
Cache Performance for Multimedia Applications

Nathan T. Slingerland Alan Jay Smith
Apple Computer Computer Science Devision

5 Infinite Loop, MS 305-2AP University of California

Cupertino, CA 95014 USA Berkeley, CA 94720 USA

nslingerland@apple.com smith@cs.berkeley.edu

ABSTRACT
The caching behavior of multimedia applications has been de-
scribed as having high instruction reference locality within small
loops, very large working sets, and poor data cache performance
due to non-locality of data references. Despite this, there is no pub-
lished research deriving or measuring these qualities. Utilizing the
previously developed Berkeley Multimedia Workload, we present
the results of execution driven cache simulations with the goal of
aiding future media processing architecture design. Our analysis
examines the differences between multimedia and traditional ap-
plications in cache behavior. We find that multimedia applications
actually exhibit lower instruction miss ratios and comparable data
miss ratios when contrasted with other widely studied workloads.
In addition, we find that longer data cache line sizes than are cur-
rently used would benefit multimedia processing.

Categories and Subject Descriptors
C.4 [Computer Systems Organization]: Performance of Systems
- Design Studies, Performance Attributes; B.3 [Hardware]: Mem-
ory Structures; B.3.2 [Memory Structures]: Design Styles - Cache
Memories; I.6 [Computing Methodologies]: Simulation and Mod-
eling

General Terms
measurement, performance, design

Keywords
multimedia, cache, CPU caches, simulation, trace driven simulation

1. INTRODUCTION
Multimedia is an amalgamation of various data types such as au-
dio, 2D and 3D graphics, animation, images and video within a
computing system or within a user application [4]. Put simply, a

multimedia application is one which operates on data to be pre-
sented visually or aurally. The purpose of this work is to explore
the cache behavior of real world multimedia applications. An im-
portant motivation is the widespread belief (seemingly without any
actual basis in research) that data caches are not useful for multi-
media applications because of the streaming nature of the data upon
which they operate [9], [13], [21], [22], [25]. The results presented
in this paper strongly suggest that contemporary media processing
applications perform no worse than traditional integer and floating
point workloads.

Further motivating our study is the large role memory latency
plays in limiting performance. Consider Table 1, which compares
the performance with caching against the same system with all
cache levels (L1 and L2) disabled. This was done by setting the
appropriate BIOS parameters on our test system at boot time and
then measuring the performance on real hardware. From this ex-
periment we can see how highly dependent modern microprocessor
performance is on an efficient memory hierarchy. The difference in
latency between levels of contemporary memory hierarchies is sub-
stantial, explaining the enormous slowdown we observe when the
caches are disabled on our test system. Note that the system time
(time spent in the operating system) slowdown is considerably less
than that of the user time. This corroborates the generally held be-
lief that the memory locality within operating system code is very
poor, as it exhibits less of a performance degradation when caching
is disabled.

2. RELATED WORK
There have been a limited number of multimedia caching studies.
In [34] the data cache behavior of MPEG-2 video decoding is stud-
ied with the goal of optimizing playback performance through the
cache sensitive handling of the data types used. It was found that
although it has been suggested that caches are critically inefficient
for video data (several media processor chips dispense with data
caches entirely), there was sufficient reuse of values for caching
to significantly reduce the raw required memory bandwidth. [17],
[10], and [39] study the usefulness of caching the textures used in
3D rendering. A texture cache with a capacity as small as 16 KB has

Funding for this research has been provided by the State of California under the MI-
CRO program, and by Cisco Corporation, Fujitsu Microelectronics, IBM, Intel Corpo-
ration, Maxtor Corporation, Microsoft Corporation, Sun Microsystems, Toshiba Cor-
poration and Veritas Software Corporation.

Table 1: Uncached Performance Slowdown Factor -
(tuncached=tcached) when L1 and L2 caches were disabled
on a 500 MHz AMD Athlon, 64 Kbyte L1 data cache, 64 Kbyte L1
instruction cache, 512 Kbyte L2 unified cache, 64-byte line size.

Name User Time Ratio Sys Time Ratio

ADPCM Encode 25.0 3.6
ADPCM Decode 32.9 11.3

DJVU Encode 56.7 3.6
DJVU Decode 61.0 16.8

Doom 53.0 1.4
Ghostscript 63.7 34.7

GSM Encode 61.3 6.7
GSM Decode 77.8 16.5
JPEG Encode 103.4 1.3
JPEG Decode 103.0 10.5

LAME 80.3 1.4
Mesa Gears 44.2 11.0

Mesa Morph3D 35.9 35.0
Mesa Reflect 77.4 17.5

MPEG-2 Encode DVD 86.3 2.3
MPEG-2 Encode 720P 82.9 1.4

MPEG-2 Encode 1080I 86.5 1.5
MPEG-2 Decode DVD 94.1 9.3
MPEG-2 Decode 720P 95.1 5.9

MPEG-2 Decode 1080I 91.9 10.4
mpg123 83.7 7.5

POVray3 74.5 16.0
Rasta 83.8 7.0

Rsynth 86.5 27.0
Timidity 73.9 20.3

Arithmetic Mean 72.6 11.2
Geometric Mean 68.6 7.1

been found to reduce the required memory bandwidth three to fif-
teen times over a non-cached design and exhibit miss ratios around
1% [17]. The addition of a larger second level of texture cache (2
MB) to a small first level cache (2 KB) can reduce the memory
bandwidth from 475 MB/s to around 92 MB/s [10].

There have been several studies of prefetching for multimedia.
[41] examines different hardware data prefetching techniques for
MPEG-1 (encoding and decoding) and MPEG-2 (decoding). Three
hardware prefetching techniques were considered, with the most
successful found to reduce the miss count by 70% to 90%. [35]
presents a combined hardware/software solution to prefetching for
multimedia. Based on cycle accurate simulation of the Trimedia
VLIW processor running a highly optimized video de-interlacing
application, it was found that such a prefetching scheme was able to
eliminate most data cache misses, with the effectiveness dependent
on the timing parameters involved. [11] suggests a two-dimensional
prefetching strategy for image data, due to the two separate degrees
of spatial locality inherent in image processing (horizontal and ver-
tical). When their 2D prefetching technique was applied to MPEG-
2 decoding as well as two imaging applications (convolution and
edge tracing), 2D prefetch was found to reduce the miss ratio more

than one block look-ahead. Hardware implementation aspects of
prefetching are discussed in [37].

3. WORKLOADS
3.1 Berkeley Multimedia Workload
For our study of the cache behavior of multimedia applications, we
employ the Berkeley Multimedia Workload, which we develop and
characterize in [28]. A description of the component applications
and data sets is given in Table 2. The main driving force behind
application selection was to strive for completeness in covering as
many types of media processing as possible. Open source soft-
ware was used both for its portability (allowing for cross platform
comparisons) as well as the fact that we could directly examine the
source code.

The Berkeley workload represents the domains of 3D graph-
ics (Doom, Mesa, POVray), document and image rendering
(Ghostscript, DjVu, JPEG), broadband audio (ADPCM, LAME,
mpg123, Timidity), speech (Rsynth, GSM, Rasta) and video
(MPEG-2). Three MPEG-2 data sets are included to cover Dig-
ital Video Disc (DVD) and High Definition Television or HDTV
(720P, 1080I) resolutions. The parameters of the DVD, and HDTV
data sets are listed in Table 3. "Frames" is the number of frames in
the data set.

Table 3. HDTV Data Set Parameters

Format Aspect Horizontal Vertical Frames

DVD 4:3 720 480 16
HDTV 720P 16:9 1280 720 16
HDTV 1080I 16:9 1920 1080 16

3.2 Other Workloads
For comparison purposes, we have included the results of several
previous studies of the cache behavior of more traditional work-
loads.

3.2.1 SPEC92/SPEC95
SPEC CPU benchmarks are taken to be generally representative of
traditional workstation applications, with the integer component re-
flecting system or commercial applications, and the floating point
component representing numeric and scientific applications. In [16]
Gee analyzed the cache behavior of the SPEC92 benchmark suite
running on DECstations with MIPS R2000 or R3000 processors
and version 4.1 of the DEC Ultrix operating system. Because the
SPEC benchmarks are typically run in a uniprogrammed environ-
ment, no cache flushing or other method was used to simulate mul-
tiprogramming. Gee also found that for the SPEC92 benchmark
suite, system time is insignificant compared to user time, and so
operating system memory behavior was unimportant for that study.

SPEC95 is an upgraded version of the SPEC92 benchmark suite.
It consists of eight integer intensive and ten floating-point intensive
applications, several of which are shared with SPEC92. In general,
the applications were designed to have larger code size and greater
memory activity than those of SPEC92.

Table 2. Berkeley Multimedia Workload

Name Description Data Set

ADPCM IMA ADPCM audio compression Excerpt from Shchedrin’s Carmen Suite, 28 sec., Mono, 16-bits, 44 kHz
DjVu AT&T IW44 wavelet image compression 491x726 color digital photographic image
Doom Classic first person shooter video game 25.8 sec. recorded game sequence (774 frames @ 30 fps)

Ghostscript Postscript document viewing/rendering First page of Rosenblum and Ousterhout’s LFS paper (24.8 KB)
GSM European GSM 06.10 speech compression Speech by U.S. Vice President Gore, 24 sec., Mono, 16-bits, 8 kHz
JPEG DCT based lossy image compression 491x726 color digital photographic image

LAME MPEG-1 Layer III (MP3) audio encoder Excerpt from Shchedrin’s Carmen Suite, 28 sec., Stereo, 16-bits, 44 kHz
Mesa OpenGL 3D rendering API clone Animated gears, morph3d, reflect demos - 30 frames each at 1024x768

MPEG-2 MPEG-2 video encoding 16 frames (1 GOP) at DVD, HDTV 720P, HDTV 1080I resolutions
mpg123 MPEG-1 Layer III (MP3) audio decoder Excerpt from Shchedrin’s Carmen Suite, 28 sec., Stereo, 16-bits, 44 kHz
POVray Persistance of Vision ray tracer 640x480 Ammonite scene by artist Robert A. Mickelson
Rasta Speech recognition 2.128 sec. SPHERE audio file: “Laurie?...Yeah...Oh.”

Rsynth Klatt speech synthesizer 181 word excerpt of U.S. Declaration of Independence (90 sec., 1,062 bytes)
Timidity MIDI music rendering with GUS instruments X-files theme song, MIDI file (49 sec., 13,894 bytes), Goemon patch kit

3.2.2 Multiprogramming Workload (Mult)
The authors of [5] generated miss ratios for very long address traces
(up to 12 billion memory references in length) on the Titan RISC
architecture in order to evaluate the performance of a variety of
cache designs. Three individual traces were used in addition to
another which was a multiprogrammed workload consisting of sev-
eral jobs. Our comparison includes their miss ratio results for their
7.6 billion reference (68.5% instruction, 30.6% load, 15.4% store)
multiprogramming workload (referred to as “Mult” by the authors
of [5]).

3.2.3 Design Target Miss Ratios (DTMR)
[31] introduced the concept of design target miss ratios (DTMRs),
intended to represent typical levels of performance across a wide
class of workloads and machines, to be used for hardware design.
The DTMRs were synthesized from real (hardware monitor) mea-
surements that existed in the literature and from trace driven simu-
lations using a large number of traces taken from several architec-
tures, and originally coded in several different languages.

3.2.4 VAX 11/780, VAX 8800
Two studies done at Digital Equipment Corporation (DEC) supply
miss ratios for a time-shared engineering workload taken with a
hardware monitor on VAX 11/780 and VAX 8800 machines [7],
[8]. The 11/780 has an 8-KB, write through, unified cache with
an 8-byte block size and associativity of two. The 8800 has a 64-
KB, write-through, direct mapped, unified cache with a 64-byte
block size. On the VAX 11/780 it is possible to disable half of the
two-way associative cache through special control bits; a technique
which allowed for the measurement of a 4-KB, direct mapped, uni-
fied cache configuration as well.

3.2.5 Agarwall Mul3
In [1] an analysis of the effect of operating system references and
multiprogramming was presented for a workload of eleven appli-
cation programs (30 traces in all). The platform used to gather the
traces was a VAX 11/780 running either the Ultrix or VMS oper-

ating system. All of the traces were gathered through the ATUM
scheme of microcode modification, and were roughly 400,000 ref-
erences long (approximately one half second of execution time). A
technique termed trace sampling was used to concatenate smaller
traces to better simulate the full trace length of a running program.
We utilize their three way multiprogrammed workload for compar-
ison.

3.2.6 Amdahl 470
In [30], hardware monitor measurements taken at Amdahl Corpo-
ration on Amdahl 470V machines are presented. A standard in-
ternal benchmark was run containing supervisor, commercial and
scientific code. Supervisor state miss ratios were found to be much
higher than problem state miss ratios.

4. METHODOLOGY
In order to measure cache miss ratios, we modified the LibCheetah
v2.1 implementation [3] of the trace driven Cheetah cache simulator
[36] to operate in an execution driven mode. It was also extended
to allow for traces longer than 231 references long. Cheetah simul-
taneously evaluates many alternative uniprocessor caches, but re-
stricts the design options that can be varied. For each pass through
an address trace, all of the caches evaluated must have the same
block size, do no prefetching, and use the LRU or MIN replace-
ment algorithms. Other cache simulators were also considered for
this study (TychoII [40], Dinero IV [14]), but were found to be con-
siderably slower than Cheetah or otherwise unsuitable for use in
execution driven simulation due to dynamic memory allocation is-
sues. DEC’s ATOM [12] was used to instrument target applications
with the modified Cheetah simulator, allowing for execution driven
cache simulation. See [38] and [33] for overviews of trace driven
simulation in general, and [27] for a comparison of the performance
of a variety of execution and trace driven solutions.

4.1 Trace Length
Many cache studies utilize trace lengths that are a fraction of an
application’s total run time due the enormous simulation times re-

Table 4: Berkeley Multimedia Workload Simulation Characteristics - Purge interval is the number of instructions executed in each
context interval before flushing the simulated cache. Data time (inherent time represented by data set - machine independent), user time (time
spent processing in user space - machine dependent), and system time (time spent processing in system space on behalf of an application -
machine dependent) are given in seconds. Resident Set is the maximum number of kilobytes in memory active at any one time, as determined
by the getrusage() system call. All measurements were done on a DEC Alpha DS20 workstation with dual 500 MHz Alpha 21264
processors and 2048 MB of RAM running Compaq Tru64 Unix v5.0A (Rev. 1094). All applications were compiled with GCC v2.8.1 except
(*) compiled with DEC C v5.6-075.

Name Instruction Load Store Purge Data User System Resident
References References References Interval Time Time Time Set (kB)

ADPCM Enc. 64,020,339 4,302,782 616,116 708,037 27.818 0.102 0.036 1,472
ADPCM Dec. 49,687,192 4,302,782 1,229,491 708,037 27.818 0.054 0.067 1,472
DJVU Enc. 394,242,073 68,204,647 27,458,767 4,754,521 - 0.700 0.033 41,664
DJVU Dec. 328,761,829 59,700,283 31,845,270 4,754,521 - 0.484 0.037 20,992
Doom 1,889,897,116 500,225,773 109,222,846 4,284,671 25.800 2.216 0.939 26,432
Ghostscript* 970,395,449 188,116,952 96,837,718 1,227,194 - 1.190 0.164 32,192
GSM Enc. 375,971,389 55,009,077 14,010,892 297,641 24.341 0.468 0.016 1,024
GSM Dec. 126,489,950 10,711,683 3,812,483 297,641 24.341 0.209 0.014 1,024
JPEG Enc. 177,977,854 41,182,069 14,156,413 3,821,284 - 0.223 0.006 10,880
JPEG Dec. 80,176,365 16,419,065 4,585,079 3,821,284 - 0.093 0.024 10,880
LAME* 7,989,818,554 1,688,230,256 720,826,607 3,358,692 27.818 18.543 0.075 7,104
Mesa Gears* 296,287,705 36,839,087 38,449,257 2,173,610 1.000 0.484 0.039 50,240
Mesa Morph3D* 239,456,087 28,181,931 42,865,365 2,173,610 1.000 0.467 0.050 50,432
Mesa Reflect* 2,752,665,912 431,196,702 221,523,544 2,173,610 1.000 3.672 0.051 59,968
MPEG2 Enc. DVD 17,986,999,069 3,257,725,765 554,222,287 5,339,432 0.533 17.896 0.199 48,128
MPEG2 Enc. 720P 47,606,551,352 8,581,717,942 1,563,082,541 5,339,432 0.533 48.263 0.505 124,032
MPEG2 Enc. 1080I 111,041,463,652 20,148,301,625 3,349,482,784 5,339,432 0.533 113.050 0.521 277,952
MPEG2 Dec. DVD 1,307,000,398 219,595,775 76,688,056 1,055,372 0.533 1.911 0.051 16,512
MPEG2 Dec. 720P 3,992,213,571 673,343,544 243,881,680 1,055,372 0.533 5.796 0.141 41,472
MPEG2 Dec. 1080I 8,038,214,930 1,341,912,185 464,649,094 1,055,372 0.533 12.098 0.182 91,648
mpg123* 574,034,774 166,675,525 45,334,678 1,554,505 27.818 0.735 0.015 3,328
POVray3 6,017,197,975 1,562,189,592 683,690,648 5,928,433 0.033 11.296 0.121 16,000
Rasta* 25,120,492 5,925,648 1,989,604 2,560,537 2.128 0.039 0.014 5,632
Rsynth 402,500,964 102,351,142 39,223,906 594,438 99.680 0.780 0.004 7,808
Timidity 4,588,632,916 1,340,471,112 594,047,710 3,675,086 47.440 2.036 0.104 25,664

Total 217,315,777,907 40,532,832,944 8,943,732,836 - - 242.805 3.406 -
Arithmetic Mean 8,692,631,116 1,621,313,318 357,749,313 - - 9.712 0.136 -

quired to account for every instruction and data cache reference.
Unfortunately, short trace lengths are problematic because pro-
grams exhibit phase behavior; an effect which is easily seen in Fig-
ure 1. The graphs depict the number of cache misses per 1,000,000
instructions executed for two sample applications.

In order to be able to simulate the effects of a program’s behavior,
it is necessary to have a trace which captures all of its behavior. We
found that although there are some applications (notably many of
the SPEC92/95 benchmarks) that exhibit uniform cache behavior
over their entire run times, our multimedia workload applications
did not share this property. The result of this is that full applications
traces are the only way to completely characterize average cache
behavior.

A second difficulty with short trace lengths specific to cache sim-
ulations is the cold start problem. Cache simulation programs typ-
ically start with an empty cache which becomes filled as the simu-
lation progresses. All initial memory accesses will miss the cache

(compulsory misses), so cold start effects can potentially dominate
if traces are too short to mitigate these effects. Traces of a billion or
more references may be needed to fully initialize multi-megabyte
cache configurations [20]. Our work traces application programs
with realistic data sets for full execution runs. The trace lengths
for the component Berkeley Multimedia Workload applications are
given in Table 4.

Table 4 lists the amount of time the CPU spends either in user
space (user time) doing actual work for the application, or in sys-
tem space (system time) serving I/O requests and dealing with other
overhead on behalf of the application. Both user time and system
time are machine dependent, and vary based on the instruction set,
clock cycle length and other architectural parameters. Data time is
machine independent, and is the inherent time length of the data set.
For example, 24 frames of a DVD movie might represent one sec-
ond of data time, even though decoding requires only 0.5 seconds
of computation (the sum of system and user time).

0 2000 4000 6000 8000 10000 12000 14000 16000
Millions of Instructions

0

2×10
4

4×10
4

6×10
4

8×10
4

D
at

a
Ca

ch
e

M
iss

es

0 2000 4000 6000 8000 10000 12000 14000 16000
0

2×10
4

4×10
4

6×10
4

8×10
4

In
str

uc
tio

n
Ca

ch
e

M
iss

es

(a) MPEG-2 Encode

0 1000 2000 3000 4000 5000 6000
Millions of Instructions

0

2×10
4

4×10
4

6×10
4

8×10
4

1×10
5

D
at

a
C

ac
he

 M
is

se
s

0 1000 2000 3000 4000 5000 6000
0

2×10
4

4×10
4

6×10
4

8×10
4

1×10
5

In
st

ru
ct

io
n

C
ac

he
 M

is
se

s

(b) POVray

Figure 1: Example Cache Miss Profiles - data cache misses per million instructions executed (direct mapped, 8KB cache with 32B line size)

4.2 Operating System Behavior
In general, studies including operating system behavior are rare be-
cause of the difficulty involved in obtaining this information. User
space is freely manipulated, but tracing system space usually re-
quires that modifications be made to the operating system. Al-
though our traces only include user state references, we can assume
that this represents almost all of the memory behavior of the pro-
grams under study; less than 1% of our multimedia workload was
system time. To some degree this may be an artifact of the nature
of the Berkeley Multimedia Workload, which requires system time
only for file I/O. In an actual multimedia application where data
must be transferred to and from I/O devices such as network, disk,
or sound and video controller cards, a larger amount of OS activity
could be present.

4.3 Multiprogramming
Despite the fact that the Berkeley Multimedia Workload is domi-
nated by user time computation, it is because of multiprogramming
that we cannot entirely ignore operating system behavior. When a
context switch occurs, the instructions and data of the newly sched-
uled process may no longer be in the cache from the last time it was
run due to the memory use of programs scheduled in the interim.
The number of cycles in this interval (limited by the quantum) af-
fects the cache miss ratio. Although a quantum length that depends
on clock time or external events remains constant with architectural
change (typically 10 to 100 ms), the number of cycles Q in each
quantum increases over time for various reasons, including less ef-
ficient software and a speedup of the processor relative to the speed
of real time events.

4.3.1 Multimedia
Although the level of multiprogramming on a desktop workstation
is typically low, multimedia applications are often multi-threaded.
For example, in the case of on screen DVD movie play back, there
are typically several concurrent threads of execution, each dealing

with a particular aspect of MPEG-2 decoding (e.g. audio, video,
bitstream parsing/demuxing). Acceptable playback requires that
decoding be fast enough to leave time for computing the other com-
ponents in that unit of time (otherwise video frames may need to
be dropped) and to prevent latency effects from disrupting the per-
ceived synchronization between audio and video. These require-
ment affect scheduling, and are not taken into account in an appli-
cation which operates in a batch or offline mode.

The effect of multiprogramming can be roughly approximated
by periodically flushing (clearing) a simulated cache. The context
switch intervals of the actual applications from the Berkeley Multi-
media Workload were not measured and used for this because they
are primarily file based applications, typically converting between
compressed and uncompressed format without presenting the re-
sulting data to the user. So, although the algorithms they employ
(and therefore their memory access patterns) should for the most
part be similar to their "real world" counterparts, their scheduling
behavior is vastly different. In order to correctly simulate the ef-
fect of multiprogramming for our multimedia workload, the aver-
age context switching interval for commercial (closed source) Mi-
crosoft Windows applications was measured on real hardware. The
applications were chosen to correspond as closely as possible to
those comprising the Berkeley Multimedia Workload, such that, for
example, the context interval measured for actual DVD video play-
back was used in our simulations of MPEG-2 video decoding at
DVD resolutions.

Microsoft Windows NT and Windows 2000 both maintain a large
amount of performance information for a large number of system
objects including context switch count, user time and system time
per thread. By dividing the sum of system time and user time by
the measured context switch count it was possible to compute the
average context switch interval for each type (domain) of multi-
media application. Context switch intervals were measured on a
500 MHz AMD Athlon with 256 MB of PC100 DRAM and an
MSI MS-6167 motherboard running Windows 2000 Professional
v5.00.2195. Both a sound card (Sound Blaster Live Value) and 3D

Application Name Data Set Context Interval

3D Flowerbox OpenGL Screen Saver * 1280x1024x32bpp, (1:00) 23,653
RealPlayer v7.0 RealAudio Player KAMU 64Kbps, stereo, G2 stream, (5:00) 40,396
Real Jukebox v1.0.0.488 MP3 Player Santana - Smooth, 160 Kbps, stereo (4:54) 58,399
MediaPlayer GSM 06.10 * Speech by Al Gore, 8 kHz Mono, 16-bits (0:24) 297,641
K-Jofol 2000 MP3 Player v1.0 Santana - Smooth, 160 Kbps, stereo (4:54) 360,336
3D Pipes OpenGL Screen Saver * 1280x1024x32bpp, (1:00) 567,080
Narrator Text to Speech * U.S. Declaration of Independence 594,438
MediaPlayer IMA ADPCM * Santana - Smooth, 160 Kbps, stereo (4:54) 708,037
WinDVD v2.0 DVD Player (5:00) clip from Amadeus 921,510
PowerDVD v2.55 DVD Player (5:00) clip from Amadeus 1,189,234
Ghostscript PostScript Previewer Rosenblum and Ousterhaut’s LFS paper (15 pages) 1,227,194
Dragon Naturally Speaking Preferred U.S. Declaration of Independence 2,560,537
Audio Catalyst v2.1 MP3 Encoder Santana - Smooth, 44 kHz, stereo (4:54) 3,358,692
Audio Compositor MIDI Renderer X-files theme song, Personal Copy v4.2 Sound Fonts 3,675,086
Irfanview v3.15 Image Viewer Kodak’s Iowa Corn jpeg image (2048x3072x24bpp) 3,821,284
Quake III Arena (Demo) Internal demo #1, demo #2 (640x480) 4,284,671
DjVushop Document Compression Scanned cover of March 2000 IEEE Computer journal 4,754,521
Avi2Mpg2 MPEG-2 Encoder 160 frames, 720x480 from Amadeus 5,339,432
POVray v3.1g Raytracer Torus (internal demo scene), 800x600 Anti-Aliased 5,928,433
3D Maze OpenGL Screen Saver * 1280x1024x32bpp, (1:00) 5,930,096

Arithmetic Mean 2,247,389
Geometric Mean 1,015,426

Table 5: Average Multimedia Context Switch Intervals - Measurements are given in 500 MHz AMD Athlon clock cycles. (*) denotes
applications packaged with the Windows 2000 operating system.

accelerator card (AGP Nvidia Riva TNT) were installed. Table 5
lists these intervals as measured by the Windows 2000 performance
counters, which return results in terms of time (CPU cycles).

In our cache simulations, we simulate normal task switching by
flushing the cache every Qcontext instructions. Because our cache
simulation is instruction, rather than cycle based, we require cache
purge intervals measured in terms of instructions executed between
cache flushes. In order to convert our context switch interval data
from cycles to instructions we need to know the corresponding cy-
cles per instruction (CPI) ratio. However, we can not simply treat
x86 CISC instructions as being equivalent to the RISC Alpha in-
structions of our simulation platform, due to the inherently differ-
ent amounts of work done by each class of instructions. In order to
approximate the equivalent number of Alpha RISC-like instructions
in each context switch interval, we divide the number of x86 Athlon
cycles by the typical number of cycles per micro-op (CP�Op) (the
details of our CPI and CP�Op measurements are given in [29]).

Note that in a real system the interval between task switches is
variable, not fixed; since we don’t have the distribution of inter-
interrupt times, we chose to use a constant interval. Alternately,
we could have chosen some other distribution, such as exponential,
normal or uniform. The simulation quanta (cache flush intervals)
applied to each application are listed in Table 4.

4.3.2 SPEC95
SPEC95 was simulated without multiprogramming (cache flushing)
for several reasons. First, it is normally run in a uniprogrammed
mode in order to extract the highest benchmark performance [16].

CINT95 Context Interval

099.go 21,134,208
124.m88ksim 5,122,455
126.gcc 3,845,678
129.compress 22,719,364
130.li 21,754,551
132.ijpeg 16,093,926
134.perl 16,308,625
147.vortex 13,193,123

CFP95 Context Interval
101.tomcatv 10,185,364
102.swim 13,753,700
103.su2cor 9,595,431
104.hydro2d 18,624,108
107.mgrid 17,791,106
110.applu 4,644,660
125.turb3d 22,366,853
141.apsi 11,743,787
145.fpppp 19,004,011
146.wave5 19,015,575

Arithmetic Mean 14,827,585
Geometric Mean 13,158,763

Table 6: Average SPEC95 Context Switch Intervals - measure-
ments are given in 500 MHz clock cycles

More importantly, when we measured the actual context switch in-
tervals for SPEC95 on a modern DEC Alpha workstation (DS20
with dual 500 MHz Alpha 21264 processors), the context interval,
Q, was measured to be sufficiently large (14.8 million instructions,
on average) that multiprogramming has very little effect on miss
ratios. Unlike multimedia applications which typically have sev-
eral tightly cooperating threads, the SPEC applications are single
threaded and entirely compute bound.

Many UNIX-type operating systems maintain context switch
counts on a per process basis which is accessible through the
getrusage() system call. The average context switch interval
was computed in the same manner as for the Windows multime-
dia applications. Table 6 lists context switch intervals for SPEC95
measured for Compaq Tru64 Unix v5.0 running on a DEC DS20
workstation (dual 21264 processors, each running at 500 MHz),
with 2 GB of RAM, again running in a system with a single active
task.

4.4 Simulation Details
The component applications for both the multimedia workload and
SPEC95 were compiled for the Alpha AXP architecture running
Digital UNIX v4.0E with the default optimization levels in the case
of the multimedia workload, and the base optimization level for
SPEC95 (the same compiler optimization flags on all applications:
-fast -O5 -non_shared). The resulting binaries were then
instrumented with the Cheetah cache simulator using ATOM and
run on 300 MHz DEC Alpha AXP machines with 128 MB of RAM.

All of the applications in the Berkeley Multimedia Workload are
written in C with the exception of DjVu which is coded in C++.
Data sets were chosen to be on the order of real workloads, with
long enough traces (instruction and data) to exercise very large
caches, or to at least touch as much address space as the correspond-
ing real applications. The trace lengths and other relevant simula-
tion characteristics are listed in Table 4. Total simulation time for
our work, not including false starts, machine down time and other
simulation problems, was 24.4 days of CPU time for the multimedia
workload, and 147.2 days of CPU time for SPEC95 simulations, for
a grand total of 171 days of CPU time. The machine type used for
simulation was a DEC AlphaStation 255 workstation with a single
300 MHz Alpha 21064a processor).

5. RESULTS
The two major determinants of cache performance are access time
(the latency from the beginning of an access until the time the re-
quested data is retrieved) and miss ratio (the fraction of cache refer-
ences which are not found in the cache) [30]. Based on the latencies
of a particular cache memory candidate design, in combination with
the simulated or measured miss ratio, it is possible to select the de-
sign with the highest overall performance (lowest average memory
access time) at some level of implementation cost.

Complete tables of the results from all of our sim-
ulations are available on the world wide web at
http://www.cs.berkeley.edu/~slingn/research/, from which the
cache performance of any application set of interest can be
computed.

As it is necessary to reduce the large volume of our simulation

results into a more easily digestible form, we use averaging where
necessary to compress results. Because the number of applications
representing a particular application domain (audio, speech, docu-
ment, video, 3D) is arbitrary, we will let each of the five application
domains comprise a total of 20% of the averaged workload result,
with the component applications of each domain being weighted
equally.

5.1 Capacity
Capacity, or total cache size, has the greatest effect on miss ratio,
and so it is one of the most important cache design parameters.
Capacity, especially for L1 caches which are typically on the same
die as the CPU, is limited by physical die size and implementation
cost. In addition, the larger the capacity of a cache, the slower it
is due to increased loading of critical address and data lines, thus
requiring additional buffering [24]. In order to study the effect of
cache capacity on miss ratio, caches were simulated ranging in size
from 1K to 2M bytes.

5.1.1 Other Workloads
The results of other studies on the effect of cache size on the miss
ratio for a variety of other workloads are presented alongside our
simulation results for the Berkeley Multimedia Workload. All of
the miss ratios presented in Figures 2, 3, and 4 are for caches with
a line size of 32 bytes and two-way associativity, which represent
common values for these parameters. Because the results shown
have been gathered from a motley assortment of studies of disparate
ages and architectures, many of which did not analyze configura-
tions precisely identical to ours in terms of line size and associa-
tivity, we use adjusted results taken from [16]. These adjustments
modify the original results of the studies according to the ratios of
miss ratios found in [18] for differences in associativity, and [32] for
variations in line size. Extensions to larger cache sizes were made
for the DTMR results using the

p
2 rule from [30]. It is impor-

tant to note that many of the other studies included for comparison
purposes also measured or simulated multiprogramming behavior,
but because they are based on older machine architectures, their Q
(quantum) lengths and therefore their context switch intervals are
significantly shorter than those used in our simulations.

The most significant result of Figures 2, 3, and 4 is that far from
multimedia applications exhibiting degenerate cache behavior in
comparison to more traditional workloads, our results demonstrate
that they actually perform better for nearly all cache configurations.
We believe that this is attributable to several factors. First, most of
the comparison workloads are for timeshared machines on which
task switching between users occurred very frequently. Further,
the comparison studies are of architectures with much lower clock
speeds than modern processors, and so exhibit higher miss ratios
due to shorter context switch intervals based on real time periods.
Even so, the uniprogrammed SPEC92 and SPEC95 benchmarks
still demonstrate higher miss ratios than our multimedia workload.
We believe that this is because many multimedia algorithm build-
ing blocks (such as the discrete cosine transform and fast Fourier
transform) internally reference the same data locations repeatedly.
In the case of streaming multimedia applications, data is typically
copied into a fixed region of memory (buffer) from the source file

0.00

0.02

0.04

0.06

0.08

0.10

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Berkeley Multimedia

Agarwal Mul3

DTMR

SPEC92

SPEC95

470 User

470 Supervisor

VAX 780

VAX 8800

Figure 2. Unified Cache Miss Ratio - 32B line size

0.00

0.02

0.04

0.06

0.08

0.10

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Berkeley Multimedia

Mult

DTMR

SPEC92

SPEC95

Figure 3. Instruction Cache Miss Ratio - 32B line size

of network interface device. Even algorithms which simply tra-
verse enormous arrays of data without re-referencing (such as color
space conversion, subsampling) typically do so in linear memory
order, and so benefit greatly from the “prefetching” effect of long
cache lines. In addition, multimedia data types are typically small
(8-bits for video and speech, 16-bits for audio, single precision (32-
bit) floating point for 3D geometry calculations). This means that
in comparison to the other workloads which utilize full 32-bit in-
tegers or 64-bit (double precision) floating point, more multimedia
data elements fit in a single cache line, thus improving the relative
hit ratio.

5.1.2 Multimedia Domains
When broken down into the five application domains (audio,
speech, document, video and 3D graphics), some important trends
become apparent (Figures 5, 6, and 7). Instruction cache miss ra-

0.00

0.05

0.10

0.15

0.20

0.25

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Berkeley Multimedia

Mult

DTMR

SPEC92

SPEC95

Figure 4. Data Cache Miss Ratio - 32B line size

tios are quite similar across the various application domains, with a
16 KB or 32 KB cache being sufficient. This supports the idea that
multimedia applications are dominated by small kernel loops, rather
than large code sizes. Data cache miss ratios show significant vari-
ation between domains. Speech, video, and audio domains exhibit
similar (low miss ratio) cache performance, while the document and
3D applications have higher miss ratios. This is attributable to the
non-linear way in which data sets are traversed during processing
for these applications.

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Audio

Speech

Document

Video

3D GFX

Figure 5. Multimedia Domains: Unified Cache - 32B line size

5.1.3 SIMD Effects
The motivation behind the SIMD within a register approach taken
by multimedia extensions such as Intel’s MMX or Motorola’s Al-
tiVec is the fact that on general purpose microprocessors, data paths
are typically 32 or 64-bits wide, while multimedia applications typ-
ically deal with narrower width data. By packing multiple narrow

0.00

0.01

0.02

0.03

0.04

0.05

0.06

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Audio

Speech

Document

Video

3D GFX

Figure 6: Multimedia Domains: Instruction Cache - 32B line
size

0.00

0.02

0.04

0.06

0.08

0.10

0.12

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

Audio

Speech

Document

Video

3D GFX

Figure 7. Multimedia Domains: Data Cache - 32B line size

operations into the wider native processor data path, it is possible
to improve performance.

Although it might be expected that current scalar compilers
would place multiple short values into a register and then extract
them with register to register operations in order to minimize mem-
ory access overhead, we found that this was not the case for the two
compilers available on our DEC Alpha test platform. Instead, mul-
tiple independent short loads are issued. Because of this, the use of
SIMD instruction set extensions for multimedia will result in higher
cache miss ratios, although the total number of memory references
would decrease, due to the folding of several scalar load operations
into a single parallel operation for sub-word data types which are
adjacent in memory. Note that programs employing multimedia
(SIMD) instruction sets are likely to be hand-coded, as no currently
available commercial compilers are able to generate SIMD instruc-

tions automatically; this will also affect their memory behavior.

5.2 Line Size
The block or line size of a cache memory is another cache design
parameter that strongly affects cache performance [32]. Generally,
increasing the line size decreases the miss ratio, since each fetch
from memory retrieves more data, thus fewer accesses outside the
cache are required. When the line size is made too large, memory
pollution can adversely affect cache performance, causing material
to be loaded that is either never referenced or evicting information
that would have been referenced before being replaced. Large lines
also decrease the likelihood of “line crossers” - multibyte memory
accesses across the boundary between two cache lines, such as oc-
cur with many CISC architectures. This type of unaligned access
incurs a performance penalty since it usually requires two cache
accesses; string operations can induce multiple cache data misses
Additionally, small line sizes require a greater number of bits be
dedicated to tag space than for larger lines, although a sector or
sub-block cache is one way to avoid this problem. (See [26] for an
investigation into sub-sector cache design issues.)

In addition to affecting the performance metric of miss ratio,
large line sizes can have long transfer times and create excessively
high levels of memory traffic [32]. It is possible to model the time
to fetch a cache line, tline, assuming no prefetching and that all
loads load a full cache line:

tline = tlatency +

�
L

d

�

rxfer
(1)

where,
L - line size (bytes)
d - data path width to memory (bytes)
tlatency - delay for any memory transaction, consisting primarily

of memory latency and address transmission time (seconds)
rxfer - bus transfer rate or bandwidth (bytes per second)
For every cache capacity there is an optimal line size that min-

imizes the average memory reference delay. In order to select an
optimal line size, it is necessary to minimize tline � m(L), where
m(L) is the miss ratio as a function of line size. To investigate the
effect of line size choice on miss ratio, instruction and data caches
were simulated with line sizes ranging from 16 bytes to 256 bytes
and total capacities ranging from 1 KB to 2 MB. For the sake of ex-
ample, we use the parameters measured for the memory hierarchy
on a 500 MHz AMD Athlon system, listed in Table 7 (the method-
ology used to obtain these parameters is detailed in [29]). Because
we are only considering one level caches in this work, we use the
measured L2 parameters for the memory miss latency and band-
width.

In the case of the largest caches simulated (1M and 2M capacity),
the largest line size of 256 bytes produced minimal average delay
for instruction caches. Table 8 summarizes the mean memory refer-
ence delay for the multimedia workload for SPEC92 and SPEC95,
in addition to the Berkeley Multimedia Workload. The best values
are highlighted in bold text. Some of the instruction cache results
exhibit anomalies for extremely small miss ratios due to the limited
precision of our results in those instances (only a few misses for
many millions of instruction references).

Table 7: Memory Latency and Bandwidth - where tlatency is the time delay for any memory transaction, consisting primarily of memory
latency and address transmission time and rxfer is the bus transfer rate or bandwidth in bytes transferred per unit time. (*)Microstar -
Microstar 6167 motherboard utilizing AMD’s AMD-750 chipset, Mandrake Linux v7.0, 256 MB RAM (**)BX - unknown motherboard
employing the Intel 440BX chipset, RedHat Linux v6.0, 128 MB RAM

System L1 tlatency L1 rxfer L2 tlatency L2 rxfer Memtlatency Memrxfer
Microstar* AMD Athlon (500 MHz) 4.0 ns 2657.18 MB/s 109.7 ns 1182.90 MB/s 242.5 ns 305.76 MB/s
DEC DS10 Alpha 21264 (466 MHz) 4.3 ns 1939.14 MB/s 30.4 ns 825.27 MB/s 197.2 ns 336.92 MB/s
BX** Intel Pentium III (450 MHz) 4.4 ns 1695.97 MB/s 46.6 ns 806.94 MB/s 149.8 ns 308.33 MB/s

HP N-Class PA-8500 (3 x 450 MHz) 4.6 ns 2190.42 MB/s - - 293.3 ns 338.50 MB/s

Our results indicate that for the Berkeley Multimedia Workload
(as well as SPEC95), instruction cache line sizes should be as large
as possible, due to the extremely low miss ratios exhibited for even
moderate capacities. Instructions are likely to be accessed sequen-
tially, so the fetching of large line sizes pays off. Data caches, on
the other hand, have clearly optimal line sizes, depending on the to-
tal cache capacity. In the selection of an optimal line size, it should
be kept in mind that large line sizes can be problematic in mul-
tiprocessor systems where system bus bandwidth must be shared.
Very long line sizes may also cause real-time problems, as when
I/O operations cause buffer overruns due to an inability to get on
the memory bus. With many desktop computer manufacturers al-
ready offering 2 and even 4-way multiprocessor support, this may
have a limiting effect on the usefulness of long cache lines.

5.3 Associativity
Determining optimal associativity is important because changing
associativity has a significant impact on cache performance (la-
tency) and cost. Increasing set associativity may require additional
multiplexing in the data path as well as increasing the complexity
of timing and control [24]. [18] develops a rule of thumb for how
associativity affects miss ratio: reducing associativity from eight-
way to four-way, from four-way to two-way, and from two-way to
direct mapped was found to cause relative miss ratio increases of
approximately 5, 10, and 30 percent, respectively. In order to see
how associativity affects miss ratios for our multimedia workload,
miss ratio spreads were calculated for unified, data and instruction
caches for our suite of multimedia applications. Miss ratio spread
computes the benefit of increasing associativity, and is defined in
[18]:

MissRatioSpread =
m(A = n)�m(A = 2n)

m(A = 2n)
(2)

Wherem(A = n) is the miss ratio for n-way set associativity,A.
As in [18], a block size of 32 bytes was chosen, with all simulated
caches utilizing LRU replacement. The miss ratio spreads of the
Berkeley Multimedia Workload as well as SPEC92 and SPEC95
are shown in Figure 8. Please note that in order to preserve vi-
sual detail across the wide range of workload behaviors observed,
the subfigures use different vertical scales. Unlike the original [18]
study, our curves are not smoothed or averaged.

From the miss ratio spread results in Figure 8, we can see that
instruction caches for multimedia applications (and generally for
SPEC92 and SPEC95) benefit from 2- or 4-way associativity for

moderate size caches (16 KB to 256 KB). For the multimedia work-
load, most of the benefit from associativity seems to be obtained
with two-way set associativity; additional associativity does not to
improve performance significantly, except for small cache sizes. In-
creasing associativity can also be a useful way to increase overall
cache capacity when limited by virtual memory constraints (a lim-
ited number of page offset bits to index the cache). This was the
approach taken both by the designers of Motorola’s G4 processor
(which includes 8-way associative L1 caches) as well as the IBM
3033 which has a 16-way associative 64k cache.

6. MULTIMEDIA TRENDS
The final determination we would like to make is what cache de-
signers should plan for to support future multimedia applications.
This can be thought of in terms of the potential for data set expan-
sion within each multimedia application domain. We expect that
audio and speech application data sets will not change significantly
in size, as current data sets are already at the limit of human audio
fidelity. Document processing should also not change as current
documents are sufficient for either printing or previewing at laser
printer resolutions.

Video resolutions are not yet close to the limits of the human eye.
This can be seen in the high resolution digital formats currently in
the pipeline for consumer level products: DVD (720x480), HDTV
720P (1280x720), and HDTV 1080I (1920x1080). In order to de-
termine if the working set size of video applications is increasing,
and therefore larger cache capacities are necessary to support these
new resolutions, we compared the effect of cache capacity on miss
ratios for them in Figures 9 and 10 utilizing the ratio of miss ratios
for increasing resolution. Our results were obtained by running the
same MPEG-2 decoding and encoding applications with data sets
at DVD, HDTV 720P and HDTV 1080I resolutions. As an exam-
ple of how to interpret the figures, DVD)720P refers to the ratio
of miss ratios of 720P/DVD resolutions. This metric shows the rel-
ative change in miss ratio for the higher resolution compared to the
preceding lower resolution.

From Figure 9, we can see that instruction miss ratios are hardly
affected by changes in resolution and although there are some minor
fluctuations, the ratios are generally quite close to 1.0. Data miss
ratios (Figure 10) show a stronger influence for small caches (ca-
pacities less than 32K), but level off for larger caches. The type of
data locality being exploited by data caches for digital video is pre-
sumably at the block or macroblock level (which are the same size
in all formats) rather than the frame level since caches are equally
effective on all resolutions above a minimum working set size.

Table 8. Average Delay per Memory Reference (ns)
Multimedia SPEC92 SPEC95

Instruction Cache Instruction Cache Instruction Cache

Block Size (bytes) Block Size (bytes) Block Size (bytes)
Size 16 32 64 128 256 Size 16 32 64 128 256 Size 16 32 64 128 256
1K 6.22630 3.79536 2.68253 1.96086 1.74648 1K 1K 14.27069 7.91963 4.97274 4.35598 2.87418

2K 3.13298 1.94226 1.40646 1.01556 0.93899 2K 3.71840 2.17213 1.33401 0.99493 0.77374 2K 9.98204 5.53019 3.48003 2.85900 1.89096

4K 1.67616 1.08187 0.81106 0.60246 0.57495 4K 2.70159 1.54599 0.94898 0.63635 0.47634 4K 5.59066 3.17658 2.10667 1.75073 1.23805

8K 0.95800 0.64909 0.46229 0.35912 0.33620 8K 1.90405 1.05308 0.62611 0.40832 0.29344 8K 3.20456 1.77827 1.18120 0.98336 0.72259

16K 0.43464 0.28182 0.19453 0.15618 0.15525 16K 1.15215 0.62794 0.36595 0.23302 0.16946 16K 1.81675 0.98199 0.64224 0.51674 0.38979

32K 0.16759 0.10355 0.07412 0.05721 0.04810 32K 0.88056 0.46364 0.25446 0.14906 0.09699 32K 0.58192 0.31805 0.22947 0.22521 0.16785

64K 0.09868 0.05709 0.03657 0.02492 0.01902 64K 0.33792 0.17852 0.09883 0.05834 0.03805 64K 0.14942 0.06065 0.04621 0.08140 0.05070
128K 0.07714 0.04281 0.02534 0.01516 0.01016 128K 0.02737 0.01647 0.01171 0.00807 0.00689 128K 0.09541 0.01656 0.01220 0.03635 0.00956

256K 0.07514 0.04126 0.02407 0.01393 0.00897 256K 0.00734 0.00519 0.00359 0.00318 0.00216 256K 0.07924 0.00570 0.00406 0.02055 0.00286

512K 0.07496 0.04110 0.02392 0.01379 0.00883 512K 0.00178 0.00124 0.00069 0.00012 0.00014 512K 0.07324 0.00188 0.00137 0.01320 0.00096

1M 0.07496 0.04110 0.02392 0.01379 0.00882 1M 0.00122 0.00067 0.00012 0.00012 0.00014 1M 0.07106 0.00045 0.00035 0.00874 0.00030

2M 0.07496 0.04110 0.02392 0.01379 0.00882 2M 2M 0.07071 0.00019 0.00016 0.00561 0.00014

Data Cache Data Cache Data Cache

Size 16 32 64 128 256 Size 16 32 64 128 256 Size 16 32 64 128 256
1K 10.70698 9.09775 10.17477 14.66781 24.87838 1K 1K 28.39914 26.87923 29.13518 35.47889 49.55017
2K 8.04009 6.20969 6.31052 8.56975 14.26147 2K 20.96124 19.39993 19.84360 23.28471 30.41951 2K 21.39439 19.36667 20.11207 24.15869 33.54895
4K 6.15572 4.35004 3.83097 4.40862 6.87190 4K 17.25565 16.02179 16.25980 18.30165 23.07412 4K 16.71953 14.11966 14.10880 16.75037 22.38782
8K 4.64852 3.06934 2.40616 2.44560 3.27708 8K 11.54032 10.47322 10.94480 12.22563 15.48550 8K 13.18879 10.41741 10.04470 11.51744 15.18622
16K 3.48517 2.24199 1.61893 1.51314 1.86139 16K 8.27219 6.05842 5.26856 5.28466 6.37997 16K 10.39420 6.84679 6.48190 7.54309 10.22041
32K 2.81276 1.77501 1.24335 1.05964 1.14475 32K 6.55353 4.29003 3.35500 3.00983 3.30687 32K 8.88017 5.03129 3.99639 4.41458 6.26585
64K 2.44197 1.49988 1.03259 0.82706 0.78846 64K 5.35748 3.37025 2.49839 2.12650 2.21407 64K 7.80708 3.92517 2.53108 2.49027 3.74590
128K 2.30867 1.38347 0.91999 0.71591 0.65241 128K 4.33509 2.67295 1.90952 1.53742 1.55691 128K 7.21604 3.49942 2.14027 1.49853 1.43653

256K 2.23803 1.31936 0.85758 0.64236 0.57225 256K 3.07950 1.84523 1.23878 0.92322 0.84286 256K 6.57932 3.05452 1.78869 1.17317 0.90454

512K 2.18862 1.27134 0.80799 0.58706 0.50072 512K 1.95191 1.08356 0.65050 0.43468 0.34085 512K 5.87008 2.53829 1.39700 0.82849 0.55867

1M 1.94165 1.02288 0.55434 0.31764 0.19900 1M 1.47494 0.77360 0.42169 0.24833 0.16336 1M 5.29881 2.18049 1.14680 0.62642 0.36857

2M 1.93021 1.01452 0.54805 0.31211 0.19121 2M 2M 4.57430 1.78668 0.93162 0.49926 0.28320

Unified Cache Unified Cache Unified Cache

Size 16 32 64 128 256 Size 16 32 64 128 256 Size 16 32 64 128 256
1K 10.28672 7.50803 6.78065 7.94751 11.89479 1K 1K 23.79340 18.25885 16.44461 17.68433 23.34513
2K 6.56454 4.76822 4.25393 4.83131 6.63532 2K 10.24520 8.61222 8.09564 9.04907 11.75792 2K 17.96932 13.42188 11.77179 12.32043 15.71593
4K 3.94739 2.86512 2.46797 2.81398 3.51678 4K 7.78352 6.44349 6.00378 6.40153 7.89891 4K 12.51167 9.38807 8.12927 8.38950 10.45317
8K 2.47522 1.74480 1.39840 1.38439 1.70539 8K 5.28845 4.25106 3.97639 4.21803 5.13135 8K 8.50513 6.38475 5.44560 5.51777 6.80582
16K 1.54548 1.03360 0.78006 0.77335 0.94230 16K 3.50912 2.45442 2.00881 1.95240 2.27774 16K 5.35151 3.75193 3.22112 3.39591 4.25854
32K 1.06232 0.69658 0.49541 0.44901 0.48632 32K 2.52124 1.57757 1.17196 1.02740 1.11110 32K 3.56756 2.31962 1.82203 1.89118 2.48627
64K 0.75353 0.48619 0.34184 0.28606 0.27540 64K 1.77878 1.08804 0.77880 0.65592 0.67819 64K 2.53677 1.48147 0.99837 0.97665 1.39368
128K 0.61073 0.38293 0.26271 0.21472 0.19302 128K 1.21944 0.74588 0.52501 0.42360 0.42752 128K 2.08627 1.17987 0.73081 0.52139 0.51386

256K 0.55575 0.32711 0.21159 0.15799 0.13967 256K 0.86048 0.51497 0.34442 0.25689 0.23311 256K 1.81360 0.99893 0.58455 0.38362 0.29702

512K 0.53903 0.31085 0.19540 0.13926 0.11636 512K 0.54715 0.30834 0.18589 0.12634 0.10034 512K 1.56373 0.82786 0.45573 0.27048 0.18301

1M 0.48135 0.25490 0.13870 0.07990 0.05011 1M 0.40357 0.21293 0.11622 0.06996 0.04615 1M 1.37100 0.70968 0.37403 0.20508 0.12160

2M 0.47826 0.25256 0.13686 0.07821 0.04800 2M 2M 1.13350 0.58111 0.30338 0.16290 0.09276

0.00

0.50

1.00

1.50

2.00

2.50

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

R
at

io
 o

f
M

is
s

R
at

io
s

DVD 720P (Encode)

720P 1080I (Encode)

DVD 720P (Decode)

720P 1080I (Decode)

Figure 9: Instruction Cache Trend - ratio of miss ratios for in-
creasing resolution

Previous research ([17], [10], [39]) has found that even a small
texture cache located on a 3D accelerator board reduces the required
bandwidth to main memory significantly. Past architectural trends
suggest that all 3D rendering functionality will eventually be folded
into the main processor, at such time as there is adequate silicon
(and perhaps pins) to devote to it. We found that 3D applications
exhibited the poorest locality of the multimedia domains. Moving
3D functionality entirely onto the CPU (and therefore sharing the
cache with other applications) may require the reorganization of
program structures to render vertices in an order amenable to LRU
caching ([17] examines several approaches for doing this) or larger

0.00

0.50

1.00

1.50

2.00

2.50

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

R
at

io
 o

f
M

is
s

R
at

io
s

DVD 720P (Encode)

720P 1080I (Encode)

DVD 720P (Decode)

720P 1080I (Decode)

Figure 10: Data Cache Trend - ratio of miss ratios for increasing
resolution

caches to hold the substantial working sets of such applications.
Texture size is dependent more upon the quality of rendered output
rather than on display resolution, and is therefore subject to great
pressure for growth [19].

7. SUMMARY

7.1 Cache Design Parameters
In this paper we have provided a thorough analysis of three im-
portant cache parameters in order to support multimedia applica-
tions: cache capacity, line size and set associativity. Using execu-

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(a) Multimedia - Unified Cache

0.00

0.50

1.00

1.50

2.00

2.50

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(b) Multimedia - Instruction Cache

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(c) Multimedia - Data Cache

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(d) SPEC92 - Unified Cache

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(e) SPEC92 - Instruction Cache

0.00

0.05

0.10

0.15

0.20

0.25

0.30

2K 4K 8K 16K 32K 64K 128K 256K 512K 1M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(f) SPEC92 - Data Cache

0.00

0.10

0.20

0.30

0.40

0.50

0.60

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(g) SPEC95 - Unified Cache

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(h) SPEC95 - Instruction Cache

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1M 2M

Cache Size (Bytes)

M
is

s
R

at
io

 S
pr

ea
d

2_to_1

4_to_2

8_to_4

(i) SPEC95 - Data Cache

Figure 8: Berkeley Multimedia, SPEC92 and SPEC95 Miss Ratio Spreads - Each line, labeled N to M , indicates the fraction increase
in miss ratio when reducing associativity from N -way to M -way. To preserve detail across the wide range of workload behaviors observed,
different vertical scales are used in each graph.

tion driven simulation, a large design space was simulated incor-
porating multiprogramming effects. As can be seen from Table 9,
currently available processors are very similar in their cache design
choices and based on our derived design parameters, are for the
most part well suited for multimedia .

Capacity A moderate instruction cache capacity of 16 KB or 32
KB was found to be sufficient for all of the applications in our multi-
media workload. Despite the widespread misconception that multi-
media applications exhibit poor data cache performance, the Berke-

ley Multimedia Workload was found to exhibit quite low miss ra-
tios. Optimal data cache size depends on the type of multimedia ap-
plications that are of interest. For the most common audio, speech
and video multimedia applications, a data cache of 32 KB in ca-
pacity is large enough to exhibit low (<1%) miss ratios. Document
and 3D processing exhibit less locality, and in fact even the largest
cache sizes simulated (2 MB) still suffered significant misses for 3D
graphics. As mentioned, this is due in large part to the fact that 3D
graphics primitives (vertices) are processed in object order rather
than memory order, leading to poor memory referencing behavior.

Table 9. Current L1 Cache Configurations [6][23]

$I
Si

ze
(K

B
)

$I
A

ss
oc

$I
L

in
e

Si
ze

(B
)

$D
Si

ze
(K

B
)

$D
A

ss
oc

$D
L

in
e

Si
ze

(B
)

AMD Athlon 64 2 64 64 2 64
DEC 21264A 64 2 16 64 2 64
HP PA-8500 512 4 32/64 1024 4 32/64
Intel Pentium III 16 4 32 16 4 32
MIPS R12000 32 2 32 32 2 32
Motorola 7400 (G4) 32 8 32 32 8 32
Sun UltraSPARC IIi 16 2 32 16 1 32

Line Size We found benefit in instruction cache block sizes as
large as the largest in our study (256 bytes) for the memory technol-
ogy examined at any cache capacity. Data cache block size selec-
tion is more dependent on the capacity of the cache. It is important
to note that our block size choices considered only average mem-
ory access time, and did not consider issues such as total memory
traffic or bus busy periods, which are important considerations for
multiprocessor machines.

Associativity Based on the results of the miss ratio spread anal-
ysis, instruction caches can optimally benefit from 2- or 4-way as-
sociativity for most moderate cache sizes (16 KB to 256 KB). Data
cache benefits from varying degrees of associativity are more dif-
ficult to generalize and appear to be highly dependent on the spe-
cific workload, but in general, 2-4 way associativity is also a good
choice.

7.2 Conclusion
We have presented a large quantity of simulation and measurements
which strongly suggests that multimedia applications exhibit lower
instruction miss ratios and comparable data miss ratios when con-
trasted with other other widely studied, more traditional workloads.
Our research indicates, and is supported by the results in [15] on
caches for vector architectures, that significant thought and effort
must be put into an algorithm for it to exhibit truly degenerate
cache behavior. Even though many multimedia algorithms oper-
ate on large streams of data which, when considered overall, do
flush the cache, at the lowest levels a multimedia algorithm is like
any other. Intermediate and constant values are reused, registers are
spilled and reloaded, etc. Caches are beneficial on a smaller scale
within each algorithmic step, where data (or at least each line of
data) is referenced multiple times.

References
[1] Anant Agarwal, John Hennessy, Mark Horowitz, "Cache Per-

formance of Operating System and Multiprogramming Work-
loads," ACM Trans. on Computer Systems, Vol. 6, No. 4,
November 1988, pp. 393-431

[2] Advanced Micro Devices, Inc., “AMD
Athlon Processor x86 Code Optimization
Guide,” Publication #22007G/0, April 2000,
http://www.amd.com/products/cpg/athlon/techdocs/pdf/
22007.pdf, retrieved April 24, 2000

[3] Todd M. Austin, Doug Burger, Manoj Franklin, Scott Breach,
Kevin Skadron, "The SimpleScalar Architectural Research
Tool Set," http://www.cs.wisc.edu/~mscalar/
simplescalar.html, retrieved April 24, 2000

[4] Vasudev Bhaskaran, Konstantinos Konstantinides, and Balas
Natarajan, "Multimedia architectures: from desktop systems
to portable appliances," Proc. Multimedia Hardware
Architectures, San Jose, California, February 2-14, 1997,
SPIE Vol. 3021, pp. 14-25

[5] Anita Borg, R. E. Kessler, David W. Wall, “Generation and
Analysis of Very Long Address Traces,” Proc. 17th Int’l
Symp. on Computer Architecture, Seattle, Washington, May
28-31, 1990, pp. 270-279

[6] Tom Burd, “CPU Info Center: General Processor Info,”
http://bwrc.eecs.berkeley.edu/CIC/summary/local/summary.pdf,
retrieved April 24, 2000

[7] D. W. Clark, "Cache Performance in the VAX-11/780," ACM
Trans. on Computing Systems, Vol. 1, No. 1, February 1983,
pp. 24-37

[8] D. W. Clark, P. J. Bannon, J. B. Keller, "Measuring VAX 8800
Performance with a Histogram Hardware Monitor," Proc.
15th Int’l Symp. on Computer Architecture, Honolulu, Hawii,
May 30-June 2, 1988, pp. 176-185

[9] Thomas M. Conte, Pradeep K. Dubey, Matthew D. Jennings,
Ruby B. Lee, Alex Peleg, Salliah Rathnam, Mike Schlansker,
Peter Song, Andrew Wolfe, "Challenges to Combining
General-Purpose and Multimedia Processors," IEEE
Computer, Vol. 30, No. 12, December 1997, pp. 33-37

[10] Michael Cox, Narendra Bhandari, Michael Shantz,
"Multi-Level Texture Caching for 3D Graphics Hardware,"
Proc. 25th Int’l Symp. on Computer Architecture, Barcelona,
Spain, June 27-July 1, 1998, pp. 86-97

[11] Rita Cucchiara, Massimo Piccardi, Andrea Prati, “Exploiting
Cache in Multimedia,” Proc. of IEEE Multimedia Systems
’99 Vol. 1, Florennce, Italy, July 7-11 1999, pp. 345-350

[12] Digital Equipment Corporation, ATOM Reference Manual,
http://www.partner.digital.com/www-swdev/files/DECOSF1/
Docs/Other/ATOM/ref.ps retrieved April 24, 2000

[13] Keith Diefendorff, Pradeep K. Dubey, "How Multimedia
Workloads Will Change Processor Design," IEEE Computer,
Vol. 30, No. 9, September 1997, pp. 43-45

[14] Jan Edler, Mark D. Hill, “Dinero IV Trace-Driven
Uniprocessor Cache Simulator,” http://www.neci.nj.nec.com/
homepages/edler/d4/, retrieved Apil 24, 2000

[15] J. Gee, A. J. Smith, “The Performance Impact of Vector Pro-
cessor Caches,” Proc. 25th Hawii Int’l Conf. on System Sci-
ences, Vol. 1, January 1992, pp. 437-449

[16] Jeffrey D. Gee, Mark D. Hill, Dionisios N. Pnevmatikatos,
Alan Jay Smith, "Cache Performance of the SPEC92
Benchmark Suite," IEEE Micro, Vol. 13, No. 4, August 1993,
pp. 17-27

[17] Ziyad S. Hakura, Annop Gupta, "The Design and Analysis of
a Cache Architecture for Texture Mapping," Proc. 24th Int’l
Symp. on Computer Architecture, Denver, Colorado, June
2-4, 1997, pp. 108-120

[18] Mark D. Hill, Alan Jay Smith, “Evaluating Associativity in
CPU Caches,” IEEE Trans. on Computers, Vol. 38, No. 12,
December 1989, pp. 1612-1630

[19] Intel Corporation, “Accelerated Graphics Port Interface
Specification v2.0,” May 4, 1998, http://developer.intel.com/
technology/agp/, retrieved April 24, 2000

[20] Richard Eugene Kessler, “Analysis of Multi-Megabyte
Secondary CPU Cache Memories,” University of
Wisconsin-Madison Computer Sciences Technical Report
#1032, July 1991

[21] Ichiro Kuroda, Takao Nishitani, “Multimedia Processors,”
Proc. IEEE, Vol. 86, No. 6, June 1998, pp. 1203-1221

[22] Ruby B. Lee, Michael D. Smith, "Media Processing: A New
Design Target," IEEE Micro, Vol. 16, No. 4, August 1996,
pp. 6-9

[23] Kim Noer, “Heat Dissipation Per Square Millimeter Die Size
Specifications,” http://home.worldonline.dk/~noer/, retrieved
April 24, 2000

[24] Steven Przybylski, Mark Horowitz, John Hennessy,
“Performance Tradeoffs in Cache Design,” Proc. 15th
Annual Int’l Symp. on Computer Architecture, Honolulu
Hawaii, May 30-June 2, 1988, pp. 290-298

[25] Scott Rixner, William J. Dally, Ujval J. Kapasi, Brucek
Khailany, Abelardo Lopez-Lagunas, Peter R. Mattson, John
D. Owens, “A Bandwidth-Efficient Architecture for Media
Processing,” Proc. 31st Int’l Symp. on Microarchitecture,
Dallas, Texas, November 30-December 2, 1998, pp. 3-13

[26] Jeffrey B. Rothman, Alan Jay Smith, “The Pool of Subsectors
Cache Design,” Proc. Int’l Conference on Supercomputing,
Rhodes, Greece, June 20-25 1999, pp. 31-42

[27] Jeffrey B. Rothman, Alan Jay Smith, “Multiprocessor
Memory Reference Generation Using Cerberus,” Proc. 7th
Int’l Symp. on Modeling, Analysis and Simulation of
Computer and Telecommunication Systems (MASCOTS’99),
College Park, Maryland, October 24-28, 1999, pp. 278-287

[28] Nathan T. Slingerland, Alan Jay Smith, “Design and
Characterization of the Berkeley Multimedia Workload,”
University of California at Berkeley Technical Report
CSD-00-1122, December 2000

[29] Nathan T. Slingerland, Alan Jay Smith, “Cache Performance
for Multimedia Applications,” University of California at
Berkeley Technical Report CSD-00-1123, December 2000

[30] Alan Jay Smith, "Cache Memories," ACM Computing
Surveys, Vol. 14, No. 3, September 1982, pp. 473-530

[31] Alan Jay Smith, "Cache Evaluation and the Impact of Work-
load Choice," Proc. 12th Int’l Symp. on Computer Architec-
ture, Boston, Massachusetts, June 17-19, 1985, pp. 64-73

[32] Alan Jay Smith, "Line (Block) Size Choice for CPU Cache
Memories," IEEE Trans. on Computers, Vol. C-36, No. 9,
September 1987, pp. 1063-1075

[33] Alan Jay Smith, "Trace Driven Simulation in Research on
Computer Architecture and Operating Systems," Proc.
Conference on New Directions in Simulation for
Manufacturing and Communications, Tokyo, Japan, August
1994, pp. 43-49

[34] Peter Soderquist, Miriam Leeser, "Optimizing the Data
Cache Performance of a Software MPEG-2 Video Decoder,"
Proc. ACM Multimedia ’97, Seattle, Washington, November
9-13, 1997, pp. 291-301

[35] Pieter Struik, Pieter van der Wolf, Andy D. Pimentel, “A
Combined Hardware/Software Solution for Stream
Prefetching in Multimedia Applications,” Proc. 10th Annual
Symp. on Electronic Imaging, San Jose, California, January
1998, pp. 120-130

[36] Rabin A. Sugumar, Santosh G. Abraham, “Efficient
Simulation of Caches under Optimal Replacement with
Applications to Miss Characterization,” Proc. 1993 ACM
Sigmetrics Conference on Measurements and Modeling of
Computer Systems, May 1993, pp. 24-35

[37] J. Tse, A. J. Smith, “CPU cache prefetching: Timing
evaluation of hardware implementations,” IEEE Trans. on
Computers, Vol. 47, No.5, May 1998. pp. 509-26

[38] Richard Uhlig, Trevor Mudge, "Trace-Driven Memory
Simulation: A Survey", ACM Computing Surveys, Vol. 29,
No. 2, June 1997, pp. 128-170

[39] Alexis Vartanian, Jean-Luc Bechennec, Natalie
Drach-Temam, "Evaluation of High Performance Multicache
Parallel Texture Mapping," Proc. 1998 Int’l Conference on
Supercomputing, Melbourne, Australia, July 13-17, 1998, pp.
289-296

[40] Glenn Ammons, Tom Ball, Mark Hill, Babak Falsafi, Steve
Huss-Lederman, James Larus, Alvin Lebeck, Mike Litzkow,
Shubhendu Mukherjee, Steven Reinhardt, Madhusudhan
Talluri, and David Wood, “WARTS: Wisconsin Architectural
Research Tool Set,” http://www.cs.wisc.edu/~larus/
warts.html, retrieved April 24, 2000

[41] Daniel F. Zucker, Michael J. Flynn, and Ruby B. Lee, "A
Comparison of Hardware Prefetching Techniques for
Multimedia Benchmarks," Proc. 3rd IEEE Int’l Conference
on Multimedia Computing and Systems, Hiroshima, Japan,
June 17-23, 1996, pp. 236-244

