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Abstract— We consider the delivery of video assets over a best- buffers, and lack of flexibility in providing user-level QoS.
effort network, possibly through a caching proxy located close to the Because video distribution and delivery incurs high storage

clients generating the requests. We are interested in the joint server i . L
scheduling and prefix/partial caching strategy that minimizes the ag- and transmission costs, and requires speC|aI|zed servers at

gregate transmission rate over the backbone network (i.e., average out- the edge, Service Providers will target valued content, for
put server rate) under a cache of given capacity. We present multiple which QoS guarantees are a must and best-effort service is
schemes to address various service levels and client resources by e'hnacceptable

abling bandwidth and cache space tradeoffs. We also propose an op- ’
timization algorithm selecting the working set of asset prefixes. We
detail algorithms for practical implementation of our schemes. Sim-

ulation results show our scheme dramatically outperforms the full Video Lossy Packet [ Caching | Client

caching technique. Network Proxy Cloud
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Fig. 1. lllustration of our joint scheduling and proxy caching strategy.
I. INTRODUCTION

Streaming media represents a unigue opportunity for Ser-aching audio/video objects in streaming proxies at the
vice Providers — unlike other web objects which are erp__et_vvor_k edge is another attractive solution. Besides pro-
hanced by edge delivery, quality video actually require‘ﬁd'”g improved pgrformance to the end-user, gaches save
edge of network services to attain reasonable user exp&iL Network bandwidth between the access provider network
ence. As access providers roll out faster last-mile conne®d the origin server. Caching strategies for video objects
tions, upstream congestion in the provider's backbone, pe&&g€ from caching of full video objects to caching par-
ing links and best-effort Internet will limit their ability to tial video objects by segmenting the video in the temporal
meet customer expectations for these premium links. Whig@d/or spatial domain(s). There are at least two issues with
streaming media brings additional complexities (very Iarg(%\1e qachmg Of_ whole Vld_eos.. First, the time and bandw.|dth
objects, isochronous delivery, and interactivity), there aféduired to bring an entire video into the cache associates
clearly many advantages of edge delivery. Attributes maR very high penalty with erroneous caching decisions. Sec-
ing it especially well-suited for edge delivery include it°nd, Ongoing streams may prevent deletion at cache replace-
static nature, high value to Content Providers, distributigf€nt time causing the cache to be less reactive and to drift
and delivery revenue potential to Content Delivery Servic@vay from the optimal operating point.

Providers, and the potential for content services (transcod-Therefore, our objective is to create a content distribu-
ing, ad insertion, digital rights management) best offereibn system for streaming media, as opposed to a best-effort
through decentralized techniques. video caching system. We achieve this by placing a stream-

Techniques to address the lack of end-to-end bandwidf}f Proxy in the path between the server and the clients.
to support streaming media include i) multicasting to group&e develop a scheme which combines stream scheduling at

of clients, and ii) caching at streaming proxies located closit€ Origin server and caching at the proxy to minimize the
in the network to the end user. aggregate transmission rate over the network while main-

. . ) oo taining configured user-level quality of service (QoS) con-
Multicast scheduling strategies, suchREsiodic Broas-  qiaints. The QoS constraints are expressed in terms of max-

casting and Batching, have been proposed to simulate 0Ny, m playhack delay and application-level packet loss ratio

demand access. Although multicast significantly reduc%,gLR)_ Object prefixes reflecting either popularity or con-

network bandwidth, itis often considered impractical due {9, e service levels are positioned at proxies to reduce
its reliance on a fully multicast-enabled network. Add't'onaétartup latencies and enable on-demand access.

drawbacks of multicast scheduling strategies include client ] ) )
requirements for receiving multiple streams, large client The paper is organized as follows. In Section Il we
present relevant research in the multicast and streaming me-
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lighting the bandwidth savings and cache space usage tradges rather than doing LFU or LRU on a per-request ba-
offs under different scenarios. Section IV describes a prasis. They found that the cache replacement policy (LRU or
tical algorithm that is being implemented in our prototyp&FU) did not make any difference because most videos had
and discusses practical issues. Finally we present our comgoing streams and could not be chosen for replacement.

clusions and future work in Section V. For this reason and the fact that bringing a large video file to
a cache is very expensive, partial caching (including prefix
Il. RELATED WORK caching) were proposed.

_ ) ) In [10], the authors present a caching scheme for adap-

Streaming video over multicast consumes less netwogle |ayered video (segmented in the temporal and spatial
bandwidth and imposes less of a load on the sendgmains) such that thguality of the cached stream is pro-
than does streaming video over multiple unicast channefsyrtional to its popularity. They also combine it with a fine-
Among schemes that attempt to capitalize on the benefitsqhined cache replacement strategy that tracks statistics per
multicast for VOD are those based on the Periodic Broa yer of video and eliminates the least popular segments of
castidea[1], [2], [3], [4] The videoiis divided into many por-the video. The scheme has been designed with the goal
tions which are continuously _broadc_a_st over multiple chagyf peing adaptive to the network but not with the explicit
nels and are as such bandwidth efficient only when the rgoa) to minimize the bandwidth streamed out of the origin
quest arrival rate is high. Another technique is the simserver. Secondly, although this method results in caching
ple batching scheme where the server accumulates requegtSmost popular parts of a video, the quality of video play-
over a batching interval and starts a new multicast streg§3ck can be variable among different viewers of the same
at the end of each interval if there were any requests in thgjeo, which might be undesirable. Finally, the adaptive
batch. A more bandwidth efficient scheme is that of PatCizheme works well with layered encoding of videos, which
ing ([5], [6]). In this scheme, each batch is served over ong not employed in most popular formats. Another work that
or two channels — either a regular channel alone or the cogynsiders partial caching MiddleMan [11]. This scheme
bination of a regular channel and a patching channel. A regiy ks over a cluster of proxies on a LAN and the combined
ular channel delivers the full video from start to finish Wh”espace is managed by a centMiddieMan who does the
a patching channel delivers only the missing part of theche replacement decisions. The caches store only as much
video from the start until the point at which the clients joinyf the object as is played back by the client. Other video
the regular channel. The client receives both the patch aggching schemes include Resource-based Ca&ti6d12]
the ongoing stream and buffers the latter while playing bagghich focuses on the management of resources in the cache.
the former. Once the patch is exhausted, the client switch88c determines which objects (partial or whole) to cache
to the buffered regular multicast. [S] compared the performyych that the space and bandwidth of the cache are uni-
nace of patching with simple batching and found that patcsrmiy utilized. Prefix caching is proposed in [13] and [14]).
ing was able to support true VOD at much higher requegithough caching the prefix can hide the startup latency and

rates for a typical server configuration. Further research jixer in the network, this scheme does not reduce the aggre-
this area can be found in [7] where the authors present thgie transmission from the origin server.

Optimized patching scheme which defines a Patching Win- . . . .

dow beyond which it is more efficient to start a new regu- In this paper, we build on some of the ideas in the mL."'
lar multicast rather than generate patches. Finally, [8] elicast research area t_o_m|n|m|ze the aggregate bandW|_d th
tends the above technique to allow for client-controlled |as_treamed out of the origin server and also present a practical

tency/cost trade-off to provide classes of service by varyirf%c)heme in which vid_eos are cached in a proxy .SUCh that t.h €
the batching interval. space used by the video can be proportional to its popularity

) ~and the available bandwidth to the server.
The other relevant body of research is that of video

caching. Techniques range from caching whole videos (ap-

plying conventional memory caching techniques with modi-  [l1l. PARTIAL CACHING AND BATCH PATCHING

fications to account for the size) to partial objects segmented

in the temporal and/or spatial domain(s). Segmentation inIn this section, we develop a scheme which combines ef-
the temporal domain is achieved by splitting the video intficient stream scheduling at the server, and both prefix and
constant time length (CTL) segments and segmentationpartial caching in a proxy located close to the clients gener-
the spatial domain is achieved by encoding videos at muliting the requests.

ple resolutions. Our main objective may be formulated as follows: given a

Full-caching strategies for video in a cluster of cacheset of video assets and their respective characteristics, mini-
is considered in [9]. Key conclusions are that in streanmize the average rate streamed out of the origin server under
ing proxies, replication or striping of objects based on exa cache of fixed capacity. We assume that the network is
plicit tracking of request frequencies achieves higher hitleal (i.e., jitter- and error-free environment) and that the



clients wish to be served instantaneously (i.e., null playbackquests are batched, the better the performance. There-

delay). Section IV explains why these apparently strong afere the authors integrated the concept of classes of service

sumptions do not lead to any loss of generality. (CoS) in their scheme. Also these multicast-based tech-
The motivation behind this problem formulation result&'dues rely on multicast-enabled routers. In the remainder,

from the following observation: minimizing the averageWe propose an extension to this scheme Wh'Ch alleviates the

backbone rate is equivalent to maximizing the average by?20ve Problems and even adds some flexibility.

hit ratio (BHR) at the proxy under a given server schedulina

strategy. The problem formulation is refined in Section IlI- * 5}—8 ---- Optimal patching
E after the complete description of our joint strategy. Thr sj = r=2 — Opfimized bateh patching |
study is first performed on a single video asset. Thenw A=infinity

consider a heterogeneous set of video assets and relatec
quest patterns. We now describe the server scheduling str. 3
egy we build our scheme on.

A. Optimized Batch Patching

malized backbone rate R
N
al

White and Crowcroft have recently introduced the cong
cept of optimized batch patching [8], which aims at mini-
mizing the average server output rate (i.e., backbone rati 1
Basically, client requests are batched together on an inten
basis before requesting either a patch or a regular multice
(RM) from the server. The interval is fixed and notedrol- o5 e
lowing the reasoning from [7], there is an optinfrakching Wimin]

Window, notediV, after which it is more bandwidth efficient Fig. 2. Optimized batch patching versus optimal patching. This graph

to start a new regular multicast rather than send patches.  shows how the normalized backbone rate evolves with the size of the

. . patching windowW for different average inter-arrival rates following a
They refer to an RM-epoch as one in which a regular mul-  poisson distribution.. The duration of the video ass&tis 90 minutes.

ticast was started and a non-RM epoch as one in which a The batching intervab is set to 1 minute.
regular multicast did not begin. The average backbone rate,

R, is calculated in terms of the mean of the aggregate num-

ber of bytes contained in all patches commencing betwe8n Partial Caching applied to Batch Patching

two adjacent RM epochs chosen at random and the mean ) o o )
interval between RM epochs: We build on the optimized batch patching idea by intro-

ducing a proxy cache in the path from the origin server to the

15H

(1 — P)rW?2 + (1 — B)brW + 2rbT clients cloud. We adopt the intuitive approach consisting of
R = W + 202 Y storing the firsb units of time in the proxy cache (i.e., batch-
=P ing period). That is, the proxgermanently caches gorefix

whereP, = P,(0) denotes the probability of gathering Zeroof b units of time. Moreover we impose the proxy cache to

request in a batch of duratidnempty batch)T is the du- play the role of a client for the origin server. That is, all the

ration of the video and:; denotes the streaming rate of thenatches and regular multicasts streamed out of the server are
video asset. The opti;nal patching winddWw is derived requested by the proxy and are thereby streamed through it.

) i ' . This design approach has several advantages among which,
Si);ltszf.erentlatlngR and setting the result equal @ This (i) it eliminates the need for network-level multicast, (ii)

. it allows for client-based stream adaptation (heterogeneous
—b+ \/Pbb +2(1 - B)bT ) client capabilities), and (iii) it has the potential to decrease
b(1 - B) the number of streams concurrently streamed to a given

This scheme outperforms other multicast-based techniqggnt:  The former leads to a change of terminology. In
in terms of average backbone rate over a large range of 3¢ remainder, we useegular channel and patch channel

quest rates. Figure 2 compares the normalized backbdAgtead of regular and patch multicasts.

rate (that is,R/r) required by this scheme versus the op- Our scenario is illustrated by Fig. 3. The proxy divides
timal patching algorithm [7] for different Poisson requesthe time axis into intervalgt;_1,¢;] of durationb units
rates (that ispP, = e~*) and a batching intervdiset tol  of time. Assume a request arrives at the proxy at time
minute. Optimized batch patching clearly outperforms optisy € [tx—1,%). The proxy immediately starts streaming
mal patching, albeit at the expense of higher latency (plathe requested asset to the client. Assume the most recent
back delay). Actually, the higher the interdabver which regular channel (RC) was started at time with ¢, < ¢,

W =



is an integral number df units of time. If ¢, is such that * ‘ ‘ ‘
---- Optimised batch patching
—— OBP + prefix caching

tr < ts+W,the proxy joins the RC at timig, and streams it
through to the client, which buffers the stream while playin¢ 2
back the prefix. Also at timey,, the proxy requests a patch

of durationt;, — t; and passes it on to the client. Howevel 1o
if tp > ts + W, a new regular channel of the asset of dura
tionT" — b (the prefix of duratiom is sitting in the proxy) is
requested from the server at tirhg In practice the streams
requested from the server are unicast to the proxy, whicg o
implements multicast at the application level to provide th
services mentioned above. .

Joins RM and request
patch of duration 4b 2
A -~
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backbone rate R/r
o

) Lo ) 1<————t—’—.——>i , \ Fig. 4. Optimized batch patching with and without prefix cachi_ng. This
ts el g 3 graph shows how the normalized backbone rate evolves with the du-
e W v """"""" > ration of the batching interva (duration of the prefix) for different

Sends prefix average inter-arrival rates following a Poisson distribution. The du-

ration of the video asset is 90 minutes. The patching window is com-
Fig. 3. Optimized batch patching with prefix caching. A client request puted from Eq. 2 withl" being replaced b§" — b when a prefix ob is
an asset at timeé; € [tx_1,tx). The interval limitt; is such that cached.
tp <ts +W.

The average backbone rate is computed from Equationd™g interval must store up 6 extra units of time. Thus,
and 2 by replacing” with T — b. Figure 4 compares the B = (W + b)r, which may not be practical.
optimized batch patching technique with and without prefix Therefore we extend this first approach by considering
caching in terms of the required normalized backbone ratige temporary partial caching of either (i) the patch only or
versus the duration of the prefixn minutes. We again as- (ii) the patch and the regular channel. In the first case, the
sume a Poisson arrival process such #at= e~"*. The proxy eliminates the need to stream the patch to the clients
two techniques provide approximately the same normalizég temporarily caching theight portions of it (the client
backbone rate for small valuestofThe difference becomes manages only up to two concurrent streams). In the sec-
noticeable forb > 10 minutes. Also each technique pro-ond case, the proxy caches whatever it takes to allow for
vides the same performance independent of the request reéguential streaming of the asset from beginning to end to
for batching interval$ > 15 minutes. Note that increas-the clients (the client manages only a single stream).
ing b is equivalent to increasing either the client playback
delay (without prefix) or the cache occupancy (with prGf'x)rive the equations leading to the estimation of the average

T . . . .
Note alsoop:hat fob > 3, the gppmal patching window is backbone rate?, the average cache occupan€yand the
zero (V = 0) when a prefix is cached. TherefoRyr  cjient buffering requirements. The derivations of all the
reduces to: equations are not presented here due to space constraints
R_(T-bH)1-P) and can be found in [15].
r

S i)

We now examine these two extensions separately and de-

C. Partial Caching of Patch Only

The drawbacks of this straightforward extension are
twofold. Firgt, the link connecting the requesting client to

the proxy must accomodate up to three concurrent strearﬁ%.cmng the patch. Lty., ) denote a batch which re-

Indeed the first client of a batching period will have gauresa patch of buffers in the intervab to kb. At ¢y, the

. . xy determines which patch intervals are not cacteed
ready triggered .the s_treamlng of the regular channel a@@;rts fetching the first required interval and completes it at
of the patch which will be needed by the late arrivals in

the same batching period, which are still playing back thté+1' Al t_h|s time, it is aware of whether or not there are
) . requests int, tx11). If there are requests, it does not free

prefix. Second, the client buffer must accomodate up tothe buffer when all the requests fty_1, t¢) are serviced

W + b units of time at the streaming rateIlndeed the client q —Lo Tk

must buffer the on-going regular channel while receiving thellt needs to fetch at least one patch interval which is betw@en 1)b

patch of maximum siz&/. Also the last client of the batch- to kb.

The proxy eliminates the second stream to the client by



but retains it to service requestsjin, ¢+1 ) and subsequent
non-zero batches. Everytime there is a batch with zero r
quests, the buffer is released once it has been streamed tc
the clients in the previous batch.

45
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By caching the patch, we clearly save on bandwidth frors .,

A=8 req./min.
b=1 min.

the server compared to the previous approach. The numtg

of patch buffers streamed from the server, in units of timeg 2y X=0.25 req.Jmin. |

b=1 min.

is given by (refer to [15] for details):

Normalized backl

LY i) LE)
p=>b|> i(l—P)P, 2" +

i=1 j=1

(25 —1)(1 — Pb)2Pg71 ?3) A=8 req./min.

b=10 min.

The normalized average backbone r&gr is thus ob-

tained from: . ‘ A S S R D D R
_ 0 10 20 30 40 50 60 70 80 90
B_pr+ (T -br wini)
r b(1+mn) . . A . .
Fig. 5. Optimal batch patching with prefix and patch caching. This

graph shows how the normalized backbone rate evolves with the dura-
tion of the patching windowV for different average inter-arrival rates

A = {8,0.25} reqg./min. following a Poisson distribution, and prefix
durationsb = {1, 10} min.

wheren is the mean number of batches between two reg-
ular channels and is derived in [8] as:

n = % + Py(1 — P)
Figure 6 highlights this remark. Note that far= 8, Py

Note that the reason why we average oler 1) inter-  tends to zero and thereforl] = T — b leads toX = T
vals instead of over the entire duration of the stream is th@f permanently stored an#l — b units of time temporar-
the patch buffers obtained for one periodof 1 cannot be jly buffered). The tradeoff between permanent (prefix) and
used in the next + 1 interval. This is because of the onetemporary buffers is also shown. Increasing the prefix du-
intervening batching interval that triggers a regular channghtion leads to a gain in normalized rate (see Fig. 5) at the
Requests in this batching interval do not require any patefxpense of higher buffer occupancy (see Fig. 6). The set of
and will consequently release the buffér2b], which will  equations clearly indicates that the optimal solution to our
be needed by the next batching interval. This triggers a neyptimization problem is full asset caching if the proxy cache
cycle of patch byte requests to the server as described egin accomodate for it. We elaborate on this in Sec. II-E. Fi-
lier. nally note that the slope of these straight lines is dictated by

The cache buffer occupancy, which includes the prefix ¢he factorbA.
durations, is given by Equation 4 below [15].

D. Partial Caching of Patch and Regular Channel

L%

w oW In this scheme the client receives a single unicast stream
X=b+b QTJA)(MPH Sa-piptwi=t ()
i=1

from the proxy. The proxy caches data from the regular
channel and forwards it to the clients. The client buffer re-

: . . quirement is zero in this case. Since the proxy serves all
The client still needs to buffer the on-going regular chan, requests in an interval &F + b from a single regular

nel while playing back the patch. Late clients in a batchsyannel, it has to maintain a circular buffer of U6 +b)
ing period buffer an additiondl units of time. ThusB = its continuously saving data from the regular channel, for
(W +b)r. the entire duration of the video. This buffer is required for
Figures 5 shows the evolution of the normalized bacleach instance of the regular channel which is triggered ev-
bone rateR/r versus the duration of the patching win-ery (n+ 1) intervals. The size of this buffer for each regular
dow W under different average inter-arrival request timeshannel depends on the batching intervals that have non-
A following a Poisson distribution and batching intervials zero requests. If there are requests in an intdeyaly, )
Clearly the longer the patching window, the lower the backhat require a patch g — 1) buffers, therkb needs to be
bone rate. That is, the backbone rate may no longer exhibitffered from the ongoing stream while these requests are
a minimum value for a patching window duration withinplaying back the patch and/or the prefix. This is irrespective
[0, T — b]. Indeed the longer the duratid#l, the higher the of whether or not the previous batching interval had any re-
temporary patch buffer size required at the proxy. quests.
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and the cache occupancy* computed overn + 1)
1 batching intervals is:

A=8 reg./min.
b=10 min.

1 L]
X*=b3"i(1- PP

7 i=1

Cache occupancy [MBytes]
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LT , To obtain the cache occupancy over the total asset

100

- };)_z}?r;q_,min_ duration, we simply multiplyX * by L= to account for
N ‘ ‘ | et ‘ ‘ ‘ the multiple regular channels that are active simultaneously,

0 R e % % each of which uses a storage ®f*. Therefore if we have
a request in every single interval bfi.e., P, = 0), we end

Fig. 6. Optimal batch patching with prefix and patch caching. This grag&v : :
shows the cache occupancy versus the duration of the patching win caching the whole stream in average.

;/v” for differle:n; average inter-arrival rates = {8,0.25} req/min.  The same conclusions abaByr versusiV for different
folowing a Paisson distribution, and prefix durafiohs= {110} s andbs as in the previous scheme hold in this scheme
as well. However, this scheme clearly uses more tempo-
rary buffer at the proxy (higher likelihood to fully cache
) ) ) the assets), while decreasing the backbone rate significantly.
The scheme is better explained with an example. SuRroreover this schme results in a single stream to the clients
pose there are five batching intervéllsi 1 — t:),4 = 1,5)  and requires no storage from the client device (Be= 0),
in W + b, thatis,IW = 4b. The intervalto, ¢1) triggers the \yhich makes this approach well suited to streaming multi-
regular channel af,. The proxy buffers from the regular media assets to handheld devices. This scheme is very simi-
channel to accommodate late requests in this interval thg +g |nterval Caching [16] wher® + b is the length of an

are playing back the prefix. Suppdse — #,) had requests, interval. The difference is that this interval is cached in the
then att, the proxy adds another buffer to circular bufferproxy and is stored for use by future intervals.

and does not request the server for any patch bytes. Sup-
pose the next two intervals do not have any requests and @e
fifth interval [t4 — t5) has a request. At; the 2b-long cir- '
cular buffer allocated by the first two intervals would have The mu|t|p|e assets pr0b|em may be formulated as fol-
advanced with the regular channel and will contain the inows: Given a cache of Capacitw, and a set ofV videos
terval [3b— 5b] The fifth interval requires the buffer to bé assets characterized by their streaming ratelurationT’;
long and so it adds three more buffers of sizeo the cir-  and interval-based request probabiliy,, find the tuple
cular buffer. The proxy then fetches the missing patch byteg, 17,1 v1 < i < N thatminimizes the aggregate back-

in the intervalgb — 2b] and[2b — 3b] from the server while pona ratar = >N ' R;, under the constraind Y X; < X.

storing the interval5b — 6b] from the regular channel. it : _
Clearly this problem can be solved via standard opti-

~ Here again, we reuse buffers that are allocated by eagf, ation techniques. However its multi-dimensional nature
interval of W for subsequentintervals. Each regular channgl o ies it computationally expensive. Therefore we propose
results in the caching of the stream equivalent to the Circ“'érsimplification which relies on the previous observation
buffer (X) allocated to it, thereby reducing the length of then ot poth an increase of the prefix duratignor the patch-
stream to be transmitted by the servet®yTaking this into ing window T¥; for asseti always result in a lower back-
account, the average backbone raje- over the total asset jone rater; and a corresponding increase of the temporary
duration is given by [15]: buffer X;. Also, we have shown that’; must be null for
b; > T;/2. These observations lead to the following sim-

T— plification: we imposdV; = b; for all b; < T;/2. This
R simplification slightly degrades the performance of our sys-
r

Multiple assets

o

- T (p+ (T =b) = (@ = 1)X7) tem but dramatically decreases the complexity.
We now briefly describe the algorithm based on the above
simplification: First, we impose a video unit (e.g., a group-

wherey is obtained from: of-pictures) by which the prefixés will either be decreased



orincreased. Then we calculate, for every asset, the prodpeefix b for each asset, given the access probabilities. The
of its popularity by its respective size (similar to the SLRUroxy then updates the cache to the new state computed
technique). Assume all thig are first set tdl;. We elim- by the algorithm. With the prefixes stored in the cache,
inate a number of video units from the prefix duratipn it streams videos to clients using one of the three scenar-
This number is inversely proportional to the product valu®s. The following subsections describe the algorithm in the
for asset. Finally we iterate until the suﬁzf.v X; < X. proxy for the three different schemes described in Section

We compared the full caching technique with the optil-”'

mal batch patching with prefix and patch caching scenario.

We assumed a Poisson distribution of the request intey- ,
arrival times, a Zipf distribution of the asset popularity witr‘:ﬂ' Cache Prefix Only
various parameters (from which the are derived), a set

of 100 videos with constant streaming rates and durationsThe. proxy'only stores prefixes of videos. When a re-
uniformly distributed in, respectivel{56, 1500] kbps and quest is received, the proxy may send up to three concurrent

[15,90] minutes, and a cache size three times smaller streams to the client — the prefix, the patch stream and the

than the sum of all the asset sizes. Preliminary results shEﬁ\QUIar channel. In our scheme, an application level mul-

that the gain in backbone rate is tremendous (from approg((_:ast is used to stream the latter two. The client listens on

imately 4 to 8 times lower depending on the parameter (t)l?ree ports for streams from the proxy — the prefix, the patch

the Zipf distribution). Moreover our scheme rapidly adapt nd the feg%"af multicast. While playing pack the prefix, if.
ata is received from the patch stream, it is cached and so is

to changes in request statistics, while this is a known dra . )
back of a full caching scenario. t e da_ta from the ongoing multicast. The buffer used by the
clientis at mostW + b)r.

In the remainder, we detail algorithms for practical im-

plementations of the schemes proposed in this section.
B. Cache Prefix and Patch
IV. PRACTICAL ISSUES
In this scenario, the proxy caches data from the patch, be-

In all of the scenarios, the proxy receives the client resides the prefix, and streams these to the client thus reducing
quests, immediately starts streaming the prefix and alfte number of streams to the client to two. For each asset
batches them, on a per asset basis. At the end of each bdhat has ongoing streams, the proxy maintains an interval
the proxy determines if a regular channel needs to be startedble, which holds information about which intervals of the
or a patch needs to be requested from the origin serveigdeo are currently cached. Each interval buffeb isme
based on the value 6% computed using the expression inunits long and is retained as long as there are requests being
Section Ill. served from it. Since a patch can be at midstime units,

The proxy also runs the optimization algorithm describeW© have'; intervals in the interval table. The pseudocode
in Section I1I-E periodically to determine the prefixes thatO" the Proxy is presented in Figure 7.
need to be stored in the cache. Initially, the cache starts outEach time a request is received by the proxy, it increments
with Constant Time Length (CTL) prefixes of the most popthe request count against each of the patch intervals that this
ular videos. The optimization algorithm may be triggeredequest needs. And, at the end of each batch, the proxy
either periodically, when the network utilization at the proxyghecks to see if the batch triggers a regular channel or a
falls below a certain threshold or when the access probabitiatch. If it triggers a regular channel, the proxy requests a
ties of assets change significantly. In all cases, the algorithmicast stream from the origin server and application-level
requires an estimate df, for each of the assets, to determulticasts it to all the clients in the batch. If not, it de-
mine the length of the prefix to cache and thereby maximizermines which of the required patch intervals are locally
the byte hit ratio (BHR). Note that the value Bf changes cached and fetches the remaining intervals from the server
with the value ofb. The bigger the chosel the smaller over a unicast patch channel. The patches are not multicast,
is the probability of having zero requests in the batch. Vabut are streamed to the client individually since they may be
ious methods can again be adopted to determine the vahtedifferent points in the playback of the prefix. The proxy
of P,. As a simple approach, we could assume the integiso joins all the requests in this batch to the ongoing regular
arrival request rate follows a Poisson distribution and traathannel.
the inter-arrival time of requests over a certain time window. 4 client receives two streams in this case — the patch

A more accurate but complex method would be to track thg, j the regular channel. It buffers the regular channel while

inter-arrival times, fit it to a well-known distribution and “Seplaying back the patch. The client may buffer a maximum

the characteristics of the distribution to estim&ie interval of W +b from the regular channel while it is playing
The optimization algorithm determines the value of thback the prefix and the patch.



ProcessRequest (r)
{
CreateThread(Start StreanfoCient(r));
// add this request to the current batch
addRequest ToCurrBat ch(r);
// Incr. the rqgst count in each rel evant
// interval
for (i=1; i<=currBatch.nunPatchlntervals; i++)
I nterval Tabl e[i]. Request Count ++;

Start StreanifoClient(r)
{
StreanPrefix();
//b tinme units have el apsed and the
//next reqd. patch has been fetched
for (i=1; i<currBatch.nunPatchlntervals; i++)
Stream nterval (I nterval Tabl e[i]. buffer);
}

/1 This runs on a separate thread.
Cl oseCurrentBat ch()

for(;:i:) {
Sl eep(b) // wait for batch to end
currBatch = startNewBatch();
currBatch.startTine = now,
currBatch. endTine =
currBatch.startTime + b;
I f (newRCReqd())
currRC = Start NewR(C() ;
// Add clients to regul ar channel
curr RC. AddBat chedd i ents();
for (i=1;i <=currBatch. nunPatchintervals;i++) {
if (Interval Tabl e[i]. Request Count == 0)
Il If there are no requests, free it
// This happens if currBatch has zero
// requests
free(Interval Tabl e[i]. buffer);
else if (Interval Table[i].buffer == NULL) {
// get patch in new segnent buffer
Interval Tabl e[i].buffer = newBuffer();
//Fetch patch interval so that it is
//avai |l abl e when needed by
// Start Streanfod i ent
Fet chFronOrigi nServer ((i-1)*b, i*b);
// once the segnent is fully obtained,
// update the table and get next segnent

Fig. 7. Algorithm at the Proxy for Scenario 2

C. Cache Prefix, Patch and Regular Channel

In the third scenario, we save significantly in the re
quired client storage and also in the number of simultaneous
streams to the client. The client needs to buffer nothing a
receives only one unicast stream from the proxy. The pro
stores data from the regular channel and serves patches ffom
this buffer instead of requesting it from the origin server. Al
though this reduces the bandwidth streamed from the seryer, numAl | ocat edl nterval s;
it requires a larger buffer in the cache on average. Forad
cussion in the bandwidth/buffer tradeoff, see Section IIl.

The difference between this scenario and the previous gne  FetchM ssi ngPat chinterval s())

to hold on to the buffer allocated in each windowiof+ b,

for the duration of the video, continuously caching ahead
from the ongoing stream. The algorithm presented below is
applied by proxy separately for each regular channel.

t the end of each batch, the proxy determines how large
the interval cache is.It would consist of as many intervals
as was required by the last non-zero batch in this patching
window. It then increases the circular buffer to be as big as
the patch required for this batch plus the extrahis can be
better explained with an example. For ease of explanation,
batchb; refers to a batch which requires a patchbof i
segments. Forinstance, if we are at the end of biat@ti¢;b
and the last non-zero batch was then the interval cache
for this regular channel would k& b + b long and since
it is caching the ongoing stream, the buffer would contain
intervals2b — 3b, 3b — 4b and4b — 5b. Batchb, needd — 2b
as a patch and bufféb — 656 from the regular channel. So, it
allocates two buffers, and starts storing the ongoing stream
in one while simultaneously filling the other with the patch
b — 2b from the origin server, while the clients are playing
back the prefix. Once the requests complete the prefix, the
intervalb — 2b is available in the buffer and they continue
to play back the stream and continue through the circular
buffer until the end of the stream. Note that in this scheme,
each client gets an individual stream and true application-
level multicast is not done.

The number of active intervals in eabh + b is as large
as the number of non-zero batches. Intuitively, if all batches
during the duration of the stream have non-zero requests,
this video is really popular and we much cache the entire
video and not have to request the origin server. This is the
result that the optimization algorithm yields. If it determines
that the space used by the prefix and the interval cache is as
large as the entire video, it instructs the proxy to do a full-
caching of the video.

Cl oseCurrentBatch()

for(;;;)
Sleep(b) // wait for batch to end
currBatch = startNewBat ch();
currBatch.startTime = now,
currBatch. endTine =
currBatch.startTine + b;
nd If (newRCReqd()) {
currRC = Start NewR(() ;
y Circul arBuffer = new CircBuffer(b);

}
if (currBatch. nunRequests > 0) {
n = currBatch. nunPat chl nterval s+1 -

Circul arBuf fer. Gowmn*b);
S- numAl | ocat edl nt er val s++;

}
CreateThread (

Buf f er Regul ar Channel ()

is that, in the previous case, in addition to the prefix, only
patch buffers were being allocated at the proxy. Atany time,}

there can be a maximum d{% buffers active. However,
when data is stored from the ongoing stream, the cache has

Fig. 8. Algorithm at the Proxy for Scenario 3




D. Discussion 2]
When discussing streaming video using batching arig
multicasting, it is important to address issues such as net-
work delays, jitter and random seeking (VCR functionsk1
that most multicasting schemes do not address. The fact t (Jnlt
our design uses application level multicasting addresses the
network delay and jitter issues. 5

First, since all the data flows through the proxy and the
proxy is aware of the network bandwidth to the server a
to all the clients, it can perform QoS-related adaptations to
the stream. Our implementation considers network adapta-
tion on two planes. The optimization algorithm determines
the prefix to cache for each asset depending not only on tisg
popularity of the asset, but also on the bandwidth availab@
to the server. The prefix cached is enough to mask the net-
work latency and jitter to stream from the server. Also, whepo]
the proxy determines that it has to request a stream from the
server (patch or regular channel), it determines the avail-
able bandwidth on the link and requests the stream from tkig]
server ajt time earlier. The time estimate could also be in:, 2]
fluenced by contracted service levels for given objects. A&l—
ditionally, the proxy has the ability to also perform streanil3]

adaptation services to cater to heterogeneous clients. [14]

As part of ongoing work, we are investigating schemes to
support VCR functions in our framework. Various schemegs;
for supporting VCR functions in a multicast-based VOD

system are presented in [17], [18], [19]. [16]

V. CONCLUSIONS [17]

In this paper, we present a joint server scheduling and
proxy caching scheme aimed at minimizing the bandwidths]
streamed from the origin server. The scheme combines
the bandwidth-saving merits of multicast streaming withy g
QoS and content adaptation service capabilities of a proxy.
We present multiple schemes with different bandwidth and
cache-space tradeoffs that are applicable in different scenar-
ios with different service requirements. Our schemes enali?él
the honoring of service levels (SLA’s) at the network-edge
streaming proxies by adopting different tradeoffs for assets
with different SLA's. From our simulations it is evident that
our scheme far outperforms full-caching schemes where an
asset is cached fully or not at all. We are working on var-
ious aspects of this scheme currently, one of which is the
support for VCR functions. We are also in the process of
implementing a prototype version of this technique in IBM’s
VideoCharger Server [20].
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