
Adaptive Rate-Controlled Scheduling
for Multimedia Applications*

David K.Y. Yau and Simon S. Lam
Department of Computer Sciences
The University of Texas at Austin

Austin, Texas 78712-1188
{yau,lam} @cs.utexas.edu

ABSTRACT

We present a framework for integrated scheduling of con-

tinuous media (CM) and other applications. The framework

consists of a rate-controlled on-line CPU scheduler, an ad-

mission control interface, a monitoring module and a rate

adaptation interface. Rate-controlled scheduling allows pro-

cesses to reserve CPU time to achieve progress guarantees. It

provides firewall protection between processes such that the

progress guarantee to a process is independent of how other

processes actually make scheduling requests. Rate adapta-

tion allows a CM application to adapt its rate to changes in its

execution environment. We have implemented the schedul-

ing framework as an extension to Solaris 2.3. We present ex-

perimental results which show that our framework is highly

effective in scheduling CM and various other applications in

a general purpose workstation environment,

KEYWORDS: Continuous media, CPU scheduling, adap-

tive rate control, rate reservation, QoS guarantee, firewall

property

1 INTRODUCTION

Advances in digital and networking technologies have en-

abled the integration of “continuous” media (CM) data, such

as video and audio, with traditional “discrete” data types,

such as graphics and text, in packet switching networks and

general purpose workstations. System support for CM appli-

cations has recently received much attention [3, 7, 10].

CM applications require certain real-time constraints. They

may interface with a media device (such as an audio codec or

a video capture board) or with a network that transports me-

dia packets. Therefore, they need to process external events

such as device interrupts or network interrupts in a timely

manner.
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Figure 1: Execution profile of a periodic video applica-
tion.

As an example, consider a video application that sends pic-

tures to a network at a rate of 30 per second. A video capture

board is connected to the computer on which the video ap-

plication runs. Every 33.3 ms, the video capture board digi-

tizes and compresses a picture, and buffers tlhe compressed

picture in on-board memory for reading by the video applica-

tion. The video application reads the picture from the video

capture board, packetizes the data and sends packets to the

network. The execution profile of the application is shown

in Fig. 1. The vertical lines mark the times at which new

pictures are produced by the video capture board. The cc,m-

putation required by the video application to process eiich

picture (which includes reading, packetizing and sending the

picture data) is shown as a shaded box. For minimal delay

and buffering inside the video capture board, processing of a

picture should complete before the next picture is produced

by the board.

Process scheduling in traditional Unix operating systems can-

not satisfy the real-time constraints of CM applications as de-

scribed above. We illustrate by describing process schedul-

ing in Solaris 2.3, where processes run in one of three schedul-

ing classes: RT (real-time), SYS 1 (system) and TS (time-

sharing). Priorities in a scheduling class are mapped to a set

of global priorities. RT priorities are mapped to higher global

priorities than SYS priorities, which are in turn mappedl to

higher global priorities than TS priorities. At any time, the

system executes a runnable process with the highest global

priority.

A user process in Solaris 2.3 runs in the TS cllass by default.

There is a time quantum associated with every TS priority.
WheneYer a TS process usGs up a time quantum, the system

lowers the priority of the process, On the other hand, if a

process has been blocked for a long time, the priority of the

1The SYS class is, however, not available to user processesand will not
be considered further in this paper,
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Figure 2: Times between pictures sent by a video ap-
plication run as a Unix TS process.

process is raised. This approach provides fast response time

to interactive applications without starving compute-bound

applications. Moreover, a TS process is given a “kernel” pri-

ority whenever it blocks inside the kernel. The priority given

depends on the condition on which the process is blocked.

Hence, the priority of a TS process is dynamically changed

by the system in an ad-hoc manner, and it cannot be used to

specify an application’s progress requirements. Fig. 2 illus-
trates how applications in TS class can fail to meet real-time

constraints. In the figure, we show the times between pic-

tures sent by a video application similar to the one described

above. At first, pictures were mostly sent every 33.3 ms. Af-

ter several compute-bound applications were started, how-

ever, interference from these other applications caused the

video application to receive insufficient CPU time to keep up

with the picture rate. Many pictures were skipped, and inter-

frame times of 100 ms or more were common. (We will re-

visit this example in section 7 for the scheduler proposed in

this paper.)

The RT scheduling class is intended to give users tighter con-

trol over how user processes are scheduled. RT priorities

are never modified by the system, and an RT process always

has priority over processes in the other scheduling classes.

The RT class thus allows a user to run “performance critical”

applications without interference by other system activities.

However, like TS priority, RT priority lacks any QoS inter-

pretation. A user must translate the progress requirements

of applications to RT priorities in an ad-hoc manner. More

importantly, the lack of QoS interpretation for RT priorities

means that the system cannot do effective admission control.

Without admission control, long term system overload can-
not be prevented. Finally, since an RT process cannot be

preempted by system processes, an RT process that does not

voluntarily give up the CPU can block out all other system

activities. When that happens, the only way for a system ad-

ministrator to regain control of the workstation is to reboot

the system.

1.1 Our contributions

For integrated CPU scheduling of CM and other applications,

we propose the use of a family of adaptive rate-controlled

(ARC) schedulers with the following properties: (1) reserved

rates can be negotiated, (2) QoS guarantees are conditional

upon process behavior, and (3) firewall protection between

processes is provided. In this paper, we present a particular

scheduler called RC together with two rate adaptation strate-

gies. The CPU scheduling framework that uses RC allows

applications to specify a reserved rate (between O and 1) and

a time interval known as period (in ~s). It provides the fol-

lowing progress guarantee: a “punctual” (a notion to be made

precise in section 5.3) application with rater and period p is

guaranteed at least krp CPU time over time interval kp, for

k=l,2,..., where each interval is measured from when the

application first becomes runnable. Although our framework

is motivated by the requirements of CM applications, it is

appropriate for scheduling other applications as well. This

is desirable since, in a general purpose workstation environ-

ment, CM and other applications run together.

Our main contributions are 1) implementation of the schedul-

ing framework and its integration into a workstation operat-

ing system, 2) an on-line scheduling algorithm that, in con-

trast to classical real-time scheduling algorithms, provides a

progress guarantee to each process independent of the behav-

ior of other processes, 3) empirical evaluation of our frame-

work in scheduling CM and other applications, and 4) sup-

port for rate adaptation whereby the workstation kernel helps

a user application adapt its current reserved rate by providing

it with feedback information.

1.2 Related work

The case for an integrated scheduling policy for diverse ap-

plications has been advocated by other researchers, for ex-

ample, [6]. However, not enough details of the algorithm are

given in [6] for comparison with our approach. Rather than

integrated scheduling, a three level hierarchical scheduler for

a video-on-demand service has been proposed in [3].

The implementation of our scheduling framework is based

on extending an existing operating system to support real-

time scheduling. This is similar to the work of RT-Mach [8],

which is an extension of the Mach operating system. Our

requirement that a process’s progress guarantee be protected

from the execution behavior of other processes is similar in

objective to the processor capaci~ reserves abstraction in

[5]. There is, however, a key difference between processor
capacity reserves and our solution, i.e., only scheduling al-

gorithms with the firewall property are considered in our ap-

proach, thereby eliminating the need for an explicit monitor-

ing mechanism to enforce firewall protection from interfer-
ence. To illustrate, in RT Mach’s implementation of proces-

sor capacity reserves, a reserve must be periodically replen-

ished and an overrun timer must be set to expire at the time a

process is supposed to voluntarily give up the CPU. Should

the overrun timer expire, the reserved priority is depressed to

an unreserved priority. In comparison, our system does not
require such a mechanism for monitoring and policing, nor

does it distinguish between reserved and unreserved priori-

ties. ARC scheduling in our system is based upon a uniform

class of dynamically computed priority values, one for each

process.
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Several rate-based algorithms with the firewall property have

been proposed for scheduling packets in a network switch.

Our algorithm is conceptually similar to the VC algorithm

[9, 11] but with two differences needed for CPU scheduling:

(1) a period parameter is introduced, and (2) in computing

the priority value of a process, the expected finishing time of

the previous work executed by the process is used instead of

the expected finishing time of the work to be scheduled.

Several other packet scheduling algorithms have been de-

signed to achieve various notions of fairness [1, 2]. These

algorithms can also be used for ARC scheduling, with fair-

ness achieved at the expense of more implementation over-

head. However, our experimental results show that real-time

video and audio applications are not greedy, and the notions

of fairness as defined in [1, 2] is not an important concern for

these applications.

1.3 Organization of this paper

In section 2, we discuss the classical rate-monotonic and ear-

liest deadline first scheduling algorithms, and illustrate how

a straightforward implementation of these algorithms in a

general purpose workstation may lead to unsatisfactory re-

sults. In section 3, we relate the CPU scheduling work de-

scribed in this paper to a new operating system architecture

we proposed for supporting distributed multimedia applica-

tions. Section 4 introduces a rate-based reservation model

for CPU time. The proposed scheduling framework, which

consists of a priority based on-line scheduler, an admission

control interface, a monitoring module and a rate adaptation

interface, is described in section 5. Section 6 reports our ex-

perience in implementing the CPU scheduler in Solaris 2.3.

Experimental results reported in section 7 show the effective-

ness of our implementation for many test cases.

2 CLASSICAL REAL-TIME SCHEDULING

Many classical real-time scheduling techniques have been

applied in multimedia operating systems [7]. Two algorithms

that are generally believed to be suitable for scheduling CM

applications are the rate-monotonic (RM) algorithm and the

earliest deadline first (EDF) algorithm. We briefly review
each of these algorithms [4].

Analysis of RM and EDF scheduling has made use of the fol-

lowing periodic speci$cation for the execution of a process,

say i. The specification has two parameters: a period, Pi (in

seconds), and a computation time requirement per period, Ci
(in seconds). An event, which requires C~ seconds of CPU

time to process, is assumed to arrive at the beginning of each

period. The deadline of an event, which is the time by which
processing of the event must complete, is assumed to be the

beginning of the next period. This model of execution is il-

lustrated in Fig. 3.

The RM algorithm assigns the period P, as a static priority
value of process i. This priority value is interpreted such

that the lower the value, the higher is the RM priority of
the process. Liu and Layland [4] show that if #XiCi/Pi <

n (2 Iin — 1), where the summation is over all processes in
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Figure 3: Periodic specification in classical real-time
scheduling.

the system, then each process gets the following progress

guarantee: For all i, the process will be scheduled to run

for C’i within period Pi. This implies that the processing

of each event will complete by its deadline. The condition

Di Ci/Pi < n(21/n – 1) is the admission control criterion.

when n is large, the right hand side is about 0.69. Hence,

RM scheduling is in general not able to achieve 100% prc)-

cessor utilization. However, if the process periods are har-

monic, then it can be shown that 100% processor utilization

is indeed achievable.

In contrast to RM, the EDF algorithm is a dynamic priority

algorithm. At any time, the priority of a process is not fixecl,

but is determined by the deadline of its next event. A process

with an earlier deadline value has a higher EDF priority. Fc~r

EDF scheduling, it is proved that if ZiCi/Pi <1, then each

process gets the same progress guarantee as RM scheduling

[4]. Hence, unlike RM, full processor utilization is in general

achievable with EDF.

Clearly, the progress guarantee by RM and EDF is useful in

scheduling CM applications. For example, it cam be used to

schedule the video application described in section 1 such

that each picture is processed before the next picture is pro-

duced by the video capture board. However, a straightfor-

ward implementation of either algorithm in a general purpose

workstation environment may not yield satisfactory results.

This is because the execution profile of a real application

may not conform to the periodic specification. ‘To illustrate,

consider two processes, say Q and R, scheduled by the RM

algorithm. Process Q has a period of 80 ms, and a per period

computation requirement of 40 ms. Process R has a period

of 40 ms, and a per period computation requirement of 20

ms. Since the periods are harmonic, the achievable proces-

sor utilization is 100% and is not exceeded in this example.
Because R has a smaller period than Q, it has higher RM pri-

ority than Q. Now consider the execution profiles of the two

processes shown in the top two rows in Fig. 4. Note that Q

conforms to its periodic specification, whereas R does nol.

The row labeled “RM’ shows how the processes are sched-

uled by RM, At the beginning of the first period (time O), R
is scheduled to run. RM does not require R to give up the

CPU after running for 20 ms, and R goes on to run until 80

ms. The result is that Q is not scheduled at all during the

first 80 ms. Hence, Q’s progress guarantee is violated even

though its execution conforms to its periodic specification,
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Figure 5: A “late” scheduling example.

EDF suffers from the same interference problem if the ac-

tual processing time of an event is longer than the processing

time Ci assumed in admission control. For example, if the

event that arrives for R at time O takes 80 ms to complete,

EDF performs the same as RM in the example in Fig. 4.

The above example shows how a “greedy” process, such as

R, that runs ahead of its periodic specification can affect the

progress guarantees to other processes. However, scheduling

requests that are late with respect to the periodic specification

can also cause problem. Consider the scenario shown in Fig.

5. There are three processes, Q, R and S, each having period
90 ms and computation time requirement per period 30 ms.

They are scheduled according to the RM alogrithm (see the

row labeled “RM’> in Fig. 5). Because the processes all have

the same period and hence RM priority, the system has arbi-

trarily decided to schedule Q ahead of R, and R ahead of S.
According to the periodic specification, both Q and R should

request to run for 30 ms at the beginning of the second period

(90 ins). However, Q and R are late and they do not become

runnable until 150 ms. The result is that even though S be-

comes runnable at 180 ms, it cannot be scheduled until 270
ms. The progress guarantee of S is violated from 180 ms to

270 ms, despite the fact that the execution of S conforms to

its periodic specification. EDF suffers from the same inter-

ference problem if event arrivals can be late. In our example,

if the second events for Q and R arrive at 150 ms instead of

90 ms, then EDF performs the same as RM.

The scheduling framework proposed in this paper allows pro-

cesses to reserve CPU time based on rates of progress. More-

over, we believe that it is desirable to provide$rewall protec-

tion between processes, i.e., our system guarantees that each

“punctual” (see section 5.3) process makes progress at its re-

served rate independent of the behavior of other processes.

Firewall protection is achieved by a form of rate control that

will be made clear in section 5.

3 OS ARCHITECTURE OVERVIEW

We previously proposed an operating system architecture

for supporting distributed multimedia [10]. The architec-

ture makes use of 1/0 eftlcient buffers and a fas t.write ( )

system call to reduce the end-to-end latency of network data

transfers. It also makes use of kernel threads for reduced sys-

tem calls and rate-based flow control. The system was proto-

type as an extension to Solaris 2.3, and the CPU schedul-

ing framework reported in this paper has since been inte-

grated into the prototype system. In this section, we de-

scribe features of the prototype system that are relevant to

CPU scheduling.

First, in contrast to a traditional Unix kernel, the Solaris 2.3

kernel is fully preemptible except for a few short protected

intervals. This is critical for us to obtain good real-time appli-

cation performance, since it allows a high priority process to

preempt a lower priority process even though the latter may

happen to be in the middle of a long duration system call.

Second, the Solaris kernel implements priority inheritance

for most synchronization primitives such as semaphores and

mutex locks. This prevents a high priority process from be-

ing blocked indefinitely by lower priority processes because

of lock contention.

Third, in our prototype system, a lightweight kernel thread

can be used to multiplex a shared network connection among

multiple user processes [10]. Specifically, a user process with

packets to send enqueues the packets to a send control queue.
A kernel thread is then responsible for moving packets from

the send control queue to a network interface queue at a re-

served bit rate (see Figure 6). The kernel thread also per-

forms rate-based flow control of shared access to a network

connection.

There are several timing constraints in process scheduling:

a user process must be scheduled such that it can enqueue

packets to the send control queue “in time”, and the kernel

thread must be scheduled such that it can move the packets

to the network interface queue “in time”. As described in
[10], the timeliness condition for a kernel thread means that

the kernel thread will be periodically scheduled with a max-

imum CPU time per period. Fig. 6 shows the relationship

between CPU scheduling and send side packet scheduling

by a lightweight kernel thread.
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4 RATE-BASED RESERVATION

Our system allows processes to reserve CPU time based on

a r-ate2 of progress, r (O < r ~ 1), and a time interval p in

ps known as period. The rate can then be viewed as a gttar-

anteed fraction of CPU time that a “punctual” (this notion

will be made precise in section 5.3) process will be allocated

over time. Specifically, the process will be allowed to run

for at least ,@ time over time interval kp fork = 1,2,...,

measured from when the process first becomes runnable. For

example, if the rate is 0.5 and the period is 100 ms, then the

process will be allowed to run for at least 50 ms over the first

100 ms since the process first becomes runnable, for at least

100 ms over the first 200 ms, etc.

The rate-based reservation model is similar to the periodic

specification in section 2, by considering C~/Pa to be the

rate of process i. If the execution of a process does conform

to the periodic specification, then the rate-based model en-

sures the same progress guarantee to the process as RM and

EDF scheduling. However, there are two important differ-

ences. First, our system provides firewall protection between

processes such that the progress guarantee to a process is in-

dependent of the behavior of other processes. Second, the

rate-based model makes explicit the notion of a guaranteed

rate of progress, which we believe is natural even for appli-

cations that are not “real-time” and not inherently periodic.

For example, consider a numerical analysis application that

solves a system of linear equations. For a particular prob-

lem, the application is continuously enabled (meaning that

it is always ready to run) and takes 5 seconds of CPU time

to complete. Suppose the user runs the application with a

rate of 0.01 and a period of 0.5 seconds, In the absence of

competing processes, the system will allow the application to
run continuously for 5 seconds and terminate. On the other

hand, if the system is highly loaded, the system will still en-

sure that the application will run at least 5k ms for every O.5k

2Unless otherwise specified, we shall use the term rare to mean reserved

rate.
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seconds after the application first becomes rtttmable, and the

application will terminate in at most 500 seconds.

5 SCHEDULING FRAMEWORK

An overview of our scheduling framework is shown in Fi:g.

7. The framework consists of the following components.

First, there is an on-line scheduler that schedules processes

according to dynamic rate-controlled priority values (here-

after called RC values) to be defined in section 5.1. Second,

there is an admission control interface that admits or rejects

new processes based on the rate-based reservation model in

section 4. Admission control limits system overload so that

rate guarantees to processes can be met. Third, a monitoring

module and a rate adaptation interface allow prc)cesses to acl-

just their reserved rates based on feedback information from

the kernel.

5.1 On-1ine scheduler

Having characterized CPU reservation with a rate r (O .:

r < 1) and a period p (in ps) in section 4, we next present

a rate-controlled (RC) on-line process scheduler. RC schedu-

les processes according to a per-process RC value computed

by algorithm RC specified in Fig. 8. In the specification, Q

is the process for which the algorithm is executed, curiirne

(in ps) is the time at which the algorithm begins execution,?

P(Q) and T(Q) denote, respectively, the period and rate of
Q’s CPU reservation, and wai(Q) denotes the RC value of Q.

In addition, two per-process state variables are maintained:

start (Q) (in ps and initialized to the time at which Q first

becomes runnable) and ~inish(Q) (in ps and initialized to

O). start(Q) is immutable and so always gives the time iit

which Q first becomes runnable, finish(Q) keeps track of

the expected jinishing time of the previous computation perf-

ormed by Q.

Intuitively, the expected finishing time is the time when the

3More precisely, cur the is the time of the rescheduling event (eK-
plained below) that causesthe algorithm to be executed.



Algorithm RC(Q)

1. if(Qchangesfrom blocked tornnnable)
2. fznish(Q) := max(~inish(Q), cur-time);

else

3. run time:= total time process Q has run since
RC was last executed for Q;

4. finish(Q) := .finzsh(Q) + run.time/r(Q);
fi;

5. if (Q is not blocked)
6. Find k s.t. start(Q) + (k – 1) x p(Q) ~

fznish(Q) < start(Q)+ k X P(Q);

7. vcd(Q) := start(Q) + k x p(Q);

fi;

Figure 8: Specification of Algorithm RC.

previous computation would complete had the computation

proceeded at rate T(Q). For example, if some computation

took 1 second of CPU time and the rate is 0.1, then the

expected finishing time is 1/0.1 = 10 seconds from the

start of the computation. Notice, however, that when Q be-

comes runnable, if the current real time (cur-time) is later

than ~inish(Q), ~inish(Q) will be updated to curtirne.

Because of this, a process that has not run for a long time

and has not been using its reserved rate, would not get a very

low RC value when it becomes runnable.

To understand how val(Q) is computed, think of the lifetime

of Q as starting at start(Q) and subsequently divided into

periods of p(Q) each. Then, if the expected finishing time

of the previous computation performed by Q falls within the

kth period, wd(Q) is set to the end of the kth period (hence

an RC value is an expected time value).

‘Io describe when algorithm RC executes, define a reschedul-

ing point to be the time when one of the following events

occurs: 1) the currently running process becomes blocked,

2) a system event occurs that causes one or more processes

to become runnable, or 3) a periodic clock tick4 occurs, At

a rescheduling point, the RC value of some of the processes
may change, and algorithm RC needs to be executed for only

these processes. Specifically,

● When the currently running process becomes blocked, RC

is executed for it.

● When a system event occurs that causes one or more pro-

cesses to become runnable, RC is executed for each process

that becomes runnable.
● When a periodic clock tick occurs in the system, RC is

executed for the currently running process if one exists.

After RC values have been recomputed for these affected

processes at a rescheduling point, a runnable process with

the smallest RC value is chosen for execution; ties are bro-

4 The ~enod of this clock tick is a system wide parameter (1 ms in our

prototype) and not to be confused with the period of a process.

Time ! ProcessQ I ProcessR I
(ins) finish I UU1 I finish I val \ Scheduled

01 01 80 1 01 40 1 R

w
Table 1: Illustration of algorithm RC for “greedy”
scheduling example in Fig. 4.

ken in favor of the currently running process, and otherwise

arbitrarily.

Note that RC is a dynamic priority scheduling algorithm. We

view RC value recomputation as a form of rate control. First,

the priority of a process that tries to run ahead of its reserved

rate will be lowered at a clock tick and the process may be

forced to yield the CPU. Second, as we mentioned, a process

that has not been using its reserved rate will not get a very

low RC value (hence a very high priority) when it becomes

runnable. In other words, unused “credit” cannot be saved by

a process.

5.2 Examples revisited

The effects of rate control can be illustrated by revisiting the

scheduling examples in Figures 4 and 5, For these examples,

we assume a clock period of 10 ms, and a clock tick occurs

at O, 10,20, .,. ms. In Fig. 4, process Q has rate 0.5 and

period 80 ms while process R has rate 0.5 and period 40 ms.

The row labeled “RC” shows how Q and R are scheduled by

RC. At time O, both processes first become runnable. Hence

start(Q) = start(R) = O. Table 1 shows the values (in

ms) of the scheduling variables at various times when the

RC value of either process changes. From Fig. 4, it can be

seen that both Q and R get their progress guarantees.

Now consider the scheduling example in Fig. 5. All of the

processes, Q, R and S, have rate 0,33 and period 90 ms.

start(Q) = start (.11) = start(S) = O. Table 2 shows the

values (in ms) of the scheduling variables at various times

when the RC value of any process changes. In the table, “-”

means that the value of the variable does not matter since the

corresponding process is blocked. The tie-breaking rule of

arbitrarily selecting a runnable process with the lowest RC
value for execution is invoked at times O ms, 30 ms, 150 ms

and 200 ms. Notice from Fig. 5 that S gets its progress
guarantee with RC scheduling. However, Q and R do not get

their progress guarantees because they are late.

Note that there is an inherent tradeoff between a more pre-

dictable performance and a smaller overhead for rate control.

In our system, rate control occurs at each clock tick. For fire-
wall protection and predictable performance, a small clock

tick is desired, but the higher the clock frequency, the higher

the rate of RC value recomputation. However, notice that 1)

RC value recomputation is very simple and only needs to be

done for the currently executing process at a clock tick, and

2) most of the time, the RC value of the currently executing
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Table 2: Illustration of algorithm RC for “iate” schedul-
ing example in Fig. 5. -

process will not change, and hence processes do not need to

be rescheduled. For example, both RM and RC require 8

context switches to schedule the processes in Fig. 5.

5.3 Admission control

To satisfy the real-time requirements of user processes, CPU

time cannot be oversubscribed. Hence, admission control is

an essential component ofourscheduling framework. When

anew process is created, the system checks whether enough

CPU capacity exists to satisfy the rate request of the new

process, without violating the guarantees to processes that

are already admitted. Theadmission control criterion we use

is Z~r~ ~ 1, where r~ is the rate of process i. We moti-

vate this admission control criterion by considering an ideal-

ized execution environment in which the period of clock tick

is infinitesimally small, and the overhead of rate control is

zero. There are n processes, Q1, ..., Q~, in the system. For
i=l , . . . . n, Qi runs with rate r~ and period pi. Consider

some process Qj. For simplicity of exposition, the time at
which Qj first becomes runnable is time O in the statements

of Definition 1 and Theorem 1.

Definition 1 Qj is punctual if it generates at least (k+ l)rjpj

seconds of work over time interval [0, ~pj], fork = 0, 1, . . ..

Theorem 1 If Qj is punctual and Eiri 5 L then Qj is
scheduled by RC to run for at least (k + 1) rjpj time over

time interval [0, (k+ l)pj], fork = 0, 1, ..-

A proof of Theorem 1 is given in the Appendix. In the proof,

“Ln” refers to the line of code labeled n in Figure 8. Clearly,

the idealized execution environment is not realizable in prac-

tice. It can only be approximated. However, the experimental

results in section 7 show that the RC scheduler performs as

intended in a real workstation environment.

5.4 Rate adaptation

The reservation model introduced so far assumes a rate that

is fixed for the lifetime of a process. This assumption may

be overly restrictive for a dynamic execution environment.

Indeed, when an application is started, a user may not know

the appropriate rate to use. First, the user may have insuffi-

cient knowledge of the application. Second, the applicaticm

may not have a constant rate of execution due to, for exam-

ple, the application’s inherent characteristics (scene changes

may cause a video playback application to run with different

rates at different times) or the application’s need to adapt to

changes in the environment (e.g. to cooperate with network

flow control). When a process runs far behind its reserved

rate, any unused CPU time will not be available for reser-

vation and CPU utilization decreases. On the other hand, if

a process runs far ahead of its rate, its priority will be low-

ered by RC rate control, which may later adversely affect its

real-time performance.

In view of the above, our system provides a rate adaptation

mechanism, whereby the kernel helps a user process deter-

mine its rate by providing feedback information on the pro-

cess’s execution. Rate adaptation enables a process to react

to medium to long term changes in the process’s executicm

rate (such as on the order of tens of seconds or longer). It

consists of a monitoring module that monitors process eK-

ecution, and a rate-adaptation interface between the kernel

and user processes.

To enable rate adaptation, a process has to register with the

system. A monitoring thread running with a period of m sec-

onds (m = 2 in our current system) monitors the execution of

registered processes. We are interested in two quantities. The

first one, called the lag (in ps), measures how far ahead a pro-

cess is running of its reserved rate at time t, Note that if a pro-

cess, say Q, is running ahead of its rate, ~inish(Q) will get

farther and farther ahead of real time. Hence the lag of a pro-

cess at time t is defined to be max(~inish(Q) --t –p(Q), 01).

The second quantity, called the lax (in %), measures the pm--

centage of reserved CPU time unused by the process dur-

ing the last monitoring interval T (i.e. the time interval be-

tween the current and the last monitoring). It is defined as

max(100(1 – runtime/(rT)), O), where runtirne (in ps)

is the total time the process has run during the time interval.

We expect the rate adaptation mechanism to be used only 10Y

CM applications that have a fairly constant rate of progress

over a monitoring interval.

The system informs a process of “significant” mismatches

between the reserved rate and the current execution rate. For

this purpose, a process specifies two parameters to the system

when registering for rate adaptation: a lag tolerance (in ps)

and a lax tolerance (in Ye). when monitored, if the process

has a maximum lag over the last monitoring interval that is

greater than the lag tolerance, a signal to increase rate is sent

to the process, Also, if the lax of the process over the last

monitoring interval is z and higher than the lax tolerance, a

signal to slow down by XYO is sent to the process. The signals

to speed up and slow down are know as rate adaptation sig-

nals. The application installs a signal handler to react to rate

adaptation signals in an application specific manner (section

7 describes two strategies an application might use).
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6 IMPLEMENTATION

Our scheduling framework has been implemented in Solaris

2.3. For the on-line scheduler described in section 5.1, we

added a new scheduling class RC. Most of the RC class spe-

cific code is implemented as a loadable module that can be

dynamically linked with the rest of the kernel. The class

independent scheduling code in Solaris already has hooks

that call the RC code at certain strategic points. However,

we have found it necessary to modifiy the original kernel

in three respects. First, we added a hook, which we name

CL-RESUME, for class specific code to run when a process is

“resumed” (i.e. CL-RESUME is inserted before each call to

resume ( ) , the kernel call to switch the CPU to a new pro-

cess). CL-RESUME allows the system to know when a pro-

cess is allocated the CPU, and hence to monitor how long the

process has run. Second, process priority in Solaris has type

pri-t, which is simply defined as short. pri-t is, how-

ever, not consistently used throughout the kernel. Certain

code uses variables of type 1 ong interchangeably with vari-

ables oft ype pri .t. We have found it necessary to define a

new pri-t type with type specific methods for, say, initial-

izations and comparisons. We also removed the intermixing

of pr i-t variables with variables of other types. Third, pro-

cesses that share the same dispatch queue5 in Solaris have

the same dispatch priority and are mostly served in a round

robin manner. In the modified kernel, all processes in the RC

class share a global dispatch queue, and processes have to be

queued in RC value order.

In addition, we made two significant changes to our system

configuration. First, we shortened the clock interrupt inter-

val from 10 to 1 ms. This gives a finer granularity of control

with a small performance penalty. Second, we run all sys-

tem threads (except threads for interrupt processing) in the

RC class. System threads in Solaris 2.3 are used for a va-

riety of purposes such as starting asynchronous read-aheads

in file systems, processing callouts, reaping freed system re-

sources, and background processing of stream service rou-

tines. To allow all system activities to continue to make non-

zero progress despite the demand of user applications, we

have assigned each system thread a rate of 0.002 and a pe-

riod of 200 ms. Such an assignment is admittedly ad-hoc

and user applications cannot rely on it for performance guar-

antees. Of particulm concern are system threads used in the

stream subsystem, since networking access is an integral part

of any distributed CM application. In the system architecture

proposed in [ 10], however, we assume that network protocols

are implemented in user space, rather than as stream mod-

ules, and the kernel thread used for flow control has well-

defined scheduling parameters (i.e. period of execution and

computation requirement per period).

7 EXPERIMENTAL RESULTS
We have performed a large number of experiments to evalu-

ate the effectiveness of our scheduling framework. Before we

5A dispatch queue is a queue of rrrnnable processes,or processeseligible
for dispatch.

Prog Param

greedy

video

audio

x

s ema

shell

n

[-d]

Description

Repeats rounds of following computa-

tion: g = sin(z). After the nth round,

the time taken for the first n rounds

is printed. This represents a compute-

bound application.

A video server that repeatedly reads a

Cell-B compressed picture from the Sun-

Video rtvc device and sends each pic-

ture (encapsulated by an application level

protocol) to a UDP connection. If -d

is specified, each picture is additionally

Cell-B decompressed in software and dis-

played in an X window. A frame rate of

30 fps is achievable on our workstation.

An audio server that does radio broadcast

in a local area network. It captures PCM

encoded audio at 64 kbps from a local au-

dio device, encapsulates each audio sam-

ple by an application level protocol, and

sends the sample to a UDP connection.

We have configured the audio device to

return samples every 20 ms.

An X window system server that handles

display in an X window.

Repeats rounds of following execution:

enters a semaphore protected critical sec-

tion, does some computation, exits the

critical section, and does some more

computation.

A tcsh shell command interpreter.

Table 3: Test suite of applications.

discuss individual experiments, we make the overall, quali-

tative observation that user applications running in RC never

caused control over the system to be lost. In particular, shell

commands could still be started and processes could be killed

(we used a tcsh shell with a rate of 0.002). This is in con-

trast to the RT class in Unix SVR4, where a “greedy” RT pro-

cess that never gives up the CPU can effectively “take over”

the entire workstation and force a system reboot.

7.1 Test suite

In our experiments, we used the test suite of applications

shown in Table 3. We chose the applications to have charac-

teristics representative of common applications for a general

purpose workstation. For example, video and audio are

CM applications, shel 1 is a traditionrd interactive appli-

cation, and greedy is a batch like, compute-bound appli-

cation. Table 4 summarizes the experiments that were per-
formed.

7.2 Test cases

simple This simple experiment shows that our scheduling

algorithm in fact allows applications to make progress at their

136



Case I Program I Rate I Period I

(ins)

simple greedy 3000000 0.27 50

greedy 3000000 0.63 50

lock-a s ema 0.09 80
I ,

s ema 0.18 I 80 I

vid–gx video –d varied 34

x 0.05 I 34

greedy 1000000 varied 30

av–g3 audio 0.15 20

video -d 0.6 34

I 1

greedy 1000000 ? 30

Table4: Cases ofexperimental runs.

reserved rates of execution. When run by itself (i.e. with

minimal competition from other processes), greedy took

19.99 seconds to complete 3000000 rounds of computation,

In simple, the two processes with relative rates 0.7: 0.3

took 28.64 and 67.20 seconds, respectively. It is straightfor-

ward to show that the higher rate process got roughly 69.76%

(19.99 / 28.64) of CPU, whereas the lower rate process got

29.73%.

Iock-[ah) The experiments lock-a and lock-b tested the

effects of lock contention, as each process has a critical sec-

tion guarded by the same semaphore. We measured the time

taken for each process running sema in Table 3 to complete

19 rounds of execution. In lock-a, the processes with rel-

ative rates 0.7 :0.2:0.1 took, respectively, 17.48,60.62 and

121.06 seconds. The measured ratios of execution times are

thus 1:3.47:6.93 and are close to the expected ratios of 1:

3.39:7.00. In lock-b, the processes with relative rates 0.5

:0.3 :0,2 took 24.03, 39.99 and 60.35 seconds respectively.

The measured ratios of execution times are thus 1 : 1.66:

2.51 and comparable to the expected ratios of 1:1.67:2.50.

aud-g3 Setup to send an audio packet every 20 ms, audio

has arguably the most stringent timeliness requirement among

applications in our test suite. We are therefore interested in

knowing how well we can schedule audio to meet its timing

constraints when we have concurrently running CPU inten-

sive applications, In particular, we would like audio to be

able to send each 20 ms sample of audio data before the next

sample has been produced by the audio device. In our experi-

ment, we first started 3 RC processes, each running greedy
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Figure 10: Profile of inter-packet times for audio
when greedy 3000000 started about 1 minute
after audio (trace started several seconds before
greedy started).

3000000 with a rate of 0.1. Then we started audio with

rate 0.15. To quantify the “timeliness” of audio, we recorded

a 41 second trace of the inter-packet times (i.e. the times

between sends of consecutive audio packets). The trace is

shown in Fig. 9. The maximum inter-packet gap is 21.59

ms, remarkably close to the ideal value of 20 ms.

We also performed a variant experiment of aud- g3, in which

we examined whether the timeliness of audio will be ad-

versely affected if we start greedy after audio has been

running steadily. In our experiment, greedy 3000000

was started about 1 minute after audio. The 1 minute lead

time gives the actual execution rate of audio to stabilize

after a significantly more CPU intensive phase of program

startup. The trace of inter-packet times is shown in Fig. 10

(we started the trace several seconds before greedy started).

The maximum inter-packet time is 23.16 ms.

vid-g3 For a video frame rate of 30 fps, video is expected

to run and send the packets of each picture every 33.33 ms.

Although this delay requirement is somewhat less stringent

than audio, video k significantly more CPU intensive. In

this experiment, we examined whether video is able to meet

its timing constraints when run concurrently with other CPU

intensive RC processes. We first started 3 processes each
running greedy 3000000 with a rate of 0.09. Then we

started video -d with rate 0.65. video communicates

with the local X window system server through a Unix do-

main socket. X was run with rate 0.05. We traced the inter-
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Figure 11: Profile of inter-frame times for video,
when video was started while three processes ex-
ecuting greedy 3000000 were running.

video greedy greedy greedy

rate rate time(ms) actual rate

0.4 0.5 11857 0.57

0.5 0.4 15416 0.44

0.6 0.3 21607 0.31

0.7 0.2 22471 0.30

Table 5: Execution time printed by greedy
1000000 and actual execution rate of greedy with a
competing video -d at various reserved rates (ex-
periment vid-gx).

frame times (i.e. the times between sends of first packets of

consecutive video frames) for 2499 frames in Fig. 11. There

were 3 deadline misses (a deadline miss occurs when a frame

is dropped because video fails to process it in time). The

misses occurred after frames 922,999 and 2384, respectively,
in the trace. However, these few misses do not suggest the

existence of any weakness in our scheduling algorithm. We

report that in another experiment in which we ran video

- d just by itself, we still observed 4 deadline misses.

vid-gx This set of experiments investigates the progress rate

of greedy as it runs against video – d at various reserved

rates. In each experiment, video was started followed by

greedy 1000000 after a few seconds. The reserved rates

of video and greedy were varied as in Table 5. In each

case, we noted the actual execution time greedy printed af-

ter 1000000 rounds of execution. Dividing this actual execu-

tion time into 6759 ms (execution time greedy 1000000

prints out when run by itself) yields the actual execution rate.

The actual execution times and rates are reported in Table 5.

Notice that the actual execution rate of greedy is consis-
tently higher than the reserved rate. This is because the other

pocesses in the system (e.g. X) did not make full use of their
reserved rates. When greedy had a reserved rate of 0.3, 0.4

or 0.5, it had to compete with video for the “slack” CPU

capacity left by the other processes. When this happens, the

higher the reserved rate of greedy, the larger the fraction

greedy took up of the slack capacity. When greedy had

reserved rate 0.2, it nevertheless got an execution rate of 0.3.

This is because video with rate 0.7 did not require much of
the slack bandwidth.

As for video, it suffered minimal loss in performance when
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Figure 12: (a) Profile of inter-frame times for video,
when video ran with a low rate of 0.4. (b) A magnified
view showing the reduced frame rate.

its reserved rate was 0.6 or 0.7. However, when its reserved

rate was too low, such as 0.4, video clearly had to skip more

pictures while greedy was simultaneously running. Fig.
12a profiles the inter-frame times for video, when video

ran concurrently with greedy at a rate of 0.4. A large gap

(about 0.8 second) is observed when greedy started. This

is because vi deo had been running significantly ahead of its

reserved rate and was forced to slow down by the competing

greedy process (in experiment ra-vg, we discuss how a

user application can make use of rate adaptation to avoid this

“punishment phenomenon”). After the initial gap, video

continued to run with a lower frame rate (see Fig. 12b, a

magnified view of Fig. 12a).

av-g3 We ran all of audio, video and greedy together

~s experiment. First, 3 RC processes running greedy

3000000 were started with a rate of 0.004, then video

-d was started with rate 0.6 and finally, audio was started

with rate 0.15. Fig. 13a shows a 50 second profile of the
inter-packet times for audio. The jitters in scheduling were

such that processing of alternate audio samples could be de-

layed until close to the time at which the next sample was

produced. However, none of the packets missed its deadline.
The maximum inter-packet gap was 37.37 ms. For vi deo,

the profile of inter-frames times is shown in Fig. 13b. There
were 5 deadline misses during the 2485 frame trace. The

maximum inter-frame time was 81.35 ms.

ra-vg We study whether applications can benefit from rate

adaptation in this set of experiments. We experimented with

two strategies that applications might use.
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Figure 13: Profile of (a) inter-packet times for audio
and (b) inter-frame times for video in experiment
av–g3.

In the first strategy, an application initially guesses a rate at

which it should run, and then relies on rate adaptation to ad-

just its current rate upward or downwaxd. In our experiment,

video used an initial rate of 0.4, a lag tolerance of 34 ms

and a lax tolerance of 10%. It adjusted its rate as follows:

Upon receiving a signal to speed up, video increased its

current rate by O.1; upon receiving a signal to slow down by

z Yo, video decreased its rate by (z – 5) Yo. The profile of

rates at which video ran is shown in Fig. 14a. Note that af-

ter an initial adaptation phase in which video “hunted” for

a stable rate to use, the rate stabilized at 0.721 at frame 435.

The effects of rate adaptation on the inter-frame times are

shown in Fig. 14b. During the adaptation phase, a frame was

delayed by close to one frame time about every 2 seconds.

This is because video needed to handle the rate adaptation

signal about every 2 seconds. video achieved full perfor-

mance after its rate had stabilized. In particular, even though

we started a process running greedy 1000000 shortly af-

ter frame 435, video managed to send a frame about every

33.33 ms, This is in contrast to the situation shown in Fig.

12, in which we observe a 0.8 second inter-frame time be-

cause video was started with a low rate of 0.4. There are

totally 7 deadline misses in the 3000 frame trace.

We also examined a second strategy for rate adaptation in

which an application starts with a very high rate and then re-

lies on rate adaptation to adjust its current rate downward.

In our experiment, video was started with an initial rate of

0.9, a lag tolerance of 34 ms and a lax tolerance of 10%.

Upon receiving a signal to slow down by z%, it decreased
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Figure 14: Profile of (a) rates and (b) inter-frame times
for video with rate adaptation from an initial rate of
0.4.

its rate by (z — 5) ?ZO. Using this strategy, video had a sin-

gle adjustment of its rate to 0.732 at frame 137 (Fig. 15a).

The profile of inter-frame times in Fig. 15b shows that full

performance was achieved throughout. In particular, starting

greedy 1000000 shortly after frame 137 and seconds be-

fore frame 3000 had no observable effects on the inter-frame

times. There were totally 6 deadline misses in the 3000 frame

trace.

8 CONCLUSION

We have presented a framework for integrated scheduling of

CM and other applications in a general purpose workstation

environment.
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Appendix: Proof of Theorem 1

We prove Theorem 1 by induction on k. Base step. For k = O, since

Q, is punctual, it generates at least rjpj seconds of work at time O.

To prove by contradiction, suppose this amount of work did not

finish by time pj. For this to happen, the CPU must have been oc-

cupied with work throughout the time interval [0, Pj ]. Moreover, by

the assumption that the period of clock tick is infinitesimally small,

this work must have been scheduled with RC value not greater than

P~. There are two possibIe cases.

Case 1. In the busy period containing PJ, only work with RC value

not greater than pj was executed by time Pj. In this case, let t < 0

[.)

cPU daimg work w>th RC value not g...,..
than ~, .hr.ugh,ue h,. ,,.”. .n. er”a,
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Figure 16: In (a), t isthetime at which the CPU was last
idle or a piece of computation with RC value greater
than pj last finished execution before time pj. In (b),
t is the time at which the CPU was last idle or a piece
of computation with RC value greater than (k’ + 2)pj
last finished execution before time (k’ + 2)pj.

be the start of the busy period (i.e. the CPU was idle at time t-
bnt was doing work with RC value not greater than p] throughout
[t,pj]), Because the CPU was idle at t-, if any process, say Q,, be-

came runnable in [t, pj ], the conditional test in L1 of Figure 8 would

be true. L2 then ensures that Q,’s initial work in [t, pj ] would not

have received an RC value less than t.Because the RC value of any

process is nondecreasing, we conclude that any work scheduled in

[t, pj ] had RC value at least t.By L4, L7 and the assumption that the

period of clock tick is infinitesimally small, the maximum amount

of work that can be scheduled for Q, in [t, pj] is [(PJ – t)/p, ] r,p,.

Case 2. In the busy period containing pJ, some work with RC value

greater than pj was executed before time pj. In this case, let t <0

be the time at which the last piece of work with RC value greater

than pJ finished execution in the busy period. Consider any process

Q,. If Q, was runnable at t-, its RC value at t must be greater than

PI, since a piece of work with RC value greater than PJ finished
execution at t.Hence no work was executed for Q, in [t,pj].If Q,

was blocked at t–, then, by L1 and L2, any work that might have

been scheduled for Q, in [t,I+]must have RC value at least t.By

L4, L7 and the assumption that the period of clock tick is infinites-

imally small, the maximum amount of work that can be scheduled

for Q, in [t, pj] is [(P3 – t)/p, ] r,p,.

The two cases are summarized in Fig. 16a, In either case, because

the work of QJ did not finish by pj, we have

x [(pj – t)/ptJ r,pt > pj – t

=+ Z(pj – t)rt > pj – t

=+ D, >1, sincep~ > t

==+ contradiction

Inductive step. Assume that Theorem 1 is true for k = k’ ~ O,

i.e., the first (k’ + l)rjpj seconds of Q3’s work has been scheduled

over time interval [0, (k’ + 1)pJ ]. Because Qj is punctual, it must

have generated an additional r-jpj seconds of work by time (k’ +

l)p~. By L4, L7 and the assumption that the period of clock tick

is infinitesimally small, the additional rjpj seconds of QJ’s work

receives an RC value of (k’ + 2)pJ. Using the same derivations as

for the base case, but substituting (k’ +2)pj forp~ (compare Figures

16a and 16b to see the similarity between the base case and the

inductive case), we can prove by contradiction that the additional

r~ PJ seconds of work of Q3will finishby time (k’ + 2)P3. Hence
Theorem 1 also holds fork = k’ + 1.
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