
Task concurrency management methodology to schedule
the MPEG4 IM1 player on a highly parallel processor

platform

Chun Wong
IMEC, Kapeldreef 75, Leuven,

Belgium

chwong@imec.be

Paul Marchal
IMEC

marchal@imec.be

Peng Yang
�

IMEC
yangp@imec.be

ABSTRACT
This paper addresses the concurrent task management of complex
multi-media systems, like the MPEG4 IM1 player, with empha-
sis on how to derive energy-cost vs time-budget curves through
task scheduling on a multi-processor platform. Starting from the
original “standard” specification, we extract the concurrency orig-
inally hidden by implementation decisions in a “grey-box” model.
Then we have applied two high-level transformations on this model
to improve the task-level concurrency. Finally, by scheduling the
transformed task-graph, we have derived energy-cost vs time-budget
curves. These curves will be used to get globally optimized design
decisions when combining subsystems into one complete system or
to be used by a dynamic scheduler. The results on the MPEG4 IM1
player confirm the validity of our assumptions and the usefulness
of our approach.

Keywords
concurrency, scheduling, MPEG-4, embedded system, cost-efficiency

1. INTRODUCTION
Today, a new heterogeneous architectural design paradigm is emerg-
ing, usually called a platform. It includes several programmable
components, augmented with some specialized data paths or co-
processors (accelerators). The programmable components run soft-
ware, being slow to medium speed algorithms, while time-critical
parts are executed on dedicated hardware accelerators. By this evo-
lution, embedded processors become ubiquitous and a new role for
embedded software in contemporary and future ASIC (application
specific IC) systems is reserved. When looking at existing design
practices for mapping software (and hardware) on such a platform,
one can only conclude that these systems nowadays are designed in
a very ad hoc manner. The design trajectory starts by identifying
the global specification entities that functionally belong together,

�
They are all also Ph.D. students of K.U.Leuven-ESAT

called tasks or processes. Most of the time, these tasks and pro-
cesses are at least partly dynamically created and deleted. This
step is followed by a manual hardware-software partitioning. Be-
cause of separate implementation of the different tasks and of the
software and hardware, afterwards a system integration step is in-
evitable. This manual step performs the system/software embed-
ding, and synthesizes the interface hardware, which closes the gap
between the software and the hardware component.

The main goal of system/software embedding is to encapsulate the
concurrent tasks in a control shell which takes care of the task
scheduling (software scheduling in the restricted sense) and the
inter-task communication. Task scheduling is an error-prone pro-
cess that requires computer assistance to consider the many interac-
tions between constraints. Unfortunately, current design practices
for reactive real-time systems are ad hoc and not very retargetable.
From this, one can conclude that a need exists for a systematic
methodology at the system level for the co-design of hardware and
software including especially the management of dynamic concur-
rent tasks. In this paper we will present in Section 3 the framework
of a methodology that we are currently developing to solve the task
concurrency problem. An important step in this methodology is
the design-time mapping of different tasks in a cost-efficient way
on a multiple processor platform. In Section 4.2 we will explain a
heuristic that helps us to select the most important task to run first
on the platform. We will illustrate this scheduling heuristic with
an example extracted from a very complex realistic driver, namely
the MPEG4 IM1 player. The results will be represented in Pareto
curves which do not give a single working point but which allow
us to globally trade-off cost (e.g. energy) vs constraints (e.g. time-
budget).

2. TARGET APPLICATION
The target applications of our task-level system synthesis approach
are advanced real-time multi-media and information processing(RMP)
systems, such as consumer multi-media electronics and personal
communication systems. These applications involve a combination
of complex data- and control-flow where complex data types are
manipulated and transferred in a dynamic way including creation
and deletion of both data and tasks. Most of these applications
are implemented with compact and portable devices, putting strin-
gent constraints on the degree of integration (i.e. chip area) and on
their power consumption. Secondly, these systems are extremely
heterogeneous in nature and combine high performance data pro-
cessing (e.g. data processing on transmission data input) as well as
slow rate control processing (e.g. system control functions), syn-

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
CODES ’01 Copenhagen, Denmark
© ACM 2001 1-58113-364-2/01/04…$5.00

170

chronous as well as asynchronous parts, analog and digital, and
so on. Thirdly, time-to-market has become a critical factor in the
design phase. Finally, these systems are subjected to stringent real-
time constraints (both hard and soft deadlines are present), compli-
cating their implementation considerably.

The main driver for our research is the IM1 player (see Fig. 1). This
player is based on the MPEG4 standard, which specifies a system
for the communication of interactive audio-visual scenes composed
of objects. As this player consists of many different modules (au-
dio, video, 3D animation, etc., coded in over 80,000 lines of high-
level C++ specification), we believe it is representative for other
multi-media applications.

Decoding
Buffer

Data
Channel

Presenter

Synchron-
ization
Layer

Compression
Layer

Composition
Layer

Composi
tion

Buffer

Data
Channel

Data
Unit

Data
Unit BIFS

OD

Decoders

Delivery
Layer

part under investigation

x Wavelet
Decoders

Xx Data
Channels

Data
Unit

Figure 1: System level modules of the MPEG4 IM1 player

Each frame in a MPEG4 compatible input stream consists of sev-
eral parts, video object planes (VOPs), that can be decoded in-
dependently. In this paper we will assume that up to 5 different
VOPs are simultaneously active, which is realistic. For each VOP
two interacting controllers need to be scheduled (see Fig. 3). Sev-
eral other decoders may be needed to interpret additional informa-
tion required by the VOPs (such as texture-data, audio, video). In
this paper we focus on the mapping of the controllers on the pro-
grammable components of the platform. The other more static sig-
nal processing tasks are assigned to dedicated accelerators.

3. FRAMEWORK OF THE TASK CONCUR-
RENCY MANAGEMENT METHODOL-
OGY AT THE GREY-BOX ABSTRACTION
LEVEL

The design of concurrent real-time embedded systems, especially
embedded software, is a difficult problem to be performed manu-
ally due to the complex consumer-producer relationships, the pres-
ence of various timing constraints, the non-determinism in the spec-
ification and the sometimes tight interaction with the underlying
hardware. Here we present a new cost-oriented approach to the
problem of task scheduling on multiple processors. It fits in a
global task concurrency management approach outlined in [2]. The
approach uses as much as possible pre-ordering of the concurrent
behavior under real-time constraints and minimizes the run-time
overhead. At the same time, the scheduler tries to minimize cost
such as the energy consumption.

The framework of our methodology is depicted in Fig. 2. An em-
bedded system can be specified at a grey-box abstraction level in
a combined MTG-CDFG model [1, 33, 36]1. This specification is
functional in representing the concepts of concurrency, timing con-
straints and interaction at either an abstract or a more detailed level,
depending on what is required to perform good exploration deci-
sions afterwards. As in [2], the task concurrency management can
�
MTG is the acronym for multi thread graph

Concurrency
improving

transformations

Design-time
scheduling of

tasks

Run-time
scheduler

C++/C-code
specification
of the system

Initial
grey-box
model

Improved
grey-box
model

time-budget

cost

Task1

time-budget

cost

Task2

time-budget

cost

Task3

Extraction
of the grey-box

model

Platform

RT
constraints

Platform

RT
constraints

Processor1

time

Processor2

Processor3

Mapping of all the tasks
 on the platform

Figure 2: Framework of the task concurrency management
methodology

be implemented in four major steps. Firstly, the concurrency ex-
traction is performed. Transformations [3] on the specified MTG-
CDFG are then applied to increase the opportunities for concur-
rency exploration and cost minimization. After the extraction, we
obtain a set of tasks, each of which consists of many thread nodes.
Tasks can be viewed as a more or less independent part of the whole
application. Then static scheduling will be applied inside each task
at design time, including processor assignment in the context of
multiple processing elements (PEs). Finally, a dynamic scheduler
will schedule these tasks at run time on the given platform [5].

The purpose of task concurrency management is to determine a
cost-optimal constraint-driven scheduling, allocation and assign-
ment of various thread nodes to a set of processors. Each thread
node will be executed at a different speed on a different processor
with a different cost, i.e. energy consumption. Given a task, static
scheduling is done at design time to explore all the possibilities
of valid assignment and scheduling. Each possibility means a dif-
ferent choice in time budget and energy consumption trade-off (i.e.
another working point) and together they compose the global Pareto
curve. Since the static scheduling is done at design time, computa-
tion efforts can be paid as much as necessary, provided that it can
give a better scheduling result and reduce the computation efforts
of dynamic scheduling.

4. SCHEDULING HEURISTIC FOR A LARGE
NUMBER OF THREAD NODES

4.1 Related work and motivation
Abundant work has been done on scheduling. In literature, the
granularity levels which different scheduling algorithms work at are
quite different. However, the entity which scheduling algorithms
deal with is always called task, job or node. To avoid confusion,

171

it is better to know that the meaning of these terminologies in our
work can be different from other existing work.

When a set of concurrent tasks, i.e., tasks that can overlap in time,
has to be executed on one or more processors, scheduling algo-
rithm, must be applied to decide the order in which those tasks are
executed. For a multiprocessor system, another procedure, assign-
ment is also needed to determine on which processor one task will
be executed.

In the real-time community, researchers use a black-box view of
the task behavior. Comprehensive overviews of scheduling algo-
rithms for real-time systems are given in [1, 6, 7, 8]. In contrast, in
the embedded system community, many papers focus on white-box
task descriptions [9, 10], which are typically not available at the
early design stage. A grey-box model is used in our approach. As
an example, we show in Fig. 3 the grey-box model we are going
to use in the following scheduling experiment. Formal definition
of this model is given in [1]. The most important semantics of this
model is explained in the appendix.

VOP1

VOP2

VOP3

VOP4

VOP5

Image on screen

Synchronization Layer

Compression layer

OR

OR

BIFS

OR

OR

OD

Compression layer

OR

OR

BIFS

OR

OR

OD

Compression layer

OR

OR

BIFS

OR

OR

OD

Compression layer

OR

OR

BIFS

OR

OR

OD

Compression layer

OR

OR

BIFS

OR

OR

OD

VOP1

VOP2
VOP3

VOP4

VOP5

Different VOP controllers
working independently

Figure 3: Grey-box model of the compression layer of the IM1
player

Existing scheduling algorithms can be roughly divided into dy-
namic and static scheduling. In a multiprocessor context, when
the application has a large amount of non-deterministic behavior,
dynamic scheduling has the flexibility to balance the computation
load of processors at run-time. However, the run-time overhead
for code size and energy consumption may be excessive. In addi-
tion, most multimedia applications have limited non-deterministic
behavior. Moreover, it is usually impossible to make globally op-
timal scheduling decisions at run-time. Consequently, scheduling
decisions should be made as much as possible at design-time. We
selected a combination of the static and dynamic scheduling to take
advantage of both of them.

A large body of scheduling algorithms stem from Liu and Layland’s
classical paper[11], in which they gave five basical assumptions and
studied the optimizability and schedulability of Rate Monotonic
(RM) and Earliest Deadline First (EDF) algorithms in a fixed and
dynamic priority environment respectively. Most of the later work
can be classified as one of the two above, namely fixed priority
or dynamic priority, and aims at relaxing the assumptions given in
Liu’s paper and dealing with shared resources, aperiodic tasks, and
tasks with different importance levels. Leung and Whitehead [12]
suggested Deadline Monotonic to relax the deadline assumption.
Later Chetto et al [13] introduced a transformation to the original
task set to include the precedence constraints in EDF. To provide
services for aperiodic or sporadic tasks, several bandwidth preserv-
ing algorithms have been proposed [14, 15, 16, 17, 18]. The prob-
lem of resource sharing is tackled with Priority Inheritance Proto-
col in [6, 19]. They provide a solid basis of performance oriented
scheduling theory.

Since more and more embedded systems are targeted at multiple
processor architectures, multiple processor scheduling plays a more
and more important role. El-Rewini et al [20] give a clear intro-
duction to the task scheduling in multiprocessing systems. Hou
et al [21] alleviate the saturation effect caused by excessive inter-
processor communication in distributed embedded systems. Hoang
et al [22] try to maximize the throughput by balancing the com-
putation load of the distributed processors. All the partition and
scheduling decisions are made at design time. This approach is
limited to pure data flow applications. Teich et al [23] try to han-
dle non-determinism in the heterogeneous embedded system. They
have avoided the explicit enumeration of execution paths. How-
ever, since their work is based on the white-box viewpoint, it can
not scale to large systems. On the contrary, our grey-box approach
aims at handling such large systems. Yen et al [24, 25] try to
combine the processor allocation and process scheduling into a
gradient-search cosynthesis algorithm. It’s a heuristic method and
can only handle periodic tasks statically.

However, in most of the above work, performance is the only con-
cern. In other words, they only consider how to meet real-time
constraints. For embedded systems, cost factors, like energy, must
be taken into account.

Only a few papers involve the cost, like power, apart from perfor-
mance issues. Gruian et al [26] used constraint programming to
minimize the energy consumption at system level but their method
is purely static and no dynamic tactic is applied to exploit more en-
ergy reduction. Since the energy consumption of CMOS digital cir-
cuits is approximately proportional to the square of the supply volt-
age, decreasing the supply voltage is lucrative to low power design,
though it will also slow down the clock speed. Traditionally, the
CPU works at a fixed supply voltage, even though at a light work-
load. In fact, under such situations, the fast speed of the CPU is
unnecessary and can be traded for a lower energy/power consump-
tion by reducing the supply voltage. Chandrakasan[27] compared
several energy saving tactics concerned Dynamic Voltage Schedul-
ing. Based on this investigation, several real-time scheduling algo-
rithms are provided, e.g. by Hong[28] and Okuma[29]. However,
the platforms for such algorithms are restricted to a single proces-
sor with dynamically variable supply voltage. Jha et al [30, 31, 32]
go pretty far in the power-consicious design. Their early work [30,
31] focus more on how to meet hard real-time constraints of aperi-
odic tasks and how to reduce hardware cost. Based on techniques
in this early work, power in multiple processor context is treated by

172

evenly distributing the workload [32]. However, their work doesn’t
tackle power consumption directly. No manifest power and per-
formance relation is used to steer the design-space exploration. In
addition, they assume a continuously scaled voltage, which simpli-
fies the processor assignment problem.

4.2 A new scheduling heuristic for large num-
ber of tasks

Our approach can be applied to the multiprocessor platform with-
out the need of changing the processor voltage dynamically. For a
given platform, i.e., the number of high-speed processors and low-
speed processors, the heuristic will derive an energy-cost vs time-
budget curve. Compared with other scheduling algorithms, like
MILP (mixed integer linear programming), the heuristic does not
treat real-time constraints directly. Hence, the computation com-
plexity is reduced. The heuristic derives a set of working points
on the energy-cost vs time-budget plane instead of only one point.
These working points range from the most optimal performance
point within that given platform to the point barely meeting timing
constraints. Existence of these different working points is mostly
due to the different thread node to processor assignments (some of
it is due to idle time in the schedule). As a result we also have
to deal with a crucial assignment problem. We will show in Sec-
tion 5 how a trade-off between energy-cost and time-budget can be
made by a proper assignment decision. These points are crucial
when combining subsystems into a complete system or during the
dynamic scheduling stage. The reason is that in both cases we need
to select working points of subsystems and combine them into a
globally optimal working point.

To schedule the thread nodes on the above multiple processor plat-
form, we have developed a static scheduling heuristic. The heuris-
tic uses two criteria to decide which thread node to run first. The
first criterion is the self-weight of a thread node. It is defined as the
execution time of the thread node on the low-speed processor. The
larger the self-weight of a thread node, the higher its priority to be
mapped on a high-speed processor.

The second criterion is the load of a thread node. If some thread
nodes are depending on a thread node, the sum of the self-weights
of all the dependent thread nodes is defined as the load of the thread
node. It is worth noting that “dependent” means control depen-
dence. The more load a thread node has, the earlier it should start
to execute.

From the above criteria, when a processor is available, the follow-
ing strategy takes care of selecting a candidate thread node.

1. When a thread node is dominant both in the self-weight and
load over the other candidate thread nodes, it will be sched-
uled first.

2. When one thread node has a dominant self-weight and an-
other thread node has a dominant load, either of them can be
scheduled first. By alternating their order different points on
the energy-cost vs time-budget plane can be generated.

It is better to realize that the heuristic implicitly includes energy
considerations. Because for a given processor, the energy con-
sumption is directly related to the execution time. The self-weight
and load in the heuristic are merely two interpretations of execution
time from differen perspectives. Applying this heuristic to the IM1

V()

P()

 mutex

LockStream

ReleaseStream

D

GetDataTimeBlock

OR

OR

D

source

OD/BIFS
Decoding

OR

Figure 4: Grey-box model of BIFS decoding and decoder setup
(left) and an example of the unfolding of the BIFS decoding task
(right)
.

player will be discussed in the following section. Even though it
seems relatively simple, it turns out to be very effective for schedul-
ing the tasks in the MPEG-4 IM1 player.

5. TASK SCHEDULING EXPERIMENT
To get smooth scenes, a frame rate of 30ms is required. Cur-
rently, the IM1 player is implemented on a Pentium or Pentium-
compatible platform. Such an implementation is far from meeting
the 30ms timing constraint. This real-time constraint is only reach-
able when an extremely parallel and powerful instruction-set pro-
cessor is used. In our experiment, the IM1 player is mapped to a
multiple processor platform including custom accelerators next to
the instruction-set processors. We have extracted the task graph
from the IM1 implementation code. By analyzing the profiling
information, we know how many VOPs one frame contains, how
many BIFS nodes one VOP has and how many decoder setup are
done in one VOP.

We pick up an example frame of 5 VOPs. The number of BIFS
nodes and the number of decoder setup are listed in Table 1. For
every BIFS node decoding and decoder setup, we get the execution
time from the profiling data. The grey-box model of a typical BIFS
decoding and decoder setup is shown in Fig. 4. The left part of
Fig. 4 is the context of the BIFS decoding or decoder setup. The
right part is the unfolding of an example BIFS decoding. In reality,
instances of the BIFS decoding and decoder setup take place in-
side a VOP with variations in the underlying graphs and execution
times.

VOP 1 2 3 4 5
Number of BIFS nodes 4 1 4 4 3

Number of decoder setup 12 3 3 5 9

Table 1: A typical frame structure

To meet the 30ms timing constraint for the protocol subsystem, we
use a number of StrongARM processors [34] and custom acceler-
ators. The accelerator can be for example, the Ozone custom pro-
cessor design of wavelet functionality [35]. The processors run at
either 100MHz or 233MHz. For a thread node, the execution time
and energy cost are different on the two processors. We use

���
and���

to denote the execution time on the low-speed and high-speed

173

processor respectively. � � is the difference between these two ex-
ecution times. Similarly, we use � � and � � to denote its energy
cost on these two processors. �	� is the energy difference. Our
calculations are based on the following formulae.

� ��
������� �
������ �
��� ����� ��� (1)

�	�
 � ��� � �
�� ��� ���� ��� ��� � (2)

We have tried different processor combinations. A given processor
combination means a number of fixed high-speed and low-speed
processors. For each processor combination, we make different
processor assignment and put thread nodes into different orders by
the static scheduling heuristic described in Section 4.2. Hence, an
energy cost vs time-budget curve is derived. Altogether, there are
four processor combinations which satisfy the timing constraints
(Table 2).

Processor combination 1 2 3 4
Number of high-speed processors 6 5 4 3
Number of low-speed processors 0 3 5 7

Total Number of processors 6 8 9 10

Table 2: Different processor combinations

For Combination 1 and 4, only one solution exists which meets
the timing constraints. Consequently, there is no trade-off between
energy cost and time-budget. For Combination 2 and 3, we have
derived a Pareto-optimal energy vs time-budget curve for each of
them.

Applying this scheduling heuristic to the sample problem, we have
derived two curves for processor combination 2 and 3, which are
shown in Fig. 5. From the two Pareto curves, we know that points
on the curve of Combination 3 provide globally optimal work-
ing points until point 6 is reached. A lower time-budget, i.e., a
more tight timing constraint cannot be satisfied by the platform of
Combination 3. This is because the existing concurrency in the
task graph has been fully utilized by the processors in Combina-
tion 3. To further decrease the time-budget, we have to use extra
high-speed processors to reduce the critical path. That is, either to
replace low-speed (low-power) processors with high-speed (high-
power) processors or to introduce additional high-speed processors.
In other words, two ways exist to decrease the time-budget. One is
to utilize the concurrency, the other is to reduce the critical path.
Therefore, to get a lower time-budget, we have to resort to the
platform of Combination 2 and pay a large energy penalty. This
explains the big jump of the global Pareto curve from point 6 of
Combination 3 to point 6 of Combination 2.

As no related work exists that fully matches our problem statement,
we have made a comparison with an exact MILP formulation. We
have applied a well-known public domain MILP solver [4] to this
scheduling problem. Since the amount of MILP description for
scheduling the task graph on a multiple processor platform will ex-
plode, we have to apply the MILP solver to a two processor plat-
form. Shown in Fig. 6 are three curves. One is got from the heuris-
tic, the rest two are the outputs from the MILP solver for the first
time and after it runs for five days, respectivley. It is clearly seen
that the MILP solver has made large improvement after five days.
However, to get all the optimal points over the time-budget axis,
which should be lower than the points given by the heuristic, it will

24 25 26 27 28 29 30
390

400

410

420

430

440

450

460

470

480

490

Time−budget(ms)

E
ne

rg
y−

co
st

(m
J)

Combination2

Combination3
(Global Pareto curve)

Global Pareto curve

1
2 3

4

5
6

6

5
4

3

2
1

Figure 5: Pareto curves for processor combination 2 and 3

take even longer time. The fact motivates the need for a heuristic. It
also substantiates our claim that our heuristic provides a good qual-
ity and run-time complexity. We have only one major demonstrator
at present, but we believe that the complexity and heterogeniety of
the IM1 player is representative of a whole class of dynamic and
concurrent applications. Therefore the result in this section should
be conclusive enough.

35 40 45 50 55 60 65 70 75 80
80

90

100

110

120

130

140

150

Time−budget(ms)

E
ne

rg
y−

co
st

(m
J)

Heuristic solutions
MILP solutions for the 1st time
MILP solutions after 5 days

Figure 6: Comparison of energy vs time-budget curves derived
by the heuristic and MILP

6. CONCLUSIONS
We have demonstrated in this paper that a grey-box task graph
model should be used to design advanced real-time dynamic mul-
timedia applications. This task-level model allows us to systemati-
cally explore the design at a high abstraction level in order to obtain
more and better task schedules. Transformations on the task graph
level have been applied to improve this further. On a multiproces-
sor targeted platform including custom accelerators for the video
coders, the different schedules obtained with a heuristic scheduling
approach are represented in Pareto curves trading-off time-budget
vs energy-cost. This information is crucial to decide on run-time

174

trade-offs involving other subsystems present in the entire applica-
tion.

7. ADDITIONAL AUTHORS
Aggeliki Prayati (Department of Electrical and Computer Engi-
neering, University of Patras, Greece), Francky Catthoor (IMEC,
also professor of K.U.Leuven-ESAT), Rudy Lauwereins (Katholieke
Universiteit Leuven-ESAT, Leuven, Belgium), Diederik Verkest (IMEC)
and Hugo De Man (IMEC, also professor of K.U.Leuven-ESAT)

8. REFERENCES
[1] F. Thoen and F. Catthoor, “Modeling, Verification and Exploration of

Task-level Concurrency in Real-Time Embedded Systems”, ISBN
0-7923-7737-0, Kluwer Aca. Publ., Boston, 1999.

[2] A. Prayati, C. Wong, P. Marchal et al, “Task Concurrency
Management Experiment for Power-efficient Speed-up of Embedded
MPEG4 IM1 Player”, Proceedings of International Workshops on
Parallel Processing 2000, Toronto, August 2000, pp. 453-460.

[3] P. Marchal, C. Wong, A. Prayati et al, “Impact of task-level
concurrency transformations on the MPEG4 IM1 player for weakly
parallel processor platforms”, International Conference on Parallel
Architectures and Compilation Techniques 2000, Philadelphia, October
2000.

[4] ftp://ftp.ics.ele.tue.nl/pub/lp solve

[5] P. Yang, D. Desmet, F. Catthoor, and D. Verkest, “Dynamic
Scheduling of Concurrent Tasks with Cost Performance Trade-off”,
International conference on compilers, architecture, and synthesis for
embedded systems, San Jose, November 2001.

[6] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority Inheritance
Protocols: An Approach to Real-Time Synchronization” IEEE
Transactions on Computers, 39(9), Sept. 1990, pp. 1175-1185.

[7] K. Ramamritham and J. A. Stankovic, “Scheduling Algorithms and
Operation Systems Support for Real-Time Systems” Proceedings of the
IEEE, 82(1), Jan. 1994, pp. 55-67.

[8] N. Audsley, A. Burns, R. Davis, K. tindell, and A. Wellings, “Fixed
Priority Pre-emptive Scheduling: an Historical Perspective”, Real-Time
Systems, 8(2), 1995, pp. 173-198.

[9] T. Benner and R. Ernst, “An Approach to Mixed Systems
Co-Synthesis”, In Proceedings of the International Workshop on
Hardware/Software Codesign(CODES), 1997, pp. 9-14.

[10] F. Balarin et al , Hardware-Software Co-Design of Embedded
Systems: the POLIS Approach. Kluwer Academic Publishers, 1997.

[11] C. L. Liu and J.W. Layland, “Scheduling Algorithms for
Multiprogramming in a Hard Real-Time Environment” Journal of the
Association for Computing Machinery, 20(1), 1973, pp. 46-61.

[12] J. T. Leung and J. Whitehead, “On the Complexity of Fixed-Priority
Scheduling of Periodic Real-Time Tasks” Performance Evaluation, 2,
1982, pp. 237-250.

[13] H. Chetto, M. Silly, and T. Bouchentouf, “Dynamic Scheduling of
Real-Time Tasks Under Precedence Constraints”, Real-Time Systems,
2, 1990.

[14] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task Scheduling for
Hard-Real-Time Systems”, Real-Time Systems, 1, 1989, pp. 27-60.

[15] J. P. Lehoczky, L. Sha, and J. K. Strosnider, “Enhanced Aperiodic
Responsiveness in Hard Real-Time Environments”, In Proceedings of
the IEEE Real-Time System Symposium, 1987, pp. 261-270.

[16] S. Ramos-Thuel and J. P. Lehoczky, “On-Line Scheduling of Hard
Deadline Aperiodic Tasks in Fixed-Priority Systems”, In Proceedings
of the IEEE Real-Time System Symposium, 1993, pp. 160–171.

[17] M. Spuri and G. C. Buttazzo, “Efficient Aperiodic Service under
Earliest Deadline Scheduling”, In Proceedings of the IEEE Real-Time
System Symposium, 1994, pp. 2-11.

[18] M. Spuri and G. C. Buttazzo, “Scheduling Aperiodic Tasks in
Dynamic Priority Systems”, Real-Time Systems, 10(2), 1996.

[19] T. P. Baker, “Stack-Based Scheduling of Realtime Processes”,
Real-Time Systems, 3(1), 1991, pp. 67-99.

[20] H. El-Rewini, H. H. Ali, and T. Lewis, “Task scheduling in
multiprocessing systems”, IEEE Computer, 28(12), Dec. 1995, pp.
27-37.

[21] C. J. Hou and K. G. Shin, “Allocation of Periodic Task Modules with
Precedence and Deadline Constraints in Distributed Real-Time
Systems”, IEEE Transactions on Computers, 46(12), Dec. 1997, pp.
1338-56.

[22] P. D. Hoang and J. M. Rabaey, “Scheduling of DSP Programs onto
Multiprocessors for Maximum Throughput”, IEEE Transactions on
Signal Processing, 41(6), June 1993, pp. 2225-2235.

[23] K.Strehl, L.Thiele, D.Ziegenbein, R.Ernst, and J.Teich, “Scheduling
hardware/software systems using symbolic techniques”, In Proceedings
of the Seventh International Workshop on Hardware/Software
Codesign, 1999, pp. 173-177.

[24] T. Y. Yen and W. Wolf, “Sensitivity-Driven Co-Synthesis of
Distributed Embedded Systems”, In Proceedings of International
Symposium on System Synthesis, Sept. 1995, pp. 4-9.

[25] T. Y. Yen and W. Wolf, “Communication Synthesis for Distributed
Embedded Systems”, In IEEE/ACM International Conference on
Computer-Aided Design, 1995, pp. 288-294.

[26] F. Gruian and K. Kuchcinski, “Low-Energy Directed Architecture
Selection and Task Scheduling”, In EUROMICRO’99, 1999, pp.
296-302.

[27] A. Chandrakasan, V. Gutnik, and T. Xanthopoulos, “Data Driven
Signal Processing: An Approach for Energy Efficient Computing”, In
Proceedings of International Symposium on Low Power Electronic
Device, 1996, pp. 347-352.

[28] I. Hong, M. Potkonjak, and M. B. Srivastava, “On-Line Scheduling
of Hard Real-Time Tasks on Variable Voltage Processor”, In
IEEE/ACM International Conference on Computer-Aided Design, San
Jose, CA, 1998, pp. 653-656.

[29] T. Okuma, T. Ishihara, and H. Yasuura, “Real-Time Task Scheduling
for a Variable Voltage Processor”, In Proceedings of International
Symposium on System Synthesis, 1999, pp. 24-29.

[30] B.Dave, G. Lakshminarayana, and N.Jha, “COSYN:
Hardware-software co-synthesis of embedded systems”, Proc. 34th
Design Automation Conference, New York, USA, 1997, pp. 703-708

[31] B.Dave and N.Jha, “CASPER: concurrent hardware-software
co-synthesis of hard real-time aperiodic and periodic specifications of
embedded system architectures”, Proc. 1st ACM/IEEE Design and Test
in Europe Conf., Paris, France, Feb. 1998, pp. 118-124.

[32] J.Luo and N.Jha, “Power-conscious Joint Scheduling of Periodic
Task Graphs and Aperiodic Tasks in Distributed Real-time Embedded
Systems”, Proc. International Conference on Computer Aided Design
2000, San Jose, USA, Nov. 2000, pp. 357-364.

[33] N. Cossement, R. Lauwereins, and F. Catthoor, “DF*: An extension
of synchronous dataflow with data dependency and non-determinism”,
accepted for Forum on Design Languages (FDL), Tuebingen, Germany,
Sep. 2000.

[34] http://developer.intel.com/design/strong/datashts/

[35] L. Nachtergaele, B. Vanhoof, M. Peon, G. Lafruit, J. Bormans, and
I.Bolsens, “Implementation of a scalable MPEG-4 wavelet-based visual
texture compression system”, Proc. 36th ACM/IEEE Design
Automation Conf., New Orleans LA, June 1999, pp. 333-336.

[36] C. Wong, F. Thoen, F. Catthoor, and D. Verkest, “A slack-based static
task scheduling heuristic for embedded systems”, accepted by Journal
of Systems Architectures

175

