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Network Support for IP Traceback 
Stefan Savage, David Wetherall, Member, IEEE, Anna Karlin, and Tom Anderson 

Abstract--This paper describes a technique for tracing anony- 
mous packet flooding attacks in the Internet back toward their 
source. This work is motivated by the increased frequency and 
sophistication of denial-of-service attacks and by the difficulty in 
tracing packets with incorrect, or "spoofed," source addresses. In 
this paper, we describe a general purpose traceback mechanism 
based on probabilistic packet marking in the network. Our ap- 
proach allows a victim to identify the network path(s) traversed 
by attack traffic without requiring interactive operational support 
from Internet Service Providers (ISPs). Moreover, this traceback 
can be performed "post mortem"--after an attack has completed. 
We present an implementation of this technology that is incremen- 
tally deployable, (mostly) backward compatible, and can be effi- 
ciently implemented using conventional technology. 

Index Terms--Computer network management, computer 
network security, network servers, stochastic approximation, 
wide-area networks. 

I. INTRODUCTION 

D ENIAL-OF-SERVICE attacks consume the resources of 
a remote host or network, thereby denying or degrading 

service to legitimate users. Such attacks are among the hardest 
security problems to address because they are simple to imple- 
ment, difficult to prevent, and very difficult to trace. In the last 
several years, Internet denial-of-service attacks have increased 
in frequency, severity, and sophistication. Howard reports that 
between the years of 1989 and 1995, the number of such attacks 
reported to the Computer Emergency Response Team (CERT) 
increased by 50% per year [26]. More recently, a 1999 CSFFBI 
survey reports that 32% of respondents detected denial-of-ser- 
vice attacks directed against their sites [16]. Even more wor- 
rying, recent reports indicate that attackers have developed tools 
to coordinate distributed attacks from many separate sites [14]. 

Unfortunately, mechanisms for dealing with denial-of-ser- 
vice have not advanced at the same pace. Most work in this area 
has focused on tolerating attacks by mitigating their effects on 
the victim [40], [2], [27], [30], [9]. This approach can provide an 
effective stopgap measure, but does not eliminate the problem, 
nor does it discourage attackers. The other option, and the focus 
of this paper, is to trace attacks back toward their origin--ide- 
ally stopping an attacker at the source. 

A perfect solution to this problem is complicated by the po- 
tential use of indirection to "launder" the true causal origin of an 
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attack. For example, an attack may consist of packets sent from 
many different slave machines, themselves under the control of 
a remote master machine. Such indirection may be achieved ei- 
ther explicitly (by compromising the individual slave hosts di- 
rectly) or implicitly (by sending false requests to the slaves on 
behalf of the victim--a so-called reflector). More challenging 
still, the true origin and identity of the attacker can be similarly 
concealed through chains of false computer accounts, call for- 
warding, and so forth. Consequently, we regard a complete solu- 
tion-particularly one able to address the forensic needs of law 
enforcement--as an open problem. 

Instead, we address the more limited operational goal of 
simply identifying the machines that directly generate attack 
traffic and the network path this traffic subsequently follows. 
We call this the traceback problem and it is motivated by the 
operational need to control and contain attacks. In this setting, 
even incomplete or approximate information is valuable because 
the efficacy of measures such as packet filtering improve as they 
are applied further from the victim and closer to the source. 

However, even for our restricted problem, determining the 
source generating attack traffic is surprisingly difficult due to the 
stateless nature of Internet routing. Attackers routinely disguise 
their location using incorrect, or "spoofed," IP source addresses. 
As these packets traverse the Internet, their true origin is lost and 
a victim is left with little useful information. While there are sev- 
eral ad hoc traceback techniques in use, they all have significant 
drawbacks that limit their practical utility in the current Internet. 

In this paper, we present a new approach to the traceback 
problem that addresses the needs of both victims and network 
operators. Our solution is to probabilistically mark packets with 
partial path information as they arrive at routers. This approach 
exploits the observation that attacks generally comprise large 
numbers of packets. While each marked packet represents only 
a "sample" of the path it has traversed, by combining a modest 
number of such packets a victim can reconstruct the entire path. 
This allows victims to locate the approximate source of attack 
traffic without requiring the assistance of outside network oper- 
ators. Moreover, this determination can be made even after an 
attack has completed. Both facets of our solution represent sub- 
stantial improvements over existing capabilities for dealing with 
flooding-style denial-of-service attacks. 

A key practical deployment issue with any modification of 
Internet touters is to ensure that the mechanisms are efficiently 
implementable, may be incrementally deployed, and are back- 
ward compatible with the existing infrastructure. We describe a 
traceback algorithm that adds little or no overhead to the routers 
critical forwarding path and may be incrementally deployed 
to allow traceback within the subset of routers supporting our 
scheme. Further, we demonstrate that we can encode the nec- 
essary path information in a way that peacefully coexists with 
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TABLE I 
QUALITATIVE COMPARISON OF EXISTING SCHEMES FOR COMBATING ANONYMOUS ATTACKS AND THE PROBABILISTIC MARKING 

APPROACH PROPOSED IN THIS PAPER 

Ingress filtering 
Link testing 

Input debugging 
Controlled flooding 

Logging 
ICMP Traceback 
Marking 

Management  ] Network Router 
overhead [ overhead overhead 

Moderate Low Moderate 

High Low High 
Low High Low 
High Low High 
Low Low Low 
Low Low Low 

Distributed 
capability 

N/A 

Good 
Poor 

Excellent 
Good 
Good 

Post-mortem 
capability 

N/A 

N/A 
N/A 

Excellent 
Excellent 
Excellent 

Preventative/ 
reactive 

Preventative 

Reactive 
Reactive 
Reactive 
Reactive 
Reactive 

existing routers, host systems, and more than 99% of today's 
traffic. 

The rest of this paper is organized as follows. In Section II, 
we describe related work concerning IP spoofing and solutions 
to the traceback problem. Section III outlines our basic ap- 
proach and Section IV characterizes several abstract algorithms 
for implementing it. In Section V, we detail a concrete encoding 
strategy for our algorithm that can be implemented within the 
current Internet environment. We also present experimental 
results demonstrating the effectiveness of our solution. In 
Section VI, we discuss the main limitations and weaknesses of 
our proposal and potential extensions to address some of them. 
Finally, we summarize our findings in Section VII. 

II. RELATED WORK 

It has been long understood that the IP protocol permits 
anonymous attacks. In his 1985 paper on TCPflP weaknesses, 
Morris writes: 

"The weakness in this scheme [the Internet Protocol] 
is that the source host itself fills in the IP source host id, 
and there is no provision in ... TCP/IP to discover the true 
origin of a packet." [32] 
In addition to denial-of-service attacks, IP spoofing can be 

used in conjunction with other vulnerabilities to implement 
anonymous one-way TCP channels and covert port scanning 
[32], [3], [25], [46]. 

There have been several efforts to reduce the anonymity af- 
forded by IP spoofing. Table I provides a subjective character- 
ization of each of these approaches in terms of management 
cost, additional network load, overhead on the router, the ability 
to trace multiple simultaneous attacks, the ability trace attacks 
after they have completed, and whether they are preventative or 
reactive. We also characterize our proposed traceback scheme 
according to the same criteria. In the remainder of this section, 
we describe each previous approach in more detail. 

A. Ingress Filtering 

One way to address the problem of anonymous attacks is to 
eliminate the ability to forge source addresses. One such ap- 
proach, frequently called ingress filtering, is to configure routers 
to block packets that arrive with illegitimate source addresses 
[21]. This requires a router with sufficient power to examine the 
source address of every packet and sufficient knowledge to dis- 
tinguish between legitimate and illegitimate addresses. Conse- 

quently, ingress filtering is most feasible in customer networks 
or at the border of Internet Service Providers (ISPs) where ad- 
dress ownership is relatively unambiguous and traffic load is 
low. As traffic is aggregated from multiple ISPs into transit net- 
works, there is no longer enough information to unambiguously 
determine if a packet arriving on a particular interface has a 
"legal" source address. Moreover, on many deployed router ar- 
chitectures the overhead of ingress filter becomes prohibitive on 
high-speed links. 

The principal problem with ingress filtering is that its effec- 
tiveness depends on widespread, if not universal, deployment. 
Unfortunately, a significant fraction of ISPs, perhaps the 
majority, do not implement this service--either because they 
are uninformed or have been discouraged by the administrative 
burden,' potential router overhead, and complications with 
existing services that depend on source address spoofing (e.g., 
some versions of Mobile IP [34] and some hybrid satellite 
communications architectures). A secondary problem is that 
even if ingress filtering were universally deployed at the cus- 
tomer-to-ISP level, attackers could still forge addresses from 
the hundreds or thousands of hosts within a valid customer 
network [14]. 

It is clear that wider use of ingress filtering would dramati- 
cally improve the Internet's robustness to denial-of-service at- 
tacks. At the same time, it is prudent to assume that such a 
system will never be fullproof--and therefore traceback tech- 
nologies will continue to be important. 

B. Link Testing 

Most existing traceback techniques start from the router 
closest to the victim and interactively test its upstream links 
until they determine which one is used to carry the attackers 
traffic. Ideally, this procedure is repeated recursively on the 
upstream router until the source is reached. This technique 
assumes that an attack remains active until the completion of a 
trace and is therefore inappropriate for attacks that are detected 
after the fact, attacks that occur intermittently, or attacks that 
modulate their behavior in response to a traceback (it is prudent 
to assume the attacker is fully informed). Below we describe 
two varieties of link testing schemes, input debugging and 
controlled flooding. 

1Some modern routers ease the administrative burden of ingress filtering by 
providing functionality to automatically check source addresses against the des- 
tination-based routing tables (e.g., IP verify unicast reverse-path on Cisco's 
ITS). This approach is only valid if the route to and from the customer is sym- 
metric-generally at the border of single-homed stub networks. 
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1) Input Debugging: Many routers include a feature called 
input debugging, which allows an operator to filter particular 
packets on some egress port and determine which ingress port 
they arrived on. This capability is used to implement a trace as 
follows. First, the victim must recognize that it is being attacked 
and develop an attack signature that describes a common fea- 
ture contained in all the attack packets. The victim communi- 
cates this signature to a network operator, frequently via tele- 
phone, who then installs a corresponding input debugging filter 
on the victim's upstream egress port. This filter reveals the as- 
sociated input port, and hence which upstream router originated 
the traffic. The process is then repeated recursively on the up- 
stream router, until the originating site is reached or the trace 
leaves the ISP's border (and hence its administrative control 
over the routers). In the latter case, the upstream ISP must be 
contacted and the procedure repeats itself. While such tracing 
is frequently performed manually, several ISPs have developed 
tools to automatically trace attacks across their own networks. 
One such system, called CenterTrack, provides an improvement 
over hop-by-hop backtracking by dynamically rerouting all of 
the victim's traffic to flow through a centralized tracking router 
[43]. Once this reroute is complete, a network operator can then 
use input debugging at the tracking router to investigate where 
the attack enters the ISP network. 

The most obvious problem with the input debugging 
approach, even with automated tools, is its considerable 
management overhead. Communicating and coordinating 
with network operators at multiple ISPs requires the time, 
attention, and commitment of both the victim and the remote 
personnel--many of whom have no direct economic incentive 
to provide aid. If  the appropriate network operators are not 
available, if they are unwilling to assist, or if they do not 
have the appropriate technical skills and capabilities, then a 
traceback may be slow or impossible to complete [22]. 

2) Controlled Flooding: Burch and Cheswick have devel- 
oped a link-testing traceback technique that does not require 
any support from network operators [6]. We call this technique 
controlled flooding because it tests links by flooding them with 
large bursts of traffic and observing how this perturbs traffic 
from the attacker. Using a pregenerated "map" of Internet 
topology, the victim coerces selected hosts along the upstream 
route into iteratively flooding each incoming link on the router 
closest to the victim. Since router buffers are shared, packets 
traveling across the loaded link including any sent by the 
attacker--have an increased probability of being dropped. By 
observing changes in the rate of packets received from the 
attacker, the victim can therefore infer which link they arrived 
from. As with other link testing schemes, the basic procedure 
is then applied recursively on the next upstream router until the 
source is reached. 

While the scheme is both ingenious and pragmatic, it has 
several drawbacks and limitations. Most problematic among 
these is that controlled flooding is itself a denial-of-service 
attack---exploiting vulnerabilities in unsuspecting hosts to 
achieve its ends. This drawback alone makes it unsuitable for 
routine use. Also, controlled flooding requires the victim to 
have a good topological map of large sections of the Internet 
in addition to an associated list of "willing" flooding hosts. As 

Burch and Cheswick note, controlled flooding is also poorly 
suited for tracing distributed denial-of-service attacks because 
the link-testing mechanism is inherently noisy and it can be 
difficult to discern the set of paths being exploited when mul- 
tiple upstream links are contributing to the attack. Finally, like 
all link-testing schemes, controlled flooding is only effective at 
tracing an ongoing attack and cannot be used "post mortem." 

C. Logging 

An approach suggested in [38] and [43] is to log packets at 
key routers and then use data mining techniques to determine 
the path that the packets traversed. This scheme has the useful 
property that it can trace an attack long after the attack has com- 
pleted. However, it also has obvious drawbacks, including po- 
tentially enormous resource requirements (possibly addressed 
by sampling) and a large scale interprovider database integra- 
tion problem. We are unaware of any commercial organizations 
using a fully operational traceback approach based on logging. 2 

D. ICMP Traceback 

Since the first writing of this paper, a new traceback pro- 
posal has emerged based on the use of explicit router-gener- 
ated ICMP traceback messages [4]. The principle idea in this 
scheme is for every router to sample, with low probability (e.g., 
1/20 000), one of the packets it is forwarding and copy the con- 
tents into a special ICMP Traceback message including infor- 
mation about the adjacent routers along the path to the destina- 
tion. During a flooding-style attack, the victim host can then use 
these messages to reconstruct a path back to the attacker. This 
scheme has many benefits compared to previous work and is 
in many ways similar to the packet marking approach we have 
taken. However, there are several disadvantages in the current 
design that complicate its use. Among these: ICMP traffic is 
increasingly differentiated and may itself be filtered in a net- 
work under attack; the ICMP Traceback message relies on an 
input debugging capability (i.e., the ability to associate a packet 
with the input port and/or MAC address on which it arrived) 
that is not available in some router architectures; if only some of 
the routers participate it seems difficult to positively "connect" 
traceback messages from participating routers separated by a 
nonparticipating router; and finally, it requires a key distribu- 
tion infrastructure to deal with the problem of attackers sending 
false ICMP Traceback messages. That said, we believe that the 
scheme is promising and that hybrid approaches combining it 
with some of the algorithms we propose are likely to be quite 
effective. 

III. OVERVIEW 

Burch and Cheswick mention the possibility of tracing 
flooding attacks by "marking" packets, either probabilistically 
or deterministically, with the addresses of the touters they 
traverse [6]. The victim uses the information in the marked 
packets to trace an attack back to its source. This approach 
has not been previously explored in any depth, but has many 

2Historically, the T3-NFSNET did log network-to-network traffic statistics 
and these were used on at least one occasion to trace IP spoofing attacks to an 
upstream provider [45]. 
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Fig. 1. Network as seen from the victim of an attack, V. Routers are 
represented by R~, and potential attackers by A~. The dotted line represents a 
particular attack path between an attacker and the victim. 

potential advantages. It does not require interactive cooperation 
with ISPs and therefore avoids the high management overhead 
of input debugging. Unlike controlled flooding, it does not 
require significant additional network traffic and can poten- 
tially be used to track multiple attacks. Moreover, like logging, 
packet marking can be used to trace attacks "post mortem" - 
long after the attack has stopped. Finally, we have found that 
marking algorithms can be implemented without incurring any 
significant overhead on network routers. The remainder of 
this paper focuses on fully exploring and characterizing this 
approach. 

A. Definitions 

Fig. 1 depicts the network as seen from a victim V. For the 
purposes of this paper, V may be a single host under attack, or a 
network border device such as a firewall or intrusion detection 
system that represents many such hosts. Every potential attack 
origin Ai is a leaf in a tree rooted at V and every router Ri is an 
internal node along a path between some Ai and V. The attack 
path from Ai is the unique ordered list of routers between Ai 
and V. For instance, if an attack originates from A2, then to 
reach V it must first traverse the path R6, R3, R2, and R l - - a s  
shown by the dotted line in Fig. 1. 

The exact traceback problem is to determine the attack path 
and the associated attack origin for each attacker. However, 
solving this problem is complicated by several practical lim- 
itations. The exact attack origin may never be revealed (even 
MAC source addresses may be spoofed) and a wily attacker 
may send false signals to "invent" additional routers in the 
traceback path. We address these issues in Section VI, but 
for now we restrict our discussion to solving a more limited 
problem. We define the approximate traceback problem as 
finding a candidate attack path for each attacker that contains 
the true attack path as a suffix. We call this the valid suffix of 
the candidate path. For example, (-/Ys, R6, R3, R2, R1) is a 
valid approximate solution to Fig. 1 because it contains the 
true attack path as a suffix. We say a solution to this problem is 
robust if an attacker cannot prevent the victim from discovering 
candidate paths containing the valid suffix. 

All marking algorithms have two components: a marking pro- 
cedure executed by routers in the network and apath reconstruc- 
tion procedure implemented by the victim. A router "marks" 
one or more packets by augmenting them with additional infor- 
mation about the path they are traveling. The victim attempts to 
reconstruct the attack path using only the information in these 
marked packets. The convergence time of an algorithm is the 
number of packets that the victim must observe to reconstruct 
the attack path. 

B. Basic Assumptions 

The design space of possible marking algorithms is large, and 
to place our work in context we identify the assumptions that 
motivate and constrain our design. 

• An attacker may generate any packet. 
• Multiple attackers may conspire. 
• Attackers may be aware they are being traced. 
• Packets may be lost or reordered. 
• Attackers send numerous packets. 
• The route between attacker and victim is fairly stable. 
• Routers are both CPU and memory limited. 
• Routers are not widely compromised. 

The first four assumptions represent conservative assess- 
ments of the abilities of the modern attackers and limitations 
of the network. Designing a traceback system for the Internet 
environment is extremely challenging because there is very 
little that can be trusted. In particular, the attackers ability 
to create arbitrary packets significantly constrains potential 
solutions. When a router receives a packet, it has no way to tell 
whether that packet has been marked by an upstream router 
or if the attacker simply has forged this information. In fact, 
the only invariant that we can depend on is that a packet from 
the attacker must traverse all of the routers between it and the 
victim. 

The remaining assumptions reflect the basis for our design 
and deserve additional discussion. First, denial-of-service at- 
tacks are only effective so tong as they occupy the resources of 
the victim. Consequently, most attacks are comprised of thou- 
sands or millions of packets. Our approach relies on this prop- 
erty because we mark each packet with only a small piece of 
path state and the victim must observe many such packets to 
reconstruct the complete path back the the attacker. If many at- 
tacks emerge that require only a single packet to disable a host 
(e.g., ping-of-death [ 11]), then this assumption may not hold (al- 
though we note that even these attacks require multiple packets 
to keep a machine down). 

Second, measurement evidence suggests that while Internet 
routes do change, it is extremely rare for packets to follow many 
different paths over the short timescales of a traceback operation 
(seconds in our system) [33]. This assumption greatly simplifies 
the role of the victim, since it can therefore limit its consider- 
ation to a single primary path for each attacker. If the Internet 
evolves to allow significant degrees of multipath routing, then 
this assumption may not hold. 

Third, while there have been considerable improvements 
in router implementation technology, link speeds have also 
increased dramatically. Consequently, we assert that any viable 
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Marking procedure at router R: 
for each packet w, append R to w 

Path reconstruction procedure at victim v: 
for any packet w from attacker 

extract path (Ri..Rj) from the suffix of w 

Fig. 2. Node append algorithm. 

implementation must have low per-packet overhead and must 
not require per-flow state. Significantly simpler schemes than 
ours can be implemented if we assume that routers are not 
resource constrained. 

Finally, since a compromised router can effectively eliminate 
any information provided by upstream routers, it is effectively 
indistinguishable from an attacker. In such circumstances, the 
security violation at the router must be addressed first, before 
any further traceback is attempted. In normal circumstances, we 
believe this is an acceptable design point. However, if nonma- 
licious, but information hiding, routing infrastructures become 
popular, such as described in [23], [36], then this issue may need 
to be revisited. 

IV. BASIC MARKING ALGORITHMS 

In this section, we describe a series of marking algo- 
rithms-starting from the most simple and advancing in 
complexity. Each algorithm attempts to solve the approximate 
traceback problem in a manner consistent with our assumptions. 

A. Node Append 

The simplest marking algorithm----conceptually similar to the 
IP Record Route option [35]----is to append each node's address 
to the end of the packet as it travels through the network from 
attacker to victim (see Fig. 2). Consequently, every packet re- 
ceived by the victim arrives with a complete ordered list of the 
routers it traversed---a built-in attack path. 

The node append algorithm is both robust and extremely 
quick to converge (a single packet), however, it has several 
serious limitations. Principal among these is the infeasibly high 
router overhead incurred by appending data to packets in flight. 
Moreover, since the length of the path is not known a priori, it 
is impossible to ensure that there is sufficient unused space in 
the packet for the complete list. This can lead to unnecessary 
fragmentation and bad interactions with services such as MTU 
discovery [31]. This problem cannot be solved by reserving 
"enough" space, as the attacker can completely fill any such 
space with false, or misleading, path information. 

B. Node Sampling 

To reduce both the router overhead and the per-packet space 
requirement, we can sample the path one node at a time in- 
stead of recording the entire path. A single static "node" field 
is reserved in the packet header--large enough to hold a single 
router address (i.e., 32 bits for IPv4). Upon receiving a packet, 
each router chooses to write its address in the node field with 
some probability p. After enough packets have been sent, the 

Marking procedure at router R: 
for each packet w 

let x be a random number from [0.. 1) 
if x < p then, 

write R into w.node 

Path reconstruction procedure at victim v: 
let NodeTbl be a table of tuples (node,count) 
for each packet w from attacker 

z := lookup w.node in NodeTbl 
if z != NIL then 

increment z.count 
else 

insert tuple (w.node, l) in NodeTbl  
sort NodeTbl by count 
extract path (Ri . .Rj)  from ordered node fields in NodeTbl  

Fig. 3. Node sampling algorithm. 

victim will have received at least one sample for every router in 
the attack path. As stated in Section III, we assume that the at- 
tacker sends enough packets and the route is stable enough that 
this sampling can converge. 

Although it might seem impossible to reconstruct an ordered 
path given only an unordered collection of node samples, it 
turns out that with a sufficient number of trials, the order can be 
deduced from the relative number of samples per node. Since 
routers are arranged serially, the probability that a packet will 
be marked by a router and then left unmolested by all down- 
stream routers is a strictly decreasing function of the distance 
to the victim. If we constrain p to be identical at each router, 
then the probability of receiving a marked packet from a router 
d hops away is p(1 - p)a-1 .  Since this function is monotonic in 
the distance from the victim, ranking each router by the number 
of samples it contributes will tend to produce the accurate attack 
path. The full algorithm is shown in Fig. 3. 

Putting aside for the moment the difficulty in changing the IP 
header to add a 32-bit node field, this algorithm is efficient to 
implement because it only requires the addition of a write and 
checksum update to the forwarding path. Current high-speed 
routers already must perform these operations efficiently to up- 
date the time-to-live field on each hop. Moreover, ifp > 0.5 then 
this algorithm is robust against a single attacker because there 
is no way for an attacker to insert a "false" router into the paths 
valid suffix by contributing more samples than a downstream 
router, nor to reorder valid routers in the path by contributing 
more samples than the difference between any two downstream 
routers. 

However, there are also two serious limitations. First, infer- 
ring the total router order from the distribution of samples is 
a slow process. Routers far away from the victim contribute 
relatively few samples (especially since p must be large) and 
random variability can easily lead to misordering unless a very 
large number of samples are observed. For instance, if d -- 
15 and p -- 0.51, the receiver must receive more than 42000 
packets on average before it receives a single sample from the 
furthest router. To guarantee that the order is correct with 95% 
certainty requires more than seven times that number. 

Second, if there are multiple attackers, then multiple routers 
may exist at the same distance--and hence be sampled with 
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the sample probability. Therefore, this technique is not robust 
against multiple attackers. 

C. Edge Sampling 

A straightforward solution to these problems is to explicitly 
encode edges in the attack path rather than simply individual 
nodes. To do this, we would need to reserve two static address- 
sized fields, start and end, in each packet to represent the routers 
at each end of  a link, as well as an additional small field to 
represent the distance of  an edge sample from the victim. 

When a router decides to mark a packet, it writes its own ad- 
dress into the start field and writes a zero into the distance field. 
Otherwise, if the distance field is already zero this indicates that 
the packet was marked by the previous router. In this case, the 
router writes its own address into the end field--thereby rep- 
resenting the edge between itself and the previous router--and 
increments the distance field to one. Finally, if the router does 
not mark the packet, then it always increments the distance field. 
This somewhat baroque signaling mechanism allows edge sam- 
piing to be incrementally deployed---edges are constructed only 
between participating routers. 

The mandatory increment is critical to minimize spoofing 
by an attacker. When the packet arrives at the victim its dis- 
tance field represents the number of  hops traversed since the 
edge it contains was sampled. 3 Any packets written by the at- 
tacker will necessarily have a distance greater or equal to the 
length of the true attack path. Therefore, a single attacker is un- 
able to forge any edge between themselves and the victim (for 
a distributed attack, of course, this applies only to the closest 
attacker) and the victim does not have to worry about "chaff '  
while reconstructing the valid suffix of  the attack path. Conse- 
quently, since we no longer use the sampling rank approach to 
distinguish "false" samples, we are free to use arbitrary values 
for the marking probability p. 

The victim uses the edges sampled in these packets to create a 
graph (much as in Fig. 1) leading back to the source, or sources, 
of  attack. The full algorithm is described in Fig. 4. Because the 
probability of  receiving a sample is geometrically smaller the 
further away it is from the victim, the time for this algorithm to 
converge is dominated by the the time to receive a sample from 
the furthest router, 1/p(1 - p)a-1 in expectation, for a router 
d hops away. However, there is also a small probability that we 
will receive a sample from the furthest router, but not from some 
nearer router. We can bound this effect to a factor of  ln(d) by 
the following argument. We conservatively assume that samples 
from all of  the d routers appear with the same likelihood as the 
furthest router. Since these probabilities are disjoint, the proba- 
bility that a given packet will deliver a sample from some router 
is at least dp(1 - p)a-1. Finally, as per the well-known coupon 
collector problem, the expected number of trials required to se- 
lect one of  each of  d equiprobable items is d( In (d) + O (1))4 [20]. 

3It is important that distance field is updated using a saturating addition. If the 
distance field were allowed to wrap, then the attacker could spoof edges close 
to the victim by sending packets with a distance value close to the maximum. 

4More exactly, the expression is d(ln(d) + 7), where "7 represents Euler's 
constant. For simplicity, we ignore this small constant when describing the ex- 
pectation, although we include its effect when we perform calculations. 

Marking procedure at router R: 
for each packet w 

let x be a random number from [0.. 1) 
if x < p then 

write R into w.start and 0 into w.distance 
else 

if w.distance = 0 then 
write R into w.end 

increment w.distance 

Path reconstruction procedure at victim v: 
let G be a tree with root v 
let edges in G be tuples (start,end,distance) 
for each packet w from attacker 

if w.distance = 0 then 
insert edge (w.start,v,0) into G 

else 
insert edge (w.start,w.end,w.distance) into G 

remove any edge (x,y,d) with d ¢ distance from x to v in G 
extract path (Ri..Rj) by enumerating acyclic paths in G 

Fig. 4. Edge sampling algorithm. 

Therefore, the number of  packets X required for the victim to 
reconstruct a path of  length d has the following bounded expec- 
tation: 

ln(d) 
E(X) < p(1 _p)d-l" 

For example, if p = 1/10, and the attack path has a length 
of  10, then a victim can typically reconstruct this path after 
receiving 75 packets from the attacker. While this choice of  
p = 1/d is optimal, the convergence time is not overly sen- 
sitive to this parameter for the path lengths that occur in the 
Internet. So long as p < 1/d, the results are generally within 
a small constant of  optimal. In the rest of  this paper, we will 
use p = 1/25 since few paths exceed this length [7], [44], [17]. 
For comparison, the previous example converges with only 108 
packets using p = 1/25. 

This same algorithm can efficiently discern multiple attacks 
because attackers from different sources produce disjoint edges 
in the tree structure used during reconstruction. The number of  
packets needed to reconstruct each path is independent, so the 
number of  packets needed to reconstruct all paths is a linear 
function of  the number of  attackers. Finally, edge sampling is 
also robust. That is, it is impossible for any edge closer than 
the closest attacker to be spoofed, due to the robust distance de- 
termination. Conversely, in a distributed attack this also means 
that it is impossible to trust the contents of  any edge further away 
than the closest attacker. As with the ICMP Traceback approach 
[4], an additional mechanism incorporating a shared secret is re- 
quired to completely address the problem of attackers spoofing 
edges. 

Of course, a significant practical limitation of this approach 
is that it requires additional space in the IP packet header and 
therefore is not backward compatible. In the next section, we 
discuss a modified version of  edge sampling that addresses this 
problem, albeit at some cost in performance and a reduction in 
robustness during large distributed attacks. 
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Fig. 5. Edge data can be communicated in half the space by sending the XOR of 
the two nodes (i.e., router IP addresses) making up an edge, rather than sending 
each node separately. Over time the victim receives the messages d, c • d, 
b • c, and a • b. By XORing these messages together, the original path can be 
reconstructed. 

V. ENCODING ISSUES 

The edge-sampling algorithm requires 72 bits of space in 
every IP packet (two 32-b IP addresses and 8 bits for distance 
to represent the theoretical maximum number of hops allowed 
using IP). It would be possible to directly encode these values 
into an MPLS label stack [37], to enable traceback within a 
single homogeneous ISP network. However, our focus is on a 
heterogeneous environment based purely on IP datagrams. One 
obvious approach is to store the edge sample data in an IP op- 
tion, but this is a poor choice for many of the same reasons 
that the node append algorithm is infeasible--appending ad- 
ditional data to a packet in flight is expensive and there may 
not be sufficient space to append this data. We could also send 
this data out-of-band--in a separate packet--but this would add 
both router and network overhead plus the complexity of a new 
and incompatible protocol. 

Instead, we have developed a modified version of edge sam- 
pling that dramatically reduces the space requirement in return 
for a modest increase in convergence time and a reduction in ro- 
bustness to multiple attackers. Following an analysis of our al- 
gorithm, we explore the practical implementation issues and dis- 
cuss one concrete encoding of this scheme based on overloading 
the 16-b IP identification field used for fragmentation. Any so- 
lution involving such overloading necessarily requires compro- 
mises and we stress that our solution reflects only one design 
point among many potential implementation tradeoffs for this 
class of algorithm and does not necessarily reflect an optimal 
balance among them. 

A. Compressed Edge Fragment Sampling 

We use three techniques to reduce per-packet storage require- 
ments while preserving robustness. First, we encode each edge 
in half the space by representing it as the exclusive-or (XOR) of 
the two IP addresses making up the edge, as depicted in Fig. 5. 
When some router decides to mark a packet, it writes its address 
a into the packet. The following router, b, notices that the dis- 
tance field is 0 and (assuming it does not mark the packet itself) 
reads a from the packet, XORs this value with its own address, 
and writes the resulting value, a ® b, into the packet. We call the 

Address Hash(Address) 
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Fig. 6. Each router calculates a uniform hash of its IP address once, at startup, 
using a well-known function. This hash is interleaved with the original IP 
address (the original address on odd bits, the hash on even bits). The resulting 
quantity is then broken into k fragments, which the router selects among 
randomly when marking a packet. Although it is not shown, each of these 
fragments is further labeled with its offset. The next downstream router uses 
this offset to select the appropriate fragment to XOR thereby encoding part 
of an edge. 

resulting value the edge-id for the edge between a and b. The 
edge-ids in the packets received by the victim always contain 
the XOR of two adjacent reuters, except for samples from reuters 
one hop away from the victim, which arrive unmodified. Since 
b (~ a @ b = a, marked packets from the final router can be used 
to decode the previous edge id, and so on, hop-by-hop until we 
reach the first router. 

Our second modification further reduces our per-packet space 
requirements by subdividing each edge-id into some number k 
of smaller nonoverlapping fragments. When a router decides to 
mark a packet, it selects one of these fragments at random and 
stores it in the packet. We use a few additional bits (log 2 k) to 
store the offset of this fragment within the original address--this 
is necessary to ensure that different fragments from an edge-id 
can be recombined in the correct order. If  enough packets are 
sent by the attacker, the victim will eventually receive all frag- 
ments from all edge-ids. 

Finally, unlike full IP addresses, edge-id fragments are not 
unique and multiple fragments from different edge-ids may have 
the same value. If there are multiple attackers, a victim may 
receive multiple edge fragments with the same offset and dis- 
tance. To reduce the probability of accidentally reconstructing 
a "false" edge-id by combining fragments from different paths, 
we add a simple error detection code to our algorithm. We in- 
crease the size of each router address, and hence each edge-id, 
by bit-interleaving its IP address with a random hash of itself 
(depicted in Fig. 6). As described earlier, this value is split into 
fragments, each fragment is selected randomly and stored with 
an offset, and downstream routers use XOR to combine frag- 
ments at the same offset to make up edge-id fragments. The 
victim constructs candidate edge-ids by combining all combi- 
nations of fragments at each distance with disjoint offset values. 
As shown in Fig. 7, a candidate edge-id is only accepted if the 
hash portion matches the data portion for each of its two nodes. 
As we increase the size of the hash, the probability of a collision 
is reduced. We describe the full procedure in Fig. 8. 

The expected number of packets for this algorithm to con- 
verge is similar to the edge sampling approach, except now we 
need k fragments for each edge-id, rather than just one, a total 
of kd fragments. If we again assume conservatively that each 
of these fragments is delivered equiprobably with probability 
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Fig. 7. When reconstructing a candidate edge, the victim combines k 
fragments to produce a bit string. By de-interleaving this string, the address 
portion and the hash portion are extracted. We recalculate the hash over this 
address portion using the same hash function used by the router. If the resulting 
hash is the same as the hash portion extracted, then the address is accepted as 
valid. This procedure protects against accidentally combining fragments of 
different edges. 

p(1 - p)d-1,  the expected number of  packets required for path 

reconstruction is bounded by 

k. ln(kd) 
E(X) < 

;(1 - ; V  

For example, if there are eight fragments per edge-id, an attacker 
is ten hops away, and p = 1/25, then a victim can reconstruct 
the full path after receiving slightly less than 1300 packets on 
average. Using techniques similar to those used to show sharp 
concentration results for the coupon collectors problem, we can 
further show that the approximate the number of  packets re- 
quired to ensure that a path can be reconstructed with proba- 
bility 1 - 1 /c  is 

k" ln(kdc) 

p(1 - p)a-1 

packets. To completely reconstruct the previous path with 95% 
certainty should require no more than 2150 packets. Many de- 
nial-of-service attacks send this many packets in a few seconds. 

Finally, we explore the robustness of  this algorithm with 
respect to multiple attackers. For a random hash of  length h, 
the probabili ty of accepting an arbitrarily constructed candidate 
edge-id is 1/2 h. In the event that there are m attackers, then 
at any particular distance d, in the worst case there may be up 
to m distinct routersP Consequently, the probabili ty that any 
edge-id at distance d is accepted incorrectly is at most 

1 - ( 1  - l ~ m k 2 h  ] 

since there are m k possible combinations of  fragments in the 
worst case. For h = 32 and k = 4 this means that 100 distinct 

5In practice, the number of distinct routers is likely to be smaller for the por- 
tion of the path closest to the receiver, since many attackers will still share sig- 
nificant portions of their attack path with one another. 

Marking procedure at router R: 
let R'  = Bitlntereave(R, Hash(R)) 
let k be the number of non-overlapping fragments in R'  
for each packet w 

let x be a random number from [0..1) 
if x < p then 

let o be a random integer from [0..k - 1] 
let f be the fragment of R' at offset o 
write f into w.frag 
write 0 into w.distance 
write o into w.offset 

else 
if w.distance = 0 then 

let f be the fragment of R'  at offset w.offset 
write f @ w.frag into w.frag 

increment w.distance 

Path reconstruction procedure at victim v: 
let FragTbl be a table of tuples (flag,offset,distance) 
let G be a tree with root v 
let edges in G be tuples (start,end,distance) 
let maxd  := 0 
let last := v 
for each packet w from attacker 

FragTbl.Insert(w.frag,w.offset,w.distance) 
if w.distance > maxd  then 

maxd  := w.distance 
for d := 0 to maxd  

for all ordered combinations of fragments at distance d 
construct edge z 
if d ¢ 0 then 

z := z @ last 
if Hash(EvenBits(z)) = OddBits(z) then 

insert edge (z,EvenBits(z),d) into G 
last := EvenBits(z); 

remove any edge (x,y,d) with d :fi distance from x to v in G 
extract path (RI..Rj) by enumerating acyclic paths in G 

Fig. 8. Compressed edge fragment sampling algorithm. 

routers at the same distance (i.e., disjoint attack paths) will be 
resolved with no errors with a probabili ty of  better than 97%. 
For h = 32 and k = 8 (the values we use for our implemen- 
tation), the same certainty can only be provided for ten distinct 
routers at the same distance. Our use of the XOR function fur- 
ther complicates reconstruction since all combinations of  XOR 
values must be tried as attack paths diverge. This is somewhat 
mitigated as the probabili ty of  propagating an error from a single 
edge all the way to the attacker is is extremely small because the 
resulting edge-id, when xORed with the previous edge-id, must 
again produce a correct hash. 

The most significant drawback to this scheme is the large 
number of combinations that must be considered as the multiple 
attack paths diverge. While  these combinations can be computed 
off-line, for large values of k and m even this can become in- 
tractable. For example, even with k = 8 and m = 10, if the sep- 
arate attack paths diverge such that there are ten completely in- 
dependent edges per attacker, this will require roughly a bill ion 
combinations to be considered. Consequently, there is a design 
tension in the size of  k - per-packet space overhead is reduced 
by a larger k, while computational overhead and robustness ben- 
efits from a smaller k. 
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Fig. 9. Encoding edge fragments into the IP identification field. 

B. IP Header Encoding 

To allow for practical deployment requires that we "over- 
load" existing header fields in a manner that will have min- 
imal impact on existing users. This is a difficult task, especially 
given that even after prodigious effort we require 16 bits of 
space. Nonetheless, we believe it possible to obtain this space 
by overloading the 16-b IP identification field. This field is cur- 
rently used to differentiate IP fragments that belong to different 
packets. We describe our proposed encoding below, and then 
discuss the issues of backward-compatibility that it raises. How- 
ever, we note that because the issue of backward-compatible en- 
coding is largely separate from our traceback algorithms, we 
could adopt any reasonable encoding that comes to light. 

Fig. 9 depicts our choice for partitioning the identification 
field: three offset bits to represent eight possible fragments, five 
bits to represent the distance, and eight bits for the edge frag- 
ment. We use a 32-b hash, which doubles the size of each router 
address to 64 bits. This implies that eight separate fragments 
are needed to represent each edge---each fragment indicated by 
a unique offset value. Finally, five bits is sufficient to represent 
31 hops, which is more than almost all Internet paths [7], [44], 
[17]. 6 

The observant reader will note that this layout is chosen to 
allow the highest performance software implementation of our 
algorithm, which already had a low per-packet router overhead. 
In the common case, the only modification to the packet is to 
increment its distance field. Because of its alignment within the 
packet, this increment precisely offsets the required decrement 
of the time-to-live field implemented by each router [1]. Con- 
sequently, the header checksum does not need to be altered at 
all and the header manipulation overhead could be even lower 
than in current software-based reuters--simply an addition to 
the distance field, a decrement to the TI 'L field, and a compar- 
ison to check if either has overflowed. In the worst case, our 
algorithm must read the IP identification field, lookup an edge 
fragment and XOR it, and fold the write-back into the existing 

6It is also reasonable to turn off marking on any reuters that cannot be di- 
rectly connected to an attacking host (e.g., core reuters). This both reduces the 
convergence time, and increases the "reach" of the distance field. 

checksum update procedure (a few ALU operations). Of course, 
for modern ASIC-based reuters these optimizations are unnec- 
essary. 

As we reuse the IP identification field, we must address issues 
of backward compatibility for IP fragment traffic. Ultimately, 
there is no perfect solution to this problem and we are forced to 
make compromises that disadvantage fragmented traffic. For- 
tunately, recent measurements suggest that less than 0.25% of 
packets are fragmented [42], [10]. Moreover, it has long been 
understood that network-layer fragmentation is detrimental to 
end-to-end performance [28] so modern network stacks imple- 
ment automatic MTU discovery to prevent fragmentation re- 
gardless of the underlying media [31 ]. Consequently, we believe 
that our encoding will interoperate seamlessly with existing pro- 
tocol implementations in the vast majority of cases. 

However, there is a small but real fraction of legitimate traffic 
that is fragmented, and we wish to ensure that it is not affected 
by our modifications to the extent that this is possible. Normally 
if a packet is fragmented, its identification field is copied to each 
fragment so the receiver can faithfully reassemble the fragments 
into the original packet. Our marking procedure can violate this 
property in one of two ways: by writing different values into 
the identification fields of fragments from the same datagram or 
by writing the same values into the identification fields of frag- 
ments from different datagrams. These two problems present 
different challenges and have different solutions. 

First, a datagram may be fragmented upstream from a 
marking router. If  the fragment is subsequently marked and 
future fragments from the same datagram are not marked 
consistently then reassembly may fail or data may be corrupted. 
While the simplest solution to this problem is to simply not 
mark fragments, an adversary would quickly learn to evade 
traceback by exploiting this limitation. In fact, some current 
denial-of-service attacks already use IP fragments to exploit 
errors in host IP reassembly functions [ 12]. Instead, we propose 
an alternative marking mechanism for fragments. We use 
a separate marking probability, q, for fragments. When we 
decide to mark a fragment, we prepend a new ICMP "echo 
reply" header, along with the full edge data--truncating the 
tail of the packet. This ICMP packet is considered "marked" 
and its distance field is set to zero, thereby guaranteeing that 
the distance field reflects the number of edges traversed on 
the way to the victim. The packet is consequently "lost" from 
the standpoint of the receiver, but the edge information is 
delivered in a way that does not impact legacy hosts. Because 
we can use the full edge sampling algorithm, q can be more 
than an order of magnitude smaller than p and yet achieve the 
same convergence time. This solution increases the loss rate 
of fragmented flows somewhat (more substantially for longer 
paths) but preserves the integrity of the data in these flows. 

A more insidious problem is presented by fragmentation that 
occurs downstream from a marking router. If  a marked packet is 
fragmented, but one of the fragments is lost, then the remaining 
fragments may linger in the victims reassembly buffer for an 
extended period [5]. Future packets marked by the same router 
can have the same IP identification value and consequently may 
be incorrectly reassembled with the previous fragments. One 
possibility is to leave this problem to be dealt with by higher 
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Fig. 10. Experimental results for number of packets needed to reconstruct 
paths of varying lengths. The marking probability p is set to 1/25.  Each path 
length result represents the results of 1000 independent simulation runs. 

layer checksums. However, not all higher layer protocols em- 
ploy checksums, and in any case it is dangerous to rely on such 
checksums because they are typically designed only for low 
residual error rates. Another solution is to set the Don't Frag- 
ment flag on every marked packet. Along rare paths that re- 
quire fragmentation, this solution will degrade communication 
between hosts not using MTU path discovery, and may filter 
marked packets if a reduced MTU edge is close to the victim, 
but it will never lead to data corruption. 

C. Assessment 

We have implemented the marking and reconstruction 
portions of our algorithm and have tested it using a simulator 
that creates random paths and originates attacks. In Fig. 10, we 
graph the mean, median, and 95th percentile for the number of 
packets required to reconstruct paths of varying lengths over 
1000 random test runs for each length value. We assume a 
marking probability of 1/25. Note that while the convergence 
time is theoretically exponential in the path length, all three 
lines appear linear due to the finite path length and appropriate 
choice of marking probability. 

We see that most paths can be resolved with between one 
and two thousand packets, and even the longest paths can be 
resolved with a very high likelihood within 4000 packets. To 
put these numbers in context, most flooding-style denial of ser- 
vice attacks send many hundreds or thousands of packets each 
second. The analytic bounds we described earlier are conserva- 
tive, but in our experience they are no more than 30% higher 
than our experimental results. 

VI. LIMITATIONS AND FUTURE WORK 

There are still a number of limitations and loose ends in our 
approach. We discuss the most important of these here: 

• backward compatibility; 
• distributed attacks; 
• path validation; 
• approaches for determining the attack origin. 

A. Backward Compatibility 

The IP header encoding as we have described it has several 
practical limitations. It negatively impacts users that require 
fragmented IP datagrams and is incompatible with parts of 
IPsec [29] (the authentication header provides cryptographic 
protection for the identification field and therefore the field 
cannot be safely modified by routers). These problems are 
hardly unique to our traceback technique and are inherent 
limitations that come about from attempting to coexist with 
or co-opt protocol features that did not anticipate a new use. 
One way to partially address this issue, originally proposed 
by Hawkinson, is to selectively enable traceback support in 
response to operational needs. A "request for traceback" from 
a particular network could be encoded as a BGP attribute in 
the networks route advertisement. Routers receiving such an 
advertisement would enable traceback support on packets des- 
tined for that network. Since a network requesting such support 
is presumably already suffering under an attack, any minor 
service degradation for fragmented flows would be acceptable. 

Finally, our scheme does not address implementation in IPv6, 
the proposed successor to IPv4, which does not have an identi- 
fication field [19]. While we do not attempt to propose a com- 
plete encoding here, we believe that the same techniques we 
have proposed could also be employed within IPv6, perhaps by 
overloading the 24-bflow label field (without any further mod- 
ifications this would result in roughly a factor of three increase 
in the number of packets required to reconstruct a path). 

B. Distributed Attacks 

For moderate distributed attacks, the implementation we 
have described has serious limitations due to the difficulty 
in correctly grouping fragments together. Consequently, the 
probability of misattributing an edge, as well as the amount of 
state needed to evaluate this decision, increases very quickly 
with the fanout of an attack. There is ongoing work by several 
groups to develop improved marking algorithms to address this 
deficiency. Song and Perrig leverage the additional assumption 
of a network topology map to compress the representation of 
edge state--thereby vastly improving the robustness against 
distributed attack [39]. Dean, Franklin, and Stubblefield also 
improve robustness by replacing our ad hoc XOR-based marking 
approach with one based on algebraic coding theory [ 18]. There 
is significant future work in designing alternative encoding 
methods that scale their robustness as they receive more data. 

C. Path Validation 

Some number of the packets sent by the attacker are un- 
marked by intervening routers. The victim cannot differentiate 
between these packets and genuine marked packets. Therefore 
an attacker could insert "fake" edges by carefully manipulating 
the identification fields in the packets it sends. While the dis- 
tance field prevents an attacker from spoofing edges between it 
and the victim--what we call the valid suff ix- nothing prevents 
the attacker from spoofing extra edges past the end of the true 
attack path. 

There are several ways to identify the valid suffix within a 
path generated by the reconstruction procedure. With minimal 
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knowledge of Internet topology, one can differentiate between 
routers that belong to transit networks (e.g., ISPs) and those 
which belong to stub networks (e.g., enterprise networks). Gen- 
erally speaking, a valid path will never enter a stub network and 
then continue into a transit network. Moreover, simple testing 
tools such as traceroute should enable a victim to determine if 
two networks do, in fact, connect. More advanced network maps 
[8], [24] can resolve this issue in an increasing number of cases. 

A more general mechanism is to provide each router with a 
time-varying "secret" that is used to authenticate each marked 
packet (minimally, one bit in the IP header). When the victim 
wants to validate a router in the path, it could contact the asso- 
ciated network (possibly out of band, via telephone or e-mail) 
and obtain the secret(s) used by the router at the time of the at- 
tack. To guard against replay, the secret must be varied relatively 
quickly and hashed with the packet contents. Since the attacker 
will not know the routers secret, the forged edge-id fragments 
will not contain a proper authentication code. By eliminating 
edge-ids for which the the constituent fragments can not be val- 
idated, the candidate attack path can be pruned to only include 
the valid suffix. This rough idea is developed much further in 
Song and Perrig's traceback proposal [39]. 

D. Attack Origin Detection 

While our IP-level traceback algorithm could be an important 
part of the solution for stopping denial-of-service attacks, it 
is by no means a complete solution. Our algorithm attempts 
to determine the approximate origin of attack traffic--in 
particular, the earliest traceback-capable router involved in 
forwarding attack traffic from the source that directly generated 
it. As mentioned earlier, there are a number of reasons why 
this may differ from the true source of the attack: attackers 
can hide their true identities by "laundering" attacks through 
third parties, either indirectly (e.g., smurf attacks [13] or DNS 
reflectors [15]) or directly via compromised "stepping stone" 
machines or IP-in-IP tunnels. While there is on-going work 
on following attackers through intermediate hosts [47], [41], 
there are still significant challenges in developing a generally 
applicable and universally deployable solution to this problem. 
One interesting possibility enabled by the packet marking 
approach is to extend traceback across "laundering points." 
For example, identifying marks could be copied from a DNS 
request packet into the associated DNS reply, thereby allowing 
the victim to trace the full causal path. However, this would also 
increase the required path length to be reconstructed in such 
cases--possibly exceeding the limited space in the length field. 

Even in absence of such "laundering," our approach does not 
reveal the actual host originating the attack. Moreover, since 
hosts can forge both their IP source address and MAC address 
the origin of a packet may never be explicitly visible. On shared 
media such as FDDI rings, this problem can only be solved 
by explicit testing. However, on point-to-point media, the input 
port a packet arrives on is frequently enough to determine its 
true origin. On other media, there may be a MAC address, cell 
number, channel, or other hint that would help to locate the at- 
tack origin. In principle, our algorithm could be modified to re- 
port this information by occasionally marking packets with a 
special edge-id representing a link between the router and the 

input port on which the packet arrived (or other "hint" informa- 
tion). We have not explored the design of such a feature in any 
depth. 

Finally, traceback is only effective at finding the source of at- 
tack traffic, not necessarily the attacker themselves. Stopping an 
attack may be sufficient to eliminate an immediate problem, but 
long term disincentives may require a legal remedy and there- 
fore the forensic means to determine an attackers identity. Even 
with perfect traceback support, unambiguously identifying a 
sufficiently skilled and cautious attacker is likely to require co- 
operation from law enforcement and telecommunications orga- 
nizations. 

VII. CONCLUSION 

In this paper, we have argued that denial-of-service attacks 
motivate the development of improved traceback capabilities 
and we have explored traceback algorithms based on packet 
marking in the network. We have shown that this class of al- 
gorithm, best embodied in edge sampling, can enable efficient 
and robust multiparty traceback that can be incrementally de- 
ployed and efficiently implemented. As well, we have devel- 
oped variant algorithms that sacrifice convergence time and ro- 
bustness for reduced per-packet space requirements. Finally, we 
have suggested one potential deployment strategy using such an 
algorithm based on overloading existing IP header fields and 
we have demonstrated that this implementation is capable of 
fully tracing an attack after having received only a few thousand 
packets. We believe our solution represents a valuable first step 
toward an automated network-wide traceback facility. Several 
areas remain to be addressed in future work, such as improving 
robustness under distributed attacks and tracing past points of 
indirection such as reflectors. 
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