresponds to a continuously recorded sequence of frames and we
can manage each segment separately. The segments of a video are
spread across multiple proxies for cache sharing and cooperative
caching. Note that in contrast with the simple equal-sized
segmentation technique used in [1] and [10], the size of segments
may vary in our system. It is desirable however, to have constraints
on segment lengths, as having too many or too few segments may
cause difficulties in object management.

Segmenting the streaming media files has several advantages. By
placing segments on several proxy caches, we can better distribute
the load. In addition, spreading the video into several caches
allows us to perform intelligent caching. Instead of taking an “all
or nothing” approach where either the video file is stored in its
entirety or not cached at all, we cache the streaming objects by
segments, i.e., the cache replacement granularity is the segment.
Therefore, at some instances, only popular parts of the video may
be present at the caches of the network edges. We discuss the
caching algorithm we use in Section 4.5.

4.1.2 Prefix Caching
Storing the entire video file into proxies may be inefficient as
video files can be very large. This is particularly true if the cached
streaming media object is not popular. Prefix caching [23] stores
only the first few frames of the popular video files. When a client
requests a video stream and the prefix is cached, the proxy delivers
the prefix to the client while it requests the remainder of the video
to the origin server. By caching the (large enough) prefix, the start-
up latency perceived by the user can be reduced. The challenge
could be in determining the optimal prefix size. Items such as
roundtrip delay, server-to-proxy latency, video specific parameters
(e.g., size, bit rate, etc.), and retransmission rate of lost packets

 5

must be considered in calculating the appropriate prefix length
[23].

As our system has multiple segments for a video object, we adopt
prefix caching for each cached segments. When users click one of
the summary frames provided by our content analysis and
summarization technique, our system delivers the specific segment
immediately to the client (and not from the beginning of the video
file, unless the user requested the first segment). Hence, we store
the prefix of each segment to benefit from prefix caching in our
system.

4.1.3 Prefetching
Prefetching [4], [15], [31] is another scheme to reduce the user
perceived latency. Prefetching can increase the caching efficiency
by predicting the client request pattern and caching the objects in
advance of user requests. The sacrifice however, is the increase in
traffic. Studies report other potential costs of prefetching. [26]
shows that prefetching is beneficial only when traffic is lightly
loaded and the prediction algorithm is very effective. [7] reports
that prefetching affects the queueing behavior and increases
network burstiness. Prefetching should be performed with extra
cautions in streaming media delivery systems as they are dealing
with much larger objects.

We use prefetching at the client cache instead of the proxy cache.
Prefetching scheme on the client side further reduces the startup
latency. Since the user is browsing the video based on the meta-
data already downloaded, this interaction provides a window of
opportunity for the client device to initiate a prefetching based on
the availability of the resources such as bandwidth and storage in
the client cache. The user’s browsing behavior provides more clues
to help the prediction algorithm to be more effective. We propose
the following prefetching algorithm that decides when and which
portion of the video is downloaded while browsing. As shown in
Figure 5, if the focus window of the user’s browser stays at certain
section for more than t seconds, the first n bytes of each video
segment within the window are prefetched.

The duration t is proportional to the number of key frames showing
in the browser window. In addition, the parameter pair (t, n) is
designed to satisfy certain constraints posed by the resources
limitation. For example, if the connection between the client and
proxy is congested, the algorithm can choose to increase t and
decrease n in order to reduce the prefetching frequency and
payload, respectively.

Streaming server Send the beginnings of video segments in
the window of focus

Client

Meta-data & key-frames

Segmented video

Window of focus

Initiate prefetching

User

Hierarchical structure
of the video

Figure 5: The video prefetching scheme.

4.1.4 Cooperative Caching
Cooperative caching [17], [27], [29] is widely studied and
deployed in many content delivery systems, starting from Harvest
[5] and Squid [24]. A number of proxies cooperate and share the
cache with one another to improve the cache hit rate. When a
proxy receives a request to an object that is missing from its cache,
it checks whether the object is cached on other proxies within the
cooperative network. The most well known schemes are broadcast
probing [5], [24], [28], directory service based [8], [9], [21], and
hash-partitioned namespace approach [25].

As our system divides the streaming media object into segments, it
is natural that our system spreads them across several proxies and
uses a web cache sharing technique. Our cooperative caching
scheme needs an agent that determines and has the knowledge of
which segment is cached on which proxy. The segment assignment
policy is important as each segment has different sizes. Note that
there are no duplicate segments cached on different proxies within
our cooperative caching network.

Our video delivery system can be implemented in various cache
sharing architectures. They are centralized, distributed, and hybrid
cooperative caching, and none uses a hierarchical cache structure.
Each proposed scheme is examined in the following three sections.

4.2 Video Delivery with Centralized Cooperative
Caching

In the centralized cooperative caching scheme, a master cache
coordinates the interactions between the client and the cache array.
For each video object, the master cache stores the key-frame and
the prefix of each segment. In addition, the master cache assigns
and knows the location of each segment, i.e., the information
regarding which cache keeps which segment. The request from the
client is redirected to the master cache. Upon a request, the master
cache provides the key-frames to the client. When the client selects
a certain segment, the master cache transmits the proper prefix to
the client (and hence reduce the startup delay) while instructing the
appropriate proxy, which cached the requested segment, to deliver
the segment. The video stream is always delivered to the user
through the master cache.

For the illustration of this scheme, we use the following example
that is also used in the description of the other two schemes. As
shown in Figure 6, the video object is segmented into three
sections and each segment is represented by a key-frame. The first
segment is cached in the proxy cache C1, the second in C2, and the
third in C3. The key-frames and prefixes are stored in the master
cache along with the location information of each segment.

Consider a client requests a video and browses through the key-
frames. Subsequently, the client requests to watch from the second
segment, and continuously views through the third segment
towards the end of the video.

The interactions involved in the above scenario are explained as
follows:

1. The client requests a video.

2. If the requested video is not in a cache, the master cache
sends a request to the origin server. The video object is
segmented and summarized in key-frames by the content
analysis service (this process is performed by the
application proxy server, as described in Section 2). The

 6

master cache hosts the key-frames and prefixes and
distributes the segments to appropriate proxy caches. It
then sends the video summary to the client. Note that if
the requested video is already in the cache, the master
cache simply provides the video summary to the client.

3. After browsing the summary, the client selects the
segment #2 as the starting playback position.

4. The master cache sends the prefix of segment #2 to the
client and requests the rest of the segment from C2.

5. C2 sends segment #2 to the master cache.

6. The master cache forwards segment #2 to the client.

7. Right after the completion of delivering segment #2, the
master cache sends the prefix of segment #3 to the client
and requests the rest of the segment from C3, similar to
step 4.

8. C3 sends the segment #3 to the master cache.

9. The master cache forwards the segment #3 to the client.

Note that the length of prefix stored by the master cache must be
large enough to ensure the client does not experience delays
between viewing the prefix and the rest of the segment. The
segment assignment and distribution must be handled with care by
the master cache. If the number of segmented portions is smaller
than the number of proxies, segment distribution to overloaded
caches should be avoided. On the other hand, if there are more
video segments than the caches, intelligent assignment must be
performed. For example, consider there are four segments to be
spread across three proxy caches, and the second cache is the least
loaded. Instead of assigning the segment #1 to cache #1, segment
#2 to cache #2, segment #3 to cache #3, and segment #4 to cache
#2, we can distribute the segment #1 to cache #1, segments #2 and
#3 to cache #2, and segment #4 to cache #3. As users that watch
segment #2 are likely to access segment #3 next as they are
continuous, this assignment policy can reduce coordination
processing and the control traffic between the master cache and
proxies.

Client

1 2

4

3 4

5
6 7

7 8

9

seg #1 seg #2 seg #3

C1 C2 C3

Master Cache

summary

prefix data

segment data

prefix

C proxy cache

control message

Figure 6: A video delivery example in centralized cooperative
caching.

Client

1

3 4 7

6

2

entry
point 5 6

seg #1 seg #2 seg #3

C1 C2 C3

Control
Unit

Control
Unit

Control
Unit

prefix

summary

prefix data

segment data

C proxy cache

control message

Figure 7: A video delivery example in distributed cooperative
caching.

The centralized cooperative cache scheme is simple and easy to
implement and manage. No communication is needed between
proxy caches as the master cache holds all necessary information.
Since every object and stream goes through the master cache,
however, it can easily be overloaded and congested. In addition,
the master cache creates the single point of failure problem.

4.3 Video Delivery with Distributed Cooperative
Caching

A master cache does not exist in the distributed architecture.
Instead, each proxy cache has a control unit that has the
functionality of the master cache. In this architecture, the summary
key-frames and the prefix of each segment are replicated and
cached in each proxy. Each cache also holds the location
information of all the segments. The proxies must communicate
with each other to exchange this information. Schemes such as
summary cache [8] or cache digest [21] can be used for this
purpose.

As shown in Figure 7, the client’s initial request is redirected to the
entry point. The entry point serves as a gateway to the client and it
could be as simple as a forwarder. The basic function of the entry
point is to select a proxy that coordinates the caching and delivery
of a video object for each request. The election algorithm can be a
round robin mechanism, for example. When this proxy receives a
request to the segment that it does not hold, it sends the prefix of
the requested segment to the client and forwards or redirects the
request to the appropriate proxy.

Let us study the systematic process of this architecture using the
same scenario as in Section 4.2.

1. The client requests a video.

2. The entry point receives the request and forwards it to
the selected proxy (C2 in this example).

3. If the C2 does not have the requested video, it sends a
request to the origin server. The video object is
segmented and summarized in key-frames by the content

 7

analysis service. C2 distributes the segments to
appropriate proxy caches and sends the key-frames and
prefixes of the video to all the proxies. It then delivers
the video summary to the client. Note that if the
requested video is already in the cache, C2 simply
provides the video summary to the client.

4. After browsing the summary, the client selects segment
#2 as the starting playback position.

5. As C2 has cached segment #2, it delivers the entire
segment to the client.

6. Right after the completion of delivering segment #2, C2
sends the prefix of segment #3 to the client and sends a
request to C3 to deliver the rest of the segment to the
client.

7. C3 sends segment #3 directly to the client.

In this architecture, all possible problems of having a master cache
are eliminated. The cost is the added complexity for each proxy.
Streaming server must be implemented in each control unit, as
each proxy streams the video content to the client. Each proxy
cache cannot hold as many video segments as in the centralized
architecture since the storage is also used for caching the prefixes
and key-frames. In addition, session handoff scheme must be
implemented among the proxy caches. A simple entry point is also
needed to handle the initial request from the client.

4.4 Video Delivery with Hybrid Cooperative Caching
In the centralized cooperative caching, the bulk of the video
content is delivered through the master cache. This easily
overloads the master cache. In the distributed scheme, each proxy
needs added capability and coordination can be complex. In this
section, we propose a hybrid architecture where a master cache is
used, but its role is reduced to only controlling the interactions and
delivering the key-frames and prefixes. The delivery of the video
segments to the client is done directly by the proxy caches.

Client

1 2

4

3

5

6

8

seg #1 seg #2 seg #3

C1 C2 C3

7

Master Cache

4

7

prefix

summary

prefix data

segment data

C proxy cache

control message

Figure 8: A video delivery example in hybrid cooperative
caching.

Figure 8 shows the interactions using the example scenario.

1. The client requests a video.

2. If the requested video is not in a cache, the master cache
sends a request to the origin server. The video object is
segmented and summarized in key-frames by the content
analysis service. The master cache hosts the key-frames
and prefixes and distributes the segments to appropriate
proxy caches. It then sends the video summary to the
client. Note that if the requested video is already in the
cache, the master cache simply provides the video
summary to the client.

3. After browsing the summary, the client selects segment
#2 as the starting playback position.

4. The master cache sends the prefix of segment #2 to the
client and sends a request to C2 to deliver the rest of the
segment to the client.

5. C2 sends segment #2 directly to the client.

6. Towards the end of sending of segment #2, C2 informs
the master cache with the status.

7. The master cache sends the prefix of segment #3 to the
client and sends a request to C3 to deliver the rest of the
segment to the client, similar to step 4.

8. C3 sends segment #3 directly to the client.

Since the bulk of the video is delivered directly from the proxy
caches to the client, the master cache is less prone to overload,
congestion, and failure. The master cache is mainly in charge of
the control message exchanges. The connection handoff however,
must be resolved as the clients request is sent to the master cache
but the data delivery is from the proxy caches. Depending on the
communication protocol used in the video access, the master cache
should be able to hand the data delivery duty to the proxy caches.
For example, if the communication is UDP based, the master cache
can forward the client address with the request (e.g., in steps 4 and
7). On the other hand, if the client is involved in a TCP session, we
must resolve TCP handoff between the master cache and the proxy
caches.

4.5 Cache Replacement Granularity and Policy
As segments of a video are spread across multiple proxies,
granularity of our cache replacement scheme is segments. If certain
segments of a video are popular, only popular segments are
cached. This partial video caching differs from the “all or nothing”
approach where the object is either cached in its entirety or not
cached at all. A “cache hit” is measured in segments. Using the
example scenario from Sections 4.2 to 4.4, when the client selects
the segment #2 as the starting playback position and continues to
view through segment #3, cache hits are recorded for both
segments #2 and #3.

Recent studies [2], [6] indicate that client requests to video files
show strong temporal locality. A cache replacement algorithm
such as LRU-k [14] can exploit temporal locality [1]. When the
cache is full and a new item must be inserted, LRU-k replaces an
object whose k-th previous request is the least recent. Hence, the
LRU scheme is LRU-k with k = 1. Each proxy cache of our system
runs this LRU-k scheme as the cache replacement algorithm.

 8

The cache replacement takes place at two locations in our system:
the master cache (or control units) and proxy caches. When a video
segment is replaced by a proxy cache, the prefix of that segment
remains in the master cache (in the centralized or hybrid
architectures) or all the control units of proxy caches (in the
distributed architecture). If there is a request to the replaced
segment, the prefix can be sent to the client while the rest of the
segment is requested to the origin server. When all the segments of
a video are removed from caches, the key-frames and prefixes can
also be deleted. Note that the prefix should not be removed before
the actual segment is replaced. When the prefix of the segment
does not exist, our system considers that the segment is not cached
and hence it will not be accessed.

There are also three levels of replacement: key-frame level, prefix
level and segment level. A prefix is always physically stored along
with a key-frame. On the other hand, a prefix is logically
associated with a segment since it is the initial part of the segment.
Since key-frames and prefixes consume less resource, we assign
higher priorities to them. In the caching replacement algorithm,
object of higher priority is less likely to be replaced. Therefore, a
weighted LRU-k scheme can be applied considering the different
priorities we assign to each level.

5 Current Status
We implemented a prototype system based on the RealNetworks
software development kit (SDK) [18]. Several RealSystem plug-
ins are implemented to give the end users the control on the
playback of a video stream. On the server side, a file-format plug-
in is implemented to provide the RealServer the ability to
interactively deliver a MPEG video. On the client side, a rendering
plug-in is implemented to enable the RealPlayer to render a MPEG
video interactively. The file-format and rendering plug-ins use the
XML-based meta-data to communicate with each other in the
video streaming process. This system allows users to quickly
browse through the entire video content by viewing key-frames
and faces. Each key-frame and face represents a video segment
that can be played back individually according to the user interests.
Figure 9 (a) shows the snapshot of this system on a desktop PC.
Note that two RealPlayer windows launch when the user clicks on
a video that is processed and value-added by our application proxy
server: one window shows the hierarchical video summary and the
other window plays the video.

To apply our technique to video streaming on a handheld computer
with a small form factor, we implemented a video player using the
Microsoft Foundation Class (MFC) [16] on the Windows CE
platform. The player connects to the video server that is extended
from the Apache web server. The player sends an HTTP request to
the server with a special header specifying the starting point of the
requested video. The server performs fseek or switches between
different video segment files before packetizing the data. The
server has the information about the byte location associated with
the beginning of each video segment or where the individual
segment is stored. Figure 9 (b) shows a picture of the interactive
video delivery to a handheld computer (HP Jornada 720) with a
wireless LAN connection. Because the screen is small, only two
key-frames are shown each instance. When the user clicks on a
particular key-frame, the left window is used to play the video and
the right window continues to be used to browse the summary.

Control

Video summarization

Video streaming

(a) Interactive video delivery to a desktop PC.

(b) Interactive video delivery to a handheld computer.

Figure 9: A prototype system is implemented on (a) the SDK
provided by RealNetworks System and (b) MFC on Windows
CE platform.

6 Conclusions
We presented an integrated interactive video delivery and caching
system that utilizes the content analysis services to provide better
user interfaces and conserve network resources. The content
analysis service performs shot boundary detection, key-frame
selection, and face detection and tracking. When a client requests a
streaming video file, our system initially provides the video
summary to the user. The user quickly browses these summary
images to decide whether to download the video. If the user selects
to download, the user can also choose which part of the video to
download. We believe our summary provision offers better video
viewing environment to the users, and we expect user access
behaviors to change.

Our video system uses content-aware video segmentation, prefix
caching, prefetching, and cooperative caching techniques to enable
users to view any part of the cached video without long delays. By
segmenting the video, we are able to use a fine grain cache
replacement algorithm that exploits temporal locality and multi-
level caching. We described the operation of video delivery and
caching mechanism on three proposed cooperative caching
architectures: centralized, distributed, and hybrid. Our system is
designed to utilize the content analysis service that is currently
applied to videos of format MPEG-1 and MPEG-2. We believe
that our system can also be used for other streaming formats. We
can still perform segmentation, prefix caching, and cooperative
caching to those video formats, even though we cannot apply
content analysis and provide video summary to the users because
of proprietary issues.

 9

We currently have a content analysis service prototype
implementation on the SDK provided by RealNetworks and MFC
on the Windows CE environment. It operates on our desktop PCs
and wireless mobile handheld computers. We are continuing our
work in several ways. Simulation is in progress to evaluate the
performance on three system architectures, various replacement
algorithms, and the optimal k size in LRU-k. Based on the lessons
we learn from simulation, we plan to implement our integrated
video delivery and caching system on a real test-bed.

References
[1] S. Acharya and B. Smith, “MiddleMan: A Video Caching

Proxy Server,” Proceedings of the NOSSDAV 2000, Chapel
Hill, NC, June 2000.

[2] S. Acharya, B. Smith, and P. Parnes, “Characterizing User
Access To Videos On the World Wide Web,” Proceedings of
the SPIE/ACM MMCN 2000, San Jose, CA, January 2000, pp.
130-141.

[3] E. Bommaiah, K. Guo, M. Hofmann, and S. Paul, “Design
and Implementation of a Caching System for Streaming
Media over the Internet,” Proceedings of the IEEE RTAS
2000, Washington, DC, June 2000, pp. 111-121.

[4] P. Cao, E. W. Felten, A. R. Karlin, and K. Li, “A Study of
Integrated Prefetching and Caching Strategies,” Proceedings
of the ACM SIGMETRICS’95, Ottawa, Canada, May 1995,
pp. 188-197.

[5] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell, “A Hierarchical Internet Object
Cache,” Proceedings of the 1996 USENIX Technical
Conference, San Diego, CA, January 1996, pp. 153-163.

[6] M. Chesire, A. Wolman, G. M. Voelker, and H. M Levy,
“Measurement and Analysis of a Streaming-Media
Workload,” Proceedings of the USITS'01, San Francisco, CA,
March 2001.

[7] M. Crovella and P. Barford, “The Network Effects of
Prefetching,” Proceedings of the IEEE INFOCOM'98, San
Francisco, CA, March 1998, pp. 1232-1239.

[8] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary
Cache: A Scalable Wide-Area Web Cache Sharing Protocol,”
Proceedings of the ACM SIGCOMM’98, Vancouver, Canada,
September 1998, pp. 254-265.

[9] S. Gadde, M. Rabinovich, and J. Chase, “Reduce, Reuse,
Recycle: An Approach to Building Large Internet Caches,”
Proceedings of the IEEE HotOS-VI, Cape Cod, MA, May
1997, pp. 93-98.

[10] M. Hofmann, T. S. E. Ng, K. Guo, S. Paul, and H. Zhang,
“Caching Techniques for Streaming Multimedia over the
Internet,” Bell Laboratories Technical Report, BL011345-
990409-04TM, April 1999.

[11] W. Y. Ma, B. Shen, and J. T. Brassil, “Content Services
Networks: The Architecture and Protocol,” Proceedings of the
WCW’01, Boston, MA, June 2001.

[12] W. Y. Ma and H. J. Zhang, “An Indexing and Browsing
System for Home Video,” Proceedings of the EUSIPCO
2000, Tampere, Finland, September 2000, pp. 131-134.

[13] X. Marichal, W. Y. Ma and H. J. Zhang, “Blur Determination
in the Compressed Domain Using DCT Information,”
Proceedings of the IEEE ICIP’99, Kobe, Japan, October
1999, pp. 386-390.

[14] E. O’Neil, P. O’Neil, and G. Weikum, “The LRU-K Page
Replacement Algorithm for Database Disk Buffering,”
Proceedings of the ACM SIGMOD’93, Washington, DC, May
1993, pp. 297-306.

[15] V. N. Padmanabhan and J. C. Mogul, “Using Predictive
Prefetching to Improve World Wide Web Latency,” ACM
SIGCOMM Computer Communication Review, vol. 26, no. 3,
July 1996, pp. 22-36.

[16] J. Prosise, Programming Windows with MFC, 2nd edition,
Microsoft Press, May 1999.

[17] M. Rabinovich, J. Chase, and S. Gadde, “Not All Hits are
Created Equal: Cooperative Proxy Caching over a Wide-area
Network,” Computer Networks and ISDN Systems, vol. 30,
no. 22-23, November 1998, pp. 2253-2259.

[18] RealNetworks Software Development Kit,
http://www.realnetworks.com/devzone/tools/.

[19] R. Rejaie, M. Handley, H. Yu, and D. Estrin, “Proxy Caching
Mechanism for Multimedia Playback Streams in the Internet,”
Proceedings of the WCW'99, San Diego, CA, April 1999.

[20] R. Rejaie, H. Yu, M. Handley, and D. Estrin, “Multimedia
Proxy Caching Mechanism for Quality Adaptive Streaming
Applications in the Internet,” Proceedings of the IEEE
INFOCOM 2000, Tel Aviv, Israel, March 2000, pp. 980-989.

[21] A. Rousskov and D. Wessels, “Cache Digest,” Proceedings of
the WCW’98, Manchester, England, June 1998.

[22] H. A. Rowley, S. Baluja and T. Kanade, “Neural Network-
based Face Detection,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 20, no. 1, January
1998, pp. 23-38.

[23] S. Sen, J. Rexford, and D. Towsley, “Proxy Prefix Caching
for Multimedia Streams,” Proceedings of the IEEE
INFOCOM’99, New York, NY, March 1999, pp. 1310-1319.

[24] Squid Internet Object Cache, http://squid.nlanr.net.
[25] V. Valloppillil and K. W. Ross, “Cache Array Routing

Protocol v1.0,” IETF Internet Draft, draft-vinod-carp-v1-
03.txt, February 1998.

[26] Z. Wang and J. Crowcroft, “Prefetching in World Wide
Web,” Proceedings of the IEEE Global Internet'96, London,
UK, November 1996, pp. 28-32.

[27] Z. Wang and J. Crowcroft, “Cachemesh: A Distributed Cache
System for World Wide Web,” Proceedings of the WCW'97,
Boulder, Colorado, June 1997.

[28] D. Wessels and K. Claffy, “Internet Cache Protocol (ICP)
version 2,” IETF Request For Comments 2186, September
1997.

[29] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell, A.
Karlin, and H. M. Levy, “On the Scale and Performance of
Cooperative Web Proxy Caching,” Proceedings of the ACM
SOSP’99, Charleston, SC, December 1999, pp. 16-31.

[30] H. J. Zhang and W. Y. Ma, “Structured and Content-based
Video Browsing,” Proceedings of the 32nd IEEE Asilomar
Conference on Signals, Systems, and Computers, Pacific
Grove, CA, November 1998.

[31] Z.-L. Zhang, Y. Wang, D. H. C. Du, and D. Su, “Video
Staging: A Proxy-Server-Based Approach to End-to-End
Video Delivery over Wide-Area Networks,” IEEE/ACM
Transactions on Networking, vol. 8, no. 4, August 2000, pp.
429-442.

	Introduction
	System Architecture Overview
	Content Analysis Services
	Shot Boundary Detection and Key-frame Selection
	Face Detection and Tracking
	Meta-data for Video Content Description

	Video Delivery and Caching
	Goals and Design Overview
	Content-aware Segmentation

	Prefix Caching
	Prefetching
	Cooperative Caching
	Video Delivery with Centralized Cooperative Caching
	Video Delivery with Distributed Cooperative Caching
	Video Delivery with Hybrid Cooperative Caching
	Cache Replacement Granularity and Policy

	Current Status
	Conclusions

