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Abstract 

Multimedia streams are difficult to transmit in full quality and 
real-time due to their size and constraints imposed by their timely 
presentation, Especially in slow channels with variable throughput 
- such as typical Internet connections - media streaming is 
extremely hard, We introduce a new iterative method for the 
transmission of media streams. The idea is to match each iteration 
of the transmission process exactly to the play-out time of the 
respective media stream, thus allowing synchronous presentation 
of the stream’s contents during the transmission. The quality of 
the playback improves with the number of completed iterations, 
from rough during the first pass to full quality at the end. The 
WebMovie system implements this iterative streaming scheme for 
video data. After the introduction of the system, performance 
measurements are discussed and compared to conventional 
methods of movie transmission. 
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1 Introduction 

The World Wide Web (WWW) has evolved from a static docu- 
ment-oriented Internet service to a feature-rich multimedia sys- 
tem. Audio and video have become part of many Web pages; 
however, their integration has not been completed yet: many 
issues in the area of timely delivery to the client remain unsolved. 

1.1 The File Transmission Paradigm 

The main problem for the transmission of multimedia streams via 
the Web is the severe limitation in bandwidth. Although the 
available data rate may be exploited efficiently with sophisticated 
compression techniques, even short media clips with a playback 
duration of seconds (e.g. short audio- or video-clips) are typically 
of considerable size (N 106 Bytes). Hence, their transmission time 
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is typically much longer than the presentation of the data to the 
user. Consequently, it is impossible to present the data in real-time 
during a transfer according to the commonly used file 
transmission paradigm. Typical systems transfer the clip before 
they start the playback. 

1.2 Scaleable Media Streams 

In order to make real-time transmissions of multimedia data 
possible despite its volume and despite low-bandwidth connec- 
tions, recent software systems like WebAudio/WebVideo (see 
[19]), WaveVideo (see [4]) and many others avoid transmitting 
media streams (i.e. video) in full quality. Instead, they adjust the 
media quality - and with it the amount of the transferred data - to 
the available bandwidth. In other words, the lower the bandwidth, 
the poorer the quality of the transmitted data’s playback in terms 
of temporal and/or spatial resolution. Furthermore, error cor- 
rection is not performed - retransmission due to packet losses 
would impair the presentation. 

Media streams suitable for these schemes are called scaleable 
media streams because the amount of data to be transmitted is 
scaled according to the currently available bandwidth. The recent 
MPEG-2 standard (see [S]) supports the transmission of scaleable 
video streams by a layered encoding of the data. Scaleable media 
streams are considered well-suited for many applications. 
demanding live transmission of video and audio streams. For 
other applications with clients requesting media data in full 
quality (e.g. video on demand), scaleable media streams are not 
sufficient due to the inevitable scaling-loss. 

1.3 Retineable Media Streams 

In a sense, our approach is an extension of scaleable media 
streams: based on the idea of adjusting the stream to the available 
throughput, the streams are filtered to achieve real-time presen- 
tation during the transmission. However, the data filtered out is 
not discarded, but transferred later to ensure complete delivery 
(see listing 1). 

Transmission in fill quality even through low-bandwidth 
connections is achieved by folding the transfer time into the 
presentation time: if a prerecorded media stream is too large to be 
streamed in real-time due to limited bandwidth, it is broken up 
into several layers. The layers have similar sizes, but differ in their 
significance for the presentation. Each of them represents a partial 
stream and needs less bandwidth for timely transmission than the 
original stream (see figure 1). 
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. . . 1.4 Overview 

Open (datachannel, UDP); The rest df the paper is organized in four groups: section 2 intro-. 
Open (cntlchannel, TCP); duces new techniques for iterative streaming of time critical media 

ResetAcks 0; data. Chapter 3 describes the recently developed WebMovlc 

while (3 unsent frame) do system to illustrate the streaming of video data using vcrticni 
’ 

nextFrame := SelectNextFrame (bandwidth); 
segm&atioh and presents the experience with the implementation 

Transmit (datachannel, nextFrame): 
and operation of this system. Subsequently, we present 
measurements of ‘the performance of the WebMovie system, 

if (Receive (cntlchannel, ack, frame)) Section 4 first summarizes the most important issues prescntcd 

UpdateAcks (frame); and then draws conclusions. Further work is then outlined In 

bandwidth := EstimateBandwidth 0; chapter 5. 

Fi 1 ‘, 

od I' .I _. 2 Refining Media Streams 

Close 0; ' The algorithms introduced in this paper may be applied to almost 

. . . , 

listing 1: code fragment of a server for iterative transmission 
of movies (using vertical segmentation only; see chapter 3); 

all prerecorded real-time media streams. The most common cases 
@e probably video and audio streams. Again: the idea is not to 
transmit the respective stream byte by byte, but folded in time, 
Since we do diliver prerecorded data, it is possible to transmit ail 

In the first iteration we 
deliver as many layers as 
possible according to the 
available bandwidth - 
similar to scaleable media 
streams (see [4], [5]). But 
in contrast to scaleable 
media streams, the 
transmission does not stop 
here: in subsequent 
iterations, the layers 
neglected in the first 
iteration are delivered. 
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The most significant layer 
with the basic information 
is transmitted first, 
followed by the others 
with descending signiti- 
cance for the presentation. 
The first layer’s data 
allows the presentation of 
the original stream’s 
contents -, even though in 
rather limited quality. The 
subsequent layers’ infor- 

stream 

i data excluded jn the first iteration of the transmission in further 
phases. The stream is 
presented several times 
during the transmission in 
steadily improving 
quality: the stream Is 
refined iteratively. This 
allows the users to follow 
as’many iterations of the 
presentation as they like 
to. Users may interrupt 
the transmission at any 
time - oven if the trans- 
mission has not boon 
completed. Towards the 
completion of the trans- 
mission, during the last 
iteration, the prescntntlon 
reaches full quality. 
Transmitting media 
streams this way creates 
the idea of the play-out 
time of the streams’ 
contents unfolding into 
the transmission time (see 
figure I). 

I I 

I Ia ileralion ~2”~ ireralion i 3n’ iteration i 4”h iteralion I +lime 

‘I’ i 

total duration of transmission 

figure 1: principle of iterative streaming 

mation refines the basic information, improving the quality of the 
playback step by step. Finally, the arrival of the last layer com- 
pletes the data for the client and allows a presentation and even 
subsequent processing in full quality. Hence, a stream that allows 
an iterative transmission is called a refineable media stream; an 
exact definition is given in section,!Y1. 

After a short definition of refineable media streams several ap- 
proaches to the iterative transmission of these streams arc 
presented. 

Although the subsequently ‘intr~&$ed methods for iterative 
streaming were initially, $&elop,ed to design a transmission 
technique for media data via low-bandwidth channels, it has 
turned out that they are quite usefyl in other fields of application, 
too: if not the complete data of a stream is required, but only a 
characteristic fingerprint is needed, storage capacity and time may 
be saved by storing only a limited number of layers instead of the 
complete stream. Moreover, the reduced data volume of these 
fingerprints, e.g. in (movie-) databases, may improve search times 
and therefore the access speed. 

2.1 Definition 

A media stream is called refineable if and only if it fulfills the 
following conditions: 

l All stream data is well-known. In other words, the data to be 
transmitted must not be discarded right after the tiansmission 
of the first iteratiqn. 
This condition is fulfilled in the case of prerecorded video and 
audio data (i.e. movies). Live transmissions do not satisfy this 
constraint because data is created dynamically. Hence, the 
stream is not finite and the end of the stream is unknown, 
However, all data might be recorded to refine the stream in 
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later iterations in order to apply iterative streaming to live 
streams, too. 

l Informafion afonls are postulated, representing the smaliest 
units of information in the respective stream.’ These infor- 
mation atoms either may be given by the nature of the re- 
spective stream, e.g. the single frames of a video stream, or 
they may be artificially defined, e.g. groups of sound samples 
in an audio stream. 
This condition is easy to be fulfilled by media streams because 
(common) computers cannot work with continuous signals: 
typically, signals are digitized before being processed. 

2.2 Vertical Segmentation 

Probably the easiest way to split the information of a refineable 
media stream into several layers lies in the time domain: a sub- 
sampling of the respective stream yields the first layer.2 The 
resulting stream resembles a scaleable media stream. All further 
layers are built in the same way as the first layer. Each layer 
contains only samples the other layers do not contain, of course 
(see figure 2). For the sake of an efficient error correction, 
exceptions from this rule may be made (see section 3.4). This sub- 
sampling method is referred to as vertical segmentation. 

original slream alom 
b! 

4 disassembling 

c reassembling 

layer I layer 2 

transmission stream 

layer 3 

figure 2: vertical segmentation of a refineable generic media 
.StPXIl?l 

There are hvo ways to disassemble a media stream into layers 
according to the vertical segmentation: 

l The whole layer generation process may be performed sfati- 
cully in advance of the transmission. Number and size of the 
single layers have to be fixed before the beginning of the 
transmission and cannot be adjusted afterwards. 
For well-known transmission channels, heuristics may be 
employed in order to determine the size of the single layers. A 
minimal quality-of-service might be presumed, for instance. 

1 However, the internal representation of these atoms can possibly 
be broken up further (see section 2.3). 

2 This subsampling is always possible due to the postulation of 
information atoms (see section 2.1). It may be performed at least 
based on the respective stream’s atoms. 

l The alternative to generating the layers statically is their 
dynamic calculation: The available bandwidth is continually 
measured and the subsampling rate is adapted to it. In other 
words, each layer is composed dynamically, on-the-fly, while 
it is being transmitted (see [5]). The single information atoms 
are delivered&.+in-time. 

With the static approach there is no way to adapt the transmission 
parameters (i.e. the subsampling rate) to the actually available 
bandwidth during the transmission. If the bandwidth significantly 
decreases - e.g. due to common fluctuations of bandwidth 
somewhere in the Internet - concurrent real-time playback and 
transmission may not be achieved anymore. On the other hand, if 
the bandwidth increases above the estimate, it cannot be exploited 
and will be wasted. 

The more sophisticated and flexible approach to vertical seg- 
mentation, the dynamic scheme, offers significantly more poten- 
tial. Due to the continual observation of several network 
parameters (e.g. bandwidth), the dynamic variant is more compli- 
cated. Depending on the type of media and the implementation, 
some problems may arise as discussed for video streams in 
chapter 3. 

Using vertical segmentation, the transmission of a media stream 
may be performed concurrently with the presentation of its con- 
tents, which comes at the price of jerky presentation during the 
first iterations. After the completion of the transmission, the 
stream’s playback corresponds to the original. 

2.3 Horizontal Segmentation 

Another method that may be used in order to disassemble refine- 
able media streams is to break up the information atoms them- 
selves. As postulated in section 2.1, an atom itself will not be 
broken up any further, but its representation may. In other words, 
the total amount of information stored in m atom is not sent in 
one single step, but is distributed over several layers. Virtually, 
what is refined are not the media streams themselves, but the 
single information atoms. First, a rough approximation of each 
atom is transmitted and then refined in subsequent iterations of 
the transmission. This procedure can be applied to each atom and 
is referred to as horizontalsegmentation (see figure 3). 

original stream 

itiormafion 

I s disassembling 

reassembling 

Iransmission stream 

figure 3: horizontal segmentation of a refineable generic 
media stream 

Compared to the vertical segmentation, the advantage of this 
method is improved scaleability: not only may whole atoms be 
omitted in a layer, but the size of the atoms themselves may be 
scaled. This allows an almost perfect adaptation of the data rate to 
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the available bandwidth. However, with most easy-to-implement 
approaches to horizontal segmentation (e.g. defining the color 
components of video frames as layers), the limits of adapting the 
transmission to the bandwidth will be reached rather soon. Hence, 
the information atoms should be defined carefully. 

Again, iterative transmission of a media stream and its concurrent 
presentation can be achieved with horizontal segmentation. Since 
the resolution of the single information atoms is rather low in the 
beginning of the transmission, the playback of the stream’s con- 
tents will be rather poor during the first iterations - depending on 
the available bandwidth. Consequently, the first replays may look 
as if a low-pass filter had been applied to the atoms. As with the 
vertical segmentation, the quality of the presentation rapidly 
improves - up to that of the original stream after the transmission 
has been completed. 

have a finer granularity, which allows reacting carefully to 
fluctuations of the available bandwidth. Furthermore, the hybrid 
segmentation allows real-time transmission of media streams in 
full quality via ‘connections’ with very low bandwidths, which 
would otherwiie cause vertical and horizontal segmentation alone 
to fail.’ 

These advantages come at the price of significant overhead and a 
complex implementation: sophisticated book-keeping is needed to 
track which data has been sent and which has been acknowledged 
already. If the implementation uses an unreliable transport 
protocol like UDY - as strongly recommended to avoid 
retransmi’ssion delays - and performs the necessary error corrcc= 
tion on its own,’ even the error correction gets complicated, 

2.5 Summary 

2.4 Hybrid Segmentation 

A third approach to segmentation, the hybrid segmentation, 
combines the two techniques presented above and is the most 
flexible. Again, there are two possibilities to perform the merging: 

l The approach easier 
to implement is to 
apply the vertical 
segmentation to the 
original stream first. 
Then the horizontal 
segmentation is ap- 
plied to the layers 
generated in the first 

step, yielding 
sublayers of each 
layer (see figure 4).) 
This method is 
referred to as VF-f- 
hybrid segmentation. 

The hybrid segmentation is the most sophisticated, flexible, and 
elegant way to perform the disassembly of media streams. On the 
other hand the implementation, especially regarding the necessary 
error correction, is not trivial at all. The retransmission overhead 
grows dramatically and the algorithm becomes inefficient, 
Moreover, it has turned out that for practical use such as the 

transmission of common 
video data (e.g. using 
the Common Intcr- 
change Format) through 
low-bandwidth channels 
(with current V.34 
modems (33.6 kbps)), 
the employment of 
either vertical or hori- 
zontal segmentation 
suffices. 

+ 
verlical segmen fation (Is’ step) 

Iqier I 

+ 

Iayer 2 

+ 

layer 3 

+ 
horizontalsegmentation Qndstep 

l The alternative is to 
apply the horizontal 
segmentation first 
and then the vertical’ 
segmentation to the 
low-quality atoms 
afterwards (HFJ- 
hybrid segmentation, 
see figure S).” 

c reassembling 

Iransmission stream 

figure 4: VF-hybrid segmentation of a refineable generic media stream 

Combining both, vertical and horizontal segmentation, the hybrid 
segmentation provides a flexible and efficient strategy for disas- 
sembling media streams. Allaying the drawbacks of both tech- 
niques the advantages of both of them may be exploited: the effect 
is minimizing the gaps between the single information atoms 
transmitted in the first iteration (due to the subsampling of the 
vertical segmentation), and maximizing the initial quality (i.e. 
resolution) of these atoms (which would be rather poor if only 
horizontal segmentation was used). The segmentation is said to 

Recently, considerable 
effort has been invested 
in the field of real-timo 
transmission of bulky 
media streams via low- 
bandwidth networks - 
namely the Internot. 
Basically, they USC 
techniques such as 
bandwidth negotiation 
(with and without 
renegotiating), or 
layered rcspcctivc 

scaleable media streams (see [4], [IO]). All of them sacrifice full- 
quality delivery of the data if the available bandwidth drops below 
a certain limit. Instead, as much data is delivered as the available 
bandwidth allows for. This comes at the price of a reduced quality 
of the presentation. 

We introduced a new class of algorithms for transmitting time 
critical media data in both full quality and real-time via low band- 
width connections. Three subclasses of these methods wore out- 
lined. 

3 An already existing vertical segmentation may be subsequently 
extended very easily by horizontal methods. 

4 vertical first 
5 horizontal first 

, 

6 It has turned out that this procedure requires much more ’ Since the complete stream information needs to be tmnsmittcd 
bookkeeping than the VF-hybrid, since the information atoms without omitting a single byte, data retransmission mechanisms 
have been broken up in the first step already. must be provided - in contrast to scaleable media streams. 
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3 The WebMovie System 

Having introduced refineable media streams in chapter 2, we will 
give an overview over the WebMovie system (see [12], [13]) in 
this chapter. WebMovie implements refineable media streams 
with vertical segmentation. It focuses on the full-quality delivery 
of video data. The information atoms (see section 2.1) are defined 
as the single frames within a video stream. 

3.1 The Architecture 

The WebMovie system consists of three components: 

l the preprocessor prepares the movie data prior to the trans- 
mission. The preprocessor computes relevant information off- 
line and stores it in a database for future use. 

l the server transmits a video stream’s contents in consecutive 
iterations (see figure 1). 

l the client receives the successive iterations of the 
transmission, recombines them into one video stream (i.e. M- 
JPEG) and presents the movie in real-time concurrently with 
the reception. 

The server and the client 
communicate via two 
communication chan- 
nels: the data channel is 
used for the transmission 
of the movie data, the 
control channel for the 
transmission of acknow- 
ledgement and control 
information. The control 
channel uses the TCP 
protocol, which ensures 
the correct in-order 
delivery of all data 
transmitted. This is very 
important for the 
sensitive control data. 
The data channel uses 
unreliable UDP in order 
to implement a 
sophisticated error- 
correction scheme in the 
WebMovie system (see 
section 3.4). Moreover, 
the data rate may be 
chosen by the server. 

3.2 Data Compression 

2OO:I (MPEG, see [16]) may be achieved. The shortcomings of 
these compression algorithms are that they produce strong 
dependencies between the single frames. In other words, decom- 
pressing one (differentially coded) frame typically requests the 
decompression of other (intra-coded) frames, too. The better the 
compression ratio, the stronger these dependencies. Real random 
access to the single frames of a video stream is not possible.* 

We decided to use JPEG - a compression standard for single 
frames. The compression ratio may reach from 81 (almost origi- 
nal quality) up to 5O:l (poor quality). JPEG does not produce any 
dependencies between the single frames, allowing the transmis- 
sion of the frames in a random order - as needed for vertical 
segmentation. 

In order not to forego the drastically improved compression ratio 
of temporal redundancy reduction, we use an action block algo- 
rithm in combination with JPEG? each of the Sxbblocks of a 
JPEG-coded frame is compared to the corresponding block of the 
frame next to this frame, which has been acknowledged already 
by the client. If no significant changes can be detected, the 
respective block will not be transmitted, but reused from the 
already transmitted frame. This additional method allows a 

original s&earn 
informalion 

-c 
vertical segmentation pndscep; 
applied to al/ layers) 

sublayers of layer I sublayers of layer 2 subhyers of layer 3 

+ 
reassembling 

I I I I I-II 

transmission stream 

figure 5: HF-hybrid segmentation of a refineable generic media stream 

significant reduction of 
the data volume, although 
we do not achieve 
compression ratios in the 
range of MPEG. MPEG 
uses motion vectors in 
addition to differential 
encoding. 

The big difference to 
H.261 and MPEG is the 
on-the-fly removal of the 
temporal redundancy. 
Moreover, the reference 
Came for each frame to be 
encoded differentially may 
be chosen on-the-fly 
considering the frames 
that have already been 
transmitted and the 
available bandwidth. The 
latter is an important 
difference to the schemes 
found in the literature: our 
compression algorithm 
refers to the last frame 
transmitted, which is not 
necessarily the prede- 
cessor in the movie. 

hyer I 

layer 2 

layer 3 

Several data compression standards are available to encode the 
image data. The most important ones are methods for compressing 
single frames like GIF (see [3]), JPEG (see [7]) on the one hand, 
and moving picture compression techniques like H.261 (see [9]), 
or MPEG (see [6]) on the other hand. 

To transmit time-critical media streams, the reduction of the data 
volume in advance of its transmission is considered the most 
important issue. Standards like H.261 and particularly MPEG 
seem to present the best solution: eliminating the temporal 
redundancy between the single frames of a video stream almost 
completely, compression ratios from SO:1 (H.261, see [16]) up to 

* We considered several publications (e.g. [I4], [IS], [17]) on 
software providing full VCR functionality for MPEG-encoded 
data. All of them have to decode several frames in order to get a 
B-frame, for instance because the information atoms of an 
MPEG stream are the ,,groups-of-pictures“ (see [6]), which, 
however, are too large for our purposes. 

‘) Our action block approach is very similar to the ,,Intra-H.261“ as 
proposed in [I 11. 
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3.3 Dynamic Vertical Segmentation 

It has turned out that some problems arise if vertical segmentation 
is used in combination with a dynamic layer generation: With the 
dynamic layer generation, the frame to be translfiitted next has to 
be calculated carefully in order to make its just-in-time delivery 
possible (as required for real-time transmissions). This ca!culation 
crucially depends on the estimated bandwidth and on the 
estimated size of the frame to be transmitted next: 

The bandwidth is ,estimated with probe-echo based methods 
measuring the rbund-trip-delay as proposed in many publications 
(see e.g. [IS]). 

Estimating the size of the frame to be delivered next is signiti- 
cantly more complicated: the size of a frame depends on the 
reference frame used for its differential encoding (see section 3.2). 
It is necessary to encode all frames that are candidates for being 
sent next-just to get their sizes. Moreover, this information is not 
useful anymore as soon as the chosen frame has been sent because 
the frame sizes change if they are’ encoded differentially using 
another frame as reference. Hence, the single frames cynot really 
be delivered exactly just-in-time, only approximately. Obviously, 
the approach to encode all candidates for transmission 
differentially is highly inefficient. Our straight-forward approach 
is to estimate the frame size based on the sizes of its predecessors; 
this linear predictor has proven to be an adequate heuristic to 
estimate a differential frame’s size. 

This method does not work well with scene changes in movies. 
The reason is that the difference between a picture before a cut 
and a picture afterwards is typically drastic. Nearly the entire 
frame will change and almost no block will be the same. There are 
two ways to handle the cut-problem: 

l It can simply be ignored. This is the way the current proto- 
typical WebMovie system treats the problem. WebMovie just 
sofiens the real-time condition for the presentation resulting in 
a snap-to-grid approach: if the frame that is to be presented 
next according to the real-time paradigm has not arrived yet, 
the closest predecessor in the movie is presented instead.. 
Hence, frames that arrive too late for their immediate 
presentation according to the common real-time paradigm 
may be presented anyway. This allows a rapid improvement 
of the presentation’s quality - especially for long movies - de- 
spite the fact that there is no way to deliver frames really just- 
in-time. 

l The alternative and strongly recommended way is to employ 
an efficient cut-detection algorithm, as e.g. introduced in [2]. 
The cuts might be detected in the preprocessing step, similar 
to the calculation of the’ data needed for the action-block 
method. The first iteration of the transmission might contain 
key frames, i.e. the first frames of the single scenes of the 
respective movie. In further iterations of the transmission, all 
other frames might then be encoded very efficiently according 
to the action-block method because the changes from one 
frame to another will typically be minor. .- 

3.4 Delayed Data Retransmission 

As mentioned above, using a transport protocol like TCP would 
foil all perspectives opened up by refineable media streams: the 
immediate, automatic error correction with data retransmission 
and mechanisms like ,,slow start“, significantly slowing down the 
data rate after an error occurred, is not suitable for the transmis- 
sion of time-critical media streams such as video streams. 

However, we have to employ data retransmission eventunlly 
because we want to deliver all data in full quality, The charac- 
teristics of iterative transmissions suggest special error-correction 
algorithms, such as the delayed data retransmission: 

Packets lost due to the unreliable nature of UDP are not retratis- 
mitted immediately. Instead, we continue ‘with transmitting the 
current iteration as if no data had been lost: Hence, it is possible to 
maintain the real-time presentation despite data losses. All data 
that has not been acknowledged for a certain span of time is 
considered ,,unsent“. Since WebMovie composes the layers of the 
respective stream dynamically, lost data is automatically retrans- 
mitted in a later iteration of the transmission (see figure 6). 

I data loss informallon alom 

\B \ / 
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/: \ 
: 

: : : : : 
: \ / : : : 
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25 29 32 35 39 43 n+2”~i!eraflon 

/\ \br 

I figure 6: principle of delayed data retransmission 

After the transmission has been completed; all the data has been 
delivered. This elegant integration of error correction into the 
iterative movie transmission comes at no extra cost to the imple- 
mentation. It actually reduces the algorithmic overhead compared 
to other schemes. 

3.5 Experimental Results 

‘3.5.1 The Testbed 

Our testbed consists of the WebMovie server running on a PC 
with an Intel-Pentium-200 CPU and the client running on a PC 
with an Intel 80486-66 CPU. The connection is established using 
a V.34 modem, which allows data rates up to 33,600 bps. In our 
experiments we limited the bandwidth to 28,800 bps in order to 
get results valid for the majority of Internet users. 

3.5.2 The Video-Clips 

To measure the performance of our WebMovie system, we chose 
three different, short video-clips, all recorded from television: 

l The Al Bandy-clip shows Al talking to Kelly. Then Bud and a 
girl are discovered in a closet. The camera often pans around 
in the room and the video contains several cuts. Therefore this 
frame-sequence is well suited to test the WebMovie system 
under worst-case conditions: from one frame to another 
almost all image-parts can change. There are hardly any sta- 
tionary image-parts allowing the action-block algorithm to 
reduce the data volume to be transmiited. 

l In the Wallace & Gromit cartoon, a penguin-burglar is 
stealing valuables when he is surprised by the owner, Since 
this clip consists of artificially generated scenes, parts of the 



image are exactly constant - they do not change at all from 
one frame to the next. These rather small constant parts of the 
image have to be transmitted only once according to the 
action-block algorithm, so the data volume is reduced signifi- 
cantly. Several cuts in this clip keep the action-block method 
from working optimally. 

l The third clip, a Music Video, shows an excerpt from the 
music video of Michael Jackson’s song ,,Black or White“. It 
mainly shows faces of ,,black and white” women and men 
morphing from one into another. The background, a blue wall, 
is (almost) constant. This clip was chosen because the changes 
between frames directly following each other are not too big. 
There is no cut in the whole movie. This is why the action- 
block algorithm can work properly - much better than in Al 
Bundy and better than in Wallace & Gromit, too. 

The characteristics of the three movies are subsequently 
summarized in table 1. 

table 1: characteristics of the test movies 

1 Al 1 Wallace& 1 Music 1 

3.5.3 Performance Measurements 

The parameters measured using the test movies introduced above 
are listed in table 2: the time from the start of the transmission 
until the presentation of the first frame. and the time it takes to 
complete one whole iteration of the transmission (both measured 
in seconds). The next two lines contain the average number of 
frames transmitted during the first iteration and the total number 
of iterations of the transmission. Finally, the total transmission 
time for all movies was measured. This parameter is given relative 
to the time needed to transmit the MPEG-compressed movie 
sequentially with ftp. In the first approximation, the total trans- 
mission time is directly proportional to the amount of data 
actually transmitted, Since this parameter is given relatively only, 
it may be understood as the relative volume of the transmitted 
data compared to ftp/MPEG as well. 

According to these results, the first frames of the movies are 
presented very quickly, only a few seconds after the beginning of 
the transmission, During the first iterations of the transmission, 
frames of all scenes of the respective movie are presented - not 
only frames of the movie’s beginning. The transmission of every 
iteration of a movie takes exactly the same time as the movie’s 
playback in real-time. Hence, the users may watch as many 
presentations in improving quality as iterations needed for the 
transmission. They may observe the progress of the transmission 
and abort it at any time. 

I0 This movie has been converted with the fmageA4ugick-public 
domain software (available at ftp://sunsite.cnIab- 
switch.chlmirror/MachTen/ applications/68k/Xl l/graphics) 
from the MPEG format into the motion JPEG format. 

11 This movie was initially motion JPEG coded. 

These advantages concerning presentation-oriented transmitting 
of the movies are at the expense of the total transmission time, 
which increases about 30% compared to the transmission of the 
movies with standard methods (plain TCP, e.g. ftp) using the 
highly efficient MPEG-compression standard. Although not the 
focus of this research, the latter result is quite surprising: MPEG’s 
advantage compared to our simple action block scheme is much 
smaller than anticipated. 

table 2: results of the transmission of video streams with 
WebMovie (at 28.8 kbps) 

AI Bundy Wallace & Music 
Gromif Video 

Presentation of 1st <3sec 
Frame 

<;5-s.& .f yg?&ee 
- ec I’ 

: 
Duration of 1st Itera- 30.4 see 16.2 set 60.8 set 

lion 
-fF- 10 is . . . . . 6 r. 9Q~ 4 

1st Iferafion 
. . : y-+3‘ . 

‘ 16 -22 ’ “-k‘ -- 
Transmission Time 125% 

relative to MPEG/J 
<400sfd':.135o/ol, 

s _- - 

4 Summary and Conclusions 

We have introduced the completely new iterative transmission 
paradigm, which is based on the ideas of scaleable media streams 
and combines the advantages of the two conventional paradigms: 
it makes real-time transmissions of media streams possible in 
combination with the delivery of the data in full quality - even via 
the Internet with its severely limited bandwidth. 

We have shown several approaches to possible implementations 
of this new transmission paradigm and discussed the advantages 
and disadvantages of each of them. 

Then we briefly introduced the WebMovie system as a showcase 
implementation of iterative streaming - focusing on the transmis- 
sion of prerecorded video data A new error-correction mechanism 
- the delayed retransmission - has been introduced, which 
supports the iterative nature of the employed transmission para- 
digm. Some measurements prove the potential of iterative 
streaming: only seconds after the beginning of the transmission 
first frames are presented - in real-time and not only frames from 
the beginning of the movie, but from all scenes of the movie. Due 
to an action-block algorithm, the data volume is reduced in com- 
parison with the volume of the motion JPEG encoded movie. 

It has also been shown that if the data is to be transmitted in full 
quality the transmission takes up about 130% of the time needed 
by using the conventional file transmission paradigm (e.g. FTP) - 
in combination with MPEG compression. However, the file 
transmission paradigm does not allow real-time presentation of 
the movie concurrently with the transmission, thus straining the 
patience of the user. 

The client software - a Netscape plug-in, which is currently 
available for Windows95 only - can be downloaded at [13]. The 
reader is invited to test it with our WebMovie server (see [13]) in 
order to get a demonstration of iterative streaming. 

Iterative streaming is well-suited for any field of application 
where the data is eventually needed in full quality, for instance for 
video on demand. Moreover, users may save a lot of time and 
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storage capacity: they may choose the quality in which they want 
to have the data. The transmission may be gracefully aborted at 
any point of time during the transmission. The data is not stored 
in full quality if the transmission is interrupted. 

5 Future Work 

The WebMovie system is currently implemented as a prototype 
only. Although all basic functionality is available in this proto- 
type, there are many items to be improved and optimized. The 
following three paragraphs may give an idea of what needs to be 
done next to make the WebMovie system even more attractive: 

l One of our future goals is to alleviate the main drawback of 
our compression scheme: the data volume to be transmitted is 
still higher than it could be using MPEG-compression. A 
further reduction of the data volume may be performed by 
adapting the encoding of the video data to be transmitted even 
more to the standards proposed ‘in [6], [S], or [9], e.g. 
dynamically creating motion vectors. 

l Another really interesting field of research is the improvement 
of the scalability of the iterative’movie transmission. The 
current version of WebMovie only performs a segmentation 
of the movie information by sending the single frames out-of- 
order. Actually, there are many other methods to break up this 
information: instead of using the vertical decomposition of the 
movies’ information into levels of frame rates, a horizontal 
decomposition into levels of image quality might be 
performed as well (see [12]). Improved JPEG-standard 
algorithms like successive approximation or spectral selection 
might be used (see [7]). 

l The iterative strategy for data transmission shown in this 
paper has been applied to the WebMovie system, which has 
been designed to transmit video data via low bandwidth 
communication channels. As mentioned above, the strategy 
itself may be applied to almost any type of media - not only 
video. 
In order to provide a full movie transmission system, the 
current WebMovie system might be extended by facilities for 
the iterative transmission of high-quality audio streams. Audio 
may be delivered in telephony quality during the first iteration 
of the transmission - to be improved to high-fidelity in further 
iterations. 
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