
Iterative Transmission of Media Streams

Michael Merz, Konrad Froitzheim, Peter Schulthess, Heiner Worf

University of Ulm, Germany

{meiz, fiz, schulthe, wolf)@informatik.uni-ulm.de

Abstract

Multimedia streams are difficult to transmit in full quality and
real-time due to their size and constraints imposed by their timely
presentation, Especially in slow channels with variable throughput
- such as typical Internet connections - media streaming is
extremely hard, We introduce a new iterative method for the
transmission of media streams. The idea is to match each iteration
of the transmission process exactly to the play-out time of the
respective media stream, thus allowing synchronous presentation
of the stream’s contents during the transmission. The quality of
the playback improves with the number of completed iterations,
from rough during the first pass to full quality at the end. The
WebMovie system implements this iterative streaming scheme for
video data. After the introduction of the system, performance
measurements are discussed and compared to conventional
methods of movie transmission.

Keywords

Iterative transmission; real time transmission; full quality trans-
mission; layered media encoding; Internet; WWW; multimedia;
media streams; scaleable media streams; refineable media streams;
data segmentation; WebMovie.

1 Introduction

The World Wide Web (WWW) has evolved from a static docu-
ment-oriented Internet service to a feature-rich multimedia sys-
tem. Audio and video have become part of many Web pages;
however, their integration has not been completed yet: many
issues in the area of timely delivery to the client remain unsolved.

1.1 The File Transmission Paradigm

The main problem for the transmission of multimedia streams via
the Web is the severe limitation in bandwidth. Although the
available data rate may be exploited efficiently with sophisticated
compression techniques, even short media clips with a playback
duration of seconds (e.g. short audio- or video-clips) are typically
of considerable size (N 106 Bytes). Hence, their transmission time

Pcnnissiotl to mnkr digitnl/lwd copies ol’all or pnr~ ol’lllis mnlrrinl for
perso~lnl or clnwootn use is galled without fix provided that lhecopics
nre not made or distribulcd for prolil or conwrrcinl ndvnnlnge, 11~ copy-
rigllt notice. 111~ title of tlx publicntion and its dale appear. and nolice is
givcll tlnl copyright is by pcmkioa ol’d~e ACM. Inc. To copy otlwwisc,
to republish, to post 011 servers or IO r~distribuk IO lisk. rquires sprcilic
permission n&or fee.
ACM Multimedia 97 .%~I//~ ff’r~/~i~~g/on (i.):/l

Copyriglil 1997 ACM 0-89791-931-2137~1 I..SB.SO

is typically much longer than the presentation of the data to the
user. Consequently, it is impossible to present the data in real-time
during a transfer according to the commonly used file
transmission paradigm. Typical systems transfer the clip before
they start the playback.

1.2 Scaleable Media Streams

In order to make real-time transmissions of multimedia data
possible despite its volume and despite low-bandwidth connec-
tions, recent software systems like WebAudio/WebVideo (see
[19]), WaveVideo (see [4]) and many others avoid transmitting
media streams (i.e. video) in full quality. Instead, they adjust the
media quality - and with it the amount of the transferred data - to
the available bandwidth. In other words, the lower the bandwidth,
the poorer the quality of the transmitted data’s playback in terms
of temporal and/or spatial resolution. Furthermore, error cor-
rection is not performed - retransmission due to packet losses
would impair the presentation.

Media streams suitable for these schemes are called scaleable
media streams because the amount of data to be transmitted is
scaled according to the currently available bandwidth. The recent
MPEG-2 standard (see [S]) supports the transmission of scaleable
video streams by a layered encoding of the data. Scaleable media
streams are considered well-suited for many applications.
demanding live transmission of video and audio streams. For
other applications with clients requesting media data in full
quality (e.g. video on demand), scaleable media streams are not
sufficient due to the inevitable scaling-loss.

1.3 Retineable Media Streams

In a sense, our approach is an extension of scaleable media
streams: based on the idea of adjusting the stream to the available
throughput, the streams are filtered to achieve real-time presen-
tation during the transmission. However, the data filtered out is
not discarded, but transferred later to ensure complete delivery
(see listing 1).

Transmission in fill quality even through low-bandwidth
connections is achieved by folding the transfer time into the
presentation time: if a prerecorded media stream is too large to be
streamed in real-time due to limited bandwidth, it is broken up
into several layers. The layers have similar sizes, but differ in their
significance for the presentation. Each of them represents a partial
stream and needs less bandwidth for timely transmission than the
original stream (see figure 1).

283

. . . 1.4 Overview

Open (datachannel, UDP); The rest df the paper is organized in four groups: section 2 intro-.
Open (cntlchannel, TCP); duces new techniques for iterative streaming of time critical media

ResetAcks 0; data. Chapter 3 describes the recently developed WebMovlc

while (3 unsent frame) do system to illustrate the streaming of video data using vcrticni
’

nextFrame := SelectNextFrame (bandwidth);
segm&atioh and presents the experience with the implementation

Transmit (datachannel, nextFrame):
and operation of this system. Subsequently, we present
measurements of ‘the performance of the WebMovie system,

if (Receive (cntlchannel, ack, frame)) Section 4 first summarizes the most important issues prescntcd

UpdateAcks (frame); and then draws conclusions. Further work is then outlined In

bandwidth := EstimateBandwidth 0; chapter 5.

Fi 1 ‘,

od I' .I _. 2 Refining Media Streams

Close 0; ' The algorithms introduced in this paper may be applied to almost

. . . ,

listing 1: code fragment of a server for iterative transmission
of movies (using vertical segmentation only; see chapter 3);

all prerecorded real-time media streams. The most common cases
@e probably video and audio streams. Again: the idea is not to
transmit the respective stream byte by byte, but folded in time,
Since we do diliver prerecorded data, it is possible to transmit ail

In the first iteration we
deliver as many layers as
possible according to the
available bandwidth -
similar to scaleable media
streams (see [4], [5]). But
in contrast to scaleable
media streams, the
transmission does not stop
here: in subsequent
iterations, the layers
neglected in the first
iteration are delivered.

@@icance for (
7resentafion L original s 1 1.

II::::::-::::-::::: --� l
: : : : : : : : : : : : : : : : : : :,�/ lime

I
duration ofpresentation ,/

,
I ,’

:
0’

.’
i /’

/-
,! basic information, refining informalion

The most significant layer
with the basic information
is transmitted first,
followed by the others
with descending signiti-
cance for the presentation.
The first layer’s data
allows the presentation of
the original stream’s
contents -, even though in
rather limited quality. The
subsequent layers’ infor-

stream

i data excluded jn the first iteration of the transmission in further
phases. The stream is
presented several times
during the transmission in
steadily improving
quality: the stream Is
refined iteratively. This
allows the users to follow
as’many iterations of the
presentation as they like
to. Users may interrupt
the transmission at any
time - oven if the trans-
mission has not boon
completed. Towards the
completion of the trans-
mission, during the last
iteration, the prescntntlon
reaches full quality.
Transmitting media
streams this way creates
the idea of the play-out
time of the streams’
contents unfolding into
the transmission time (see
figure I).

I I

I Ia ileralion ~2”~ ireralion i 3n’ iteration i 4”h iteralion I +lime

‘I’ i

total duration of transmission

figure 1: principle of iterative streaming

mation refines the basic information, improving the quality of the
playback step by step. Finally, the arrival of the last layer com-
pletes the data for the client and allows a presentation and even
subsequent processing in full quality. Hence, a stream that allows
an iterative transmission is called a refineable media stream; an
exact definition is given in section,!Y1.

After a short definition of refineable media streams several ap-
proaches to the iterative transmission of these streams arc
presented.

Although the subsequently ‘intr~&$ed methods for iterative
streaming were initially, $&elop,ed to design a transmission
technique for media data via low-bandwidth channels, it has
turned out that they are quite usefyl in other fields of application,
too: if not the complete data of a stream is required, but only a
characteristic fingerprint is needed, storage capacity and time may
be saved by storing only a limited number of layers instead of the
complete stream. Moreover, the reduced data volume of these
fingerprints, e.g. in (movie-) databases, may improve search times
and therefore the access speed.

2.1 Definition

A media stream is called refineable if and only if it fulfills the
following conditions:

l All stream data is well-known. In other words, the data to be
transmitted must not be discarded right after the tiansmission
of the first iteratiqn.
This condition is fulfilled in the case of prerecorded video and
audio data (i.e. movies). Live transmissions do not satisfy this
constraint because data is created dynamically. Hence, the
stream is not finite and the end of the stream is unknown,
However, all data might be recorded to refine the stream in

284

later iterations in order to apply iterative streaming to live
streams, too.

l Informafion afonls are postulated, representing the smaliest
units of information in the respective stream.’ These infor-
mation atoms either may be given by the nature of the re-
spective stream, e.g. the single frames of a video stream, or
they may be artificially defined, e.g. groups of sound samples
in an audio stream.
This condition is easy to be fulfilled by media streams because
(common) computers cannot work with continuous signals:
typically, signals are digitized before being processed.

2.2 Vertical Segmentation

Probably the easiest way to split the information of a refineable
media stream into several layers lies in the time domain: a sub-
sampling of the respective stream yields the first layer.2 The
resulting stream resembles a scaleable media stream. All further
layers are built in the same way as the first layer. Each layer
contains only samples the other layers do not contain, of course
(see figure 2). For the sake of an efficient error correction,
exceptions from this rule may be made (see section 3.4). This sub-
sampling method is referred to as vertical segmentation.

original slream alom
b!

4 disassembling

c reassembling

layer I layer 2

transmission stream

layer 3

figure 2: vertical segmentation of a refineable generic media
.StPXIl?l

There are hvo ways to disassemble a media stream into layers
according to the vertical segmentation:

l The whole layer generation process may be performed sfati-
cully in advance of the transmission. Number and size of the
single layers have to be fixed before the beginning of the
transmission and cannot be adjusted afterwards.
For well-known transmission channels, heuristics may be
employed in order to determine the size of the single layers. A
minimal quality-of-service might be presumed, for instance.

1 However, the internal representation of these atoms can possibly
be broken up further (see section 2.3).

2 This subsampling is always possible due to the postulation of
information atoms (see section 2.1). It may be performed at least
based on the respective stream’s atoms.

l The alternative to generating the layers statically is their
dynamic calculation: The available bandwidth is continually
measured and the subsampling rate is adapted to it. In other
words, each layer is composed dynamically, on-the-fly, while
it is being transmitted (see [5]). The single information atoms
are delivered&.+in-time.

With the static approach there is no way to adapt the transmission
parameters (i.e. the subsampling rate) to the actually available
bandwidth during the transmission. If the bandwidth significantly
decreases - e.g. due to common fluctuations of bandwidth
somewhere in the Internet - concurrent real-time playback and
transmission may not be achieved anymore. On the other hand, if
the bandwidth increases above the estimate, it cannot be exploited
and will be wasted.

The more sophisticated and flexible approach to vertical seg-
mentation, the dynamic scheme, offers significantly more poten-
tial. Due to the continual observation of several network
parameters (e.g. bandwidth), the dynamic variant is more compli-
cated. Depending on the type of media and the implementation,
some problems may arise as discussed for video streams in
chapter 3.

Using vertical segmentation, the transmission of a media stream
may be performed concurrently with the presentation of its con-
tents, which comes at the price of jerky presentation during the
first iterations. After the completion of the transmission, the
stream’s playback corresponds to the original.

2.3 Horizontal Segmentation

Another method that may be used in order to disassemble refine-
able media streams is to break up the information atoms them-
selves. As postulated in section 2.1, an atom itself will not be
broken up any further, but its representation may. In other words,
the total amount of information stored in m atom is not sent in
one single step, but is distributed over several layers. Virtually,
what is refined are not the media streams themselves, but the
single information atoms. First, a rough approximation of each
atom is transmitted and then refined in subsequent iterations of
the transmission. This procedure can be applied to each atom and
is referred to as horizontalsegmentation (see figure 3).

original stream

itiormafion

I s disassembling

reassembling

Iransmission stream

figure 3: horizontal segmentation of a refineable generic
media stream

Compared to the vertical segmentation, the advantage of this
method is improved scaleability: not only may whole atoms be
omitted in a layer, but the size of the atoms themselves may be
scaled. This allows an almost perfect adaptation of the data rate to

285

the available bandwidth. However, with most easy-to-implement
approaches to horizontal segmentation (e.g. defining the color
components of video frames as layers), the limits of adapting the
transmission to the bandwidth will be reached rather soon. Hence,
the information atoms should be defined carefully.

Again, iterative transmission of a media stream and its concurrent
presentation can be achieved with horizontal segmentation. Since
the resolution of the single information atoms is rather low in the
beginning of the transmission, the playback of the stream’s con-
tents will be rather poor during the first iterations - depending on
the available bandwidth. Consequently, the first replays may look
as if a low-pass filter had been applied to the atoms. As with the
vertical segmentation, the quality of the presentation rapidly
improves - up to that of the original stream after the transmission
has been completed.

have a finer granularity, which allows reacting carefully to
fluctuations of the available bandwidth. Furthermore, the hybrid
segmentation allows real-time transmission of media streams in
full quality via ‘connections’ with very low bandwidths, which
would otherwiie cause vertical and horizontal segmentation alone
to fail.’

These advantages come at the price of significant overhead and a
complex implementation: sophisticated book-keeping is needed to
track which data has been sent and which has been acknowledged
already. If the implementation uses an unreliable transport
protocol like UDY - as strongly recommended to avoid
retransmi’ssion delays - and performs the necessary error corrcc=
tion on its own,’ even the error correction gets complicated,

2.5 Summary

2.4 Hybrid Segmentation

A third approach to segmentation, the hybrid segmentation,
combines the two techniques presented above and is the most
flexible. Again, there are two possibilities to perform the merging:

l The approach easier
to implement is to
apply the vertical
segmentation to the
original stream first.
Then the horizontal
segmentation is ap-
plied to the layers
generated in the first

step, yielding
sublayers of each
layer (see figure 4).)
This method is
referred to as VF-f-
hybrid segmentation.

The hybrid segmentation is the most sophisticated, flexible, and
elegant way to perform the disassembly of media streams. On the
other hand the implementation, especially regarding the necessary
error correction, is not trivial at all. The retransmission overhead
grows dramatically and the algorithm becomes inefficient,
Moreover, it has turned out that for practical use such as the

transmission of common
video data (e.g. using
the Common Intcr-
change Format) through
low-bandwidth channels
(with current V.34
modems (33.6 kbps)),
the employment of
either vertical or hori-
zontal segmentation
suffices.

+
verlical segmen fation (Is’ step)

Iqier I

+

Iayer 2

+

layer 3

+
horizontalsegmentation Qndstep

l The alternative is to
apply the horizontal
segmentation first
and then the vertical’
segmentation to the
low-quality atoms
afterwards (HFJ-
hybrid segmentation,
see figure S).”

c reassembling

Iransmission stream

figure 4: VF-hybrid segmentation of a refineable generic media stream

Combining both, vertical and horizontal segmentation, the hybrid
segmentation provides a flexible and efficient strategy for disas-
sembling media streams. Allaying the drawbacks of both tech-
niques the advantages of both of them may be exploited: the effect
is minimizing the gaps between the single information atoms
transmitted in the first iteration (due to the subsampling of the
vertical segmentation), and maximizing the initial quality (i.e.
resolution) of these atoms (which would be rather poor if only
horizontal segmentation was used). The segmentation is said to

Recently, considerable
effort has been invested
in the field of real-timo
transmission of bulky
media streams via low-
bandwidth networks -
namely the Internot.
Basically, they USC
techniques such as
bandwidth negotiation
(with and without
renegotiating), or
layered rcspcctivc

scaleable media streams (see [4], [IO]). All of them sacrifice full-
quality delivery of the data if the available bandwidth drops below
a certain limit. Instead, as much data is delivered as the available
bandwidth allows for. This comes at the price of a reduced quality
of the presentation.

We introduced a new class of algorithms for transmitting time
critical media data in both full quality and real-time via low band-
width connections. Three subclasses of these methods wore out-
lined.

3 An already existing vertical segmentation may be subsequently
extended very easily by horizontal methods.

4 vertical first
5 horizontal first

,

6 It has turned out that this procedure requires much more ’ Since the complete stream information needs to be tmnsmittcd
bookkeeping than the VF-hybrid, since the information atoms without omitting a single byte, data retransmission mechanisms
have been broken up in the first step already. must be provided - in contrast to scaleable media streams.

286

3 The WebMovie System

Having introduced refineable media streams in chapter 2, we will
give an overview over the WebMovie system (see [12], [13]) in
this chapter. WebMovie implements refineable media streams
with vertical segmentation. It focuses on the full-quality delivery
of video data. The information atoms (see section 2.1) are defined
as the single frames within a video stream.

3.1 The Architecture

The WebMovie system consists of three components:

l the preprocessor prepares the movie data prior to the trans-
mission. The preprocessor computes relevant information off-
line and stores it in a database for future use.

l the server transmits a video stream’s contents in consecutive
iterations (see figure 1).

l the client receives the successive iterations of the
transmission, recombines them into one video stream (i.e. M-
JPEG) and presents the movie in real-time concurrently with
the reception.

The server and the client
communicate via two
communication chan-
nels: the data channel is
used for the transmission
of the movie data, the
control channel for the
transmission of acknow-
ledgement and control
information. The control
channel uses the TCP
protocol, which ensures
the correct in-order
delivery of all data
transmitted. This is very
important for the
sensitive control data.
The data channel uses
unreliable UDP in order
to implement a
sophisticated error-
correction scheme in the
WebMovie system (see
section 3.4). Moreover,
the data rate may be
chosen by the server.

3.2 Data Compression

2OO:I (MPEG, see [16]) may be achieved. The shortcomings of
these compression algorithms are that they produce strong
dependencies between the single frames. In other words, decom-
pressing one (differentially coded) frame typically requests the
decompression of other (intra-coded) frames, too. The better the
compression ratio, the stronger these dependencies. Real random
access to the single frames of a video stream is not possible.*

We decided to use JPEG - a compression standard for single
frames. The compression ratio may reach from 81 (almost origi-
nal quality) up to 5O:l (poor quality). JPEG does not produce any
dependencies between the single frames, allowing the transmis-
sion of the frames in a random order - as needed for vertical
segmentation.

In order not to forego the drastically improved compression ratio
of temporal redundancy reduction, we use an action block algo-
rithm in combination with JPEG? each of the Sxbblocks of a
JPEG-coded frame is compared to the corresponding block of the
frame next to this frame, which has been acknowledged already
by the client. If no significant changes can be detected, the
respective block will not be transmitted, but reused from the
already transmitted frame. This additional method allows a

original s&earn
informalion

-c
vertical segmentation pndscep;
applied to al/ layers)

sublayers of layer I sublayers of layer 2 subhyers of layer 3

+
reassembling

I I I I I-II

transmission stream

figure 5: HF-hybrid segmentation of a refineable generic media stream

significant reduction of
the data volume, although
we do not achieve
compression ratios in the
range of MPEG. MPEG
uses motion vectors in
addition to differential
encoding.

The big difference to
H.261 and MPEG is the
on-the-fly removal of the
temporal redundancy.
Moreover, the reference
Came for each frame to be
encoded differentially may
be chosen on-the-fly
considering the frames
that have already been
transmitted and the
available bandwidth. The
latter is an important
difference to the schemes
found in the literature: our
compression algorithm
refers to the last frame
transmitted, which is not
necessarily the prede-
cessor in the movie.

hyer I

layer 2

layer 3

Several data compression standards are available to encode the
image data. The most important ones are methods for compressing
single frames like GIF (see [3]), JPEG (see [7]) on the one hand,
and moving picture compression techniques like H.261 (see [9]),
or MPEG (see [6]) on the other hand.

To transmit time-critical media streams, the reduction of the data
volume in advance of its transmission is considered the most
important issue. Standards like H.261 and particularly MPEG
seem to present the best solution: eliminating the temporal
redundancy between the single frames of a video stream almost
completely, compression ratios from SO:1 (H.261, see [16]) up to

* We considered several publications (e.g. [I4], [IS], [17]) on
software providing full VCR functionality for MPEG-encoded
data. All of them have to decode several frames in order to get a
B-frame, for instance because the information atoms of an
MPEG stream are the ,,groups-of-pictures“ (see [6]), which,
however, are too large for our purposes.

‘) Our action block approach is very similar to the ,,Intra-H.261“ as
proposed in [I 11.

287

3.3 Dynamic Vertical Segmentation

It has turned out that some problems arise if vertical segmentation
is used in combination with a dynamic layer generation: With the
dynamic layer generation, the frame to be translfiitted next has to
be calculated carefully in order to make its just-in-time delivery
possible (as required for real-time transmissions). This ca!culation
crucially depends on the estimated bandwidth and on the
estimated size of the frame to be transmitted next:

The bandwidth is ,estimated with probe-echo based methods
measuring the rbund-trip-delay as proposed in many publications
(see e.g. [IS]).

Estimating the size of the frame to be delivered next is signiti-
cantly more complicated: the size of a frame depends on the
reference frame used for its differential encoding (see section 3.2).
It is necessary to encode all frames that are candidates for being
sent next-just to get their sizes. Moreover, this information is not
useful anymore as soon as the chosen frame has been sent because
the frame sizes change if they are’ encoded differentially using
another frame as reference. Hence, the single frames cynot really
be delivered exactly just-in-time, only approximately. Obviously,
the approach to encode all candidates for transmission
differentially is highly inefficient. Our straight-forward approach
is to estimate the frame size based on the sizes of its predecessors;
this linear predictor has proven to be an adequate heuristic to
estimate a differential frame’s size.

This method does not work well with scene changes in movies.
The reason is that the difference between a picture before a cut
and a picture afterwards is typically drastic. Nearly the entire
frame will change and almost no block will be the same. There are
two ways to handle the cut-problem:

l It can simply be ignored. This is the way the current proto-
typical WebMovie system treats the problem. WebMovie just
sofiens the real-time condition for the presentation resulting in
a snap-to-grid approach: if the frame that is to be presented
next according to the real-time paradigm has not arrived yet,
the closest predecessor in the movie is presented instead..
Hence, frames that arrive too late for their immediate
presentation according to the common real-time paradigm
may be presented anyway. This allows a rapid improvement
of the presentation’s quality - especially for long movies - de-
spite the fact that there is no way to deliver frames really just-
in-time.

l The alternative and strongly recommended way is to employ
an efficient cut-detection algorithm, as e.g. introduced in [2].
The cuts might be detected in the preprocessing step, similar
to the calculation of the’ data needed for the action-block
method. The first iteration of the transmission might contain
key frames, i.e. the first frames of the single scenes of the
respective movie. In further iterations of the transmission, all
other frames might then be encoded very efficiently according
to the action-block method because the changes from one
frame to another will typically be minor. .-

3.4 Delayed Data Retransmission

As mentioned above, using a transport protocol like TCP would
foil all perspectives opened up by refineable media streams: the
immediate, automatic error correction with data retransmission
and mechanisms like ,,slow start“, significantly slowing down the
data rate after an error occurred, is not suitable for the transmis-
sion of time-critical media streams such as video streams.

However, we have to employ data retransmission eventunlly
because we want to deliver all data in full quality, The charac-
teristics of iterative transmissions suggest special error-correction
algorithms, such as the delayed data retransmission:

Packets lost due to the unreliable nature of UDP are not retratis-
mitted immediately. Instead, we continue ‘with transmitting the
current iteration as if no data had been lost: Hence, it is possible to
maintain the real-time presentation despite data losses. All data
that has not been acknowledged for a certain span of time is
considered ,,unsent“. Since WebMovie composes the layers of the
respective stream dynamically, lost data is automatically retrans-
mitted in a later iteration of the transmission (see figure 6).

I data loss informallon alom

\B \ /
1 519 15 20 24 28 38 44 nb iferalion

: /:\
; relrawnission

1
i o/

2 7 16 19 23 nSP ilerallon

/: \
:

: : : : :
: \ / : : :

VI
25 29 32 35 39 43 n+2”~i!eraflon

/\ \br

I figure 6: principle of delayed data retransmission

After the transmission has been completed; all the data has been
delivered. This elegant integration of error correction into the
iterative movie transmission comes at no extra cost to the imple-
mentation. It actually reduces the algorithmic overhead compared
to other schemes.

3.5 Experimental Results

‘3.5.1 The Testbed

Our testbed consists of the WebMovie server running on a PC
with an Intel-Pentium-200 CPU and the client running on a PC
with an Intel 80486-66 CPU. The connection is established using
a V.34 modem, which allows data rates up to 33,600 bps. In our
experiments we limited the bandwidth to 28,800 bps in order to
get results valid for the majority of Internet users.

3.5.2 The Video-Clips

To measure the performance of our WebMovie system, we chose
three different, short video-clips, all recorded from television:

l The Al Bandy-clip shows Al talking to Kelly. Then Bud and a
girl are discovered in a closet. The camera often pans around
in the room and the video contains several cuts. Therefore this
frame-sequence is well suited to test the WebMovie system
under worst-case conditions: from one frame to another
almost all image-parts can change. There are hardly any sta-
tionary image-parts allowing the action-block algorithm to
reduce the data volume to be transmiited.

l In the Wallace & Gromit cartoon, a penguin-burglar is
stealing valuables when he is surprised by the owner, Since
this clip consists of artificially generated scenes, parts of the

image are exactly constant - they do not change at all from
one frame to the next. These rather small constant parts of the
image have to be transmitted only once according to the
action-block algorithm, so the data volume is reduced signifi-
cantly. Several cuts in this clip keep the action-block method
from working optimally.

l The third clip, a Music Video, shows an excerpt from the
music video of Michael Jackson’s song ,,Black or White“. It
mainly shows faces of ,,black and white” women and men
morphing from one into another. The background, a blue wall,
is (almost) constant. This clip was chosen because the changes
between frames directly following each other are not too big.
There is no cut in the whole movie. This is why the action-
block algorithm can work properly - much better than in Al
Bundy and better than in Wallace & Gromit, too.

The characteristics of the three movies are subsequently
summarized in table 1.

table 1: characteristics of the test movies

1 Al 1 Wallace& 1 Music 1

3.5.3 Performance Measurements

The parameters measured using the test movies introduced above
are listed in table 2: the time from the start of the transmission
until the presentation of the first frame. and the time it takes to
complete one whole iteration of the transmission (both measured
in seconds). The next two lines contain the average number of
frames transmitted during the first iteration and the total number
of iterations of the transmission. Finally, the total transmission
time for all movies was measured. This parameter is given relative
to the time needed to transmit the MPEG-compressed movie
sequentially with ftp. In the first approximation, the total trans-
mission time is directly proportional to the amount of data
actually transmitted, Since this parameter is given relatively only,
it may be understood as the relative volume of the transmitted
data compared to ftp/MPEG as well.

According to these results, the first frames of the movies are
presented very quickly, only a few seconds after the beginning of
the transmission, During the first iterations of the transmission,
frames of all scenes of the respective movie are presented - not
only frames of the movie’s beginning. The transmission of every
iteration of a movie takes exactly the same time as the movie’s
playback in real-time. Hence, the users may watch as many
presentations in improving quality as iterations needed for the
transmission. They may observe the progress of the transmission
and abort it at any time.

I0 This movie has been converted with the fmageA4ugick-public
domain software (available at ftp://sunsite.cnIab-
switch.chlmirror/MachTen/ applications/68k/Xl l/graphics)
from the MPEG format into the motion JPEG format.

11 This movie was initially motion JPEG coded.

These advantages concerning presentation-oriented transmitting
of the movies are at the expense of the total transmission time,
which increases about 30% compared to the transmission of the
movies with standard methods (plain TCP, e.g. ftp) using the
highly efficient MPEG-compression standard. Although not the
focus of this research, the latter result is quite surprising: MPEG’s
advantage compared to our simple action block scheme is much
smaller than anticipated.

table 2: results of the transmission of video streams with
WebMovie (at 28.8 kbps)

AI Bundy Wallace & Music
Gromif Video

Presentation of 1st <3sec
Frame

<;5-s.& .f yg?&ee
- ec I’

:
Duration of 1st Itera- 30.4 see 16.2 set 60.8 set

lion
-fF- 10 is 6 r. 9Q~ 4

1st Iferafion
. . : y-+3‘ .

‘ 16 -22 ’ “-k‘ --
Transmission Time 125%

relative to MPEG/J
<400sfd':.135o/ol,

s _- -

4 Summary and Conclusions

We have introduced the completely new iterative transmission
paradigm, which is based on the ideas of scaleable media streams
and combines the advantages of the two conventional paradigms:
it makes real-time transmissions of media streams possible in
combination with the delivery of the data in full quality - even via
the Internet with its severely limited bandwidth.

We have shown several approaches to possible implementations
of this new transmission paradigm and discussed the advantages
and disadvantages of each of them.

Then we briefly introduced the WebMovie system as a showcase
implementation of iterative streaming - focusing on the transmis-
sion of prerecorded video data A new error-correction mechanism
- the delayed retransmission - has been introduced, which
supports the iterative nature of the employed transmission para-
digm. Some measurements prove the potential of iterative
streaming: only seconds after the beginning of the transmission
first frames are presented - in real-time and not only frames from
the beginning of the movie, but from all scenes of the movie. Due
to an action-block algorithm, the data volume is reduced in com-
parison with the volume of the motion JPEG encoded movie.

It has also been shown that if the data is to be transmitted in full
quality the transmission takes up about 130% of the time needed
by using the conventional file transmission paradigm (e.g. FTP) -
in combination with MPEG compression. However, the file
transmission paradigm does not allow real-time presentation of
the movie concurrently with the transmission, thus straining the
patience of the user.

The client software - a Netscape plug-in, which is currently
available for Windows95 only - can be downloaded at [13]. The
reader is invited to test it with our WebMovie server (see [13]) in
order to get a demonstration of iterative streaming.

Iterative streaming is well-suited for any field of application
where the data is eventually needed in full quality, for instance for
video on demand. Moreover, users may save a lot of time and

289

storage capacity: they may choose the quality in which they want
to have the data. The transmission may be gracefully aborted at
any point of time during the transmission. The data is not stored
in full quality if the transmission is interrupted.

5 Future Work

The WebMovie system is currently implemented as a prototype
only. Although all basic functionality is available in this proto-
type, there are many items to be improved and optimized. The
following three paragraphs may give an idea of what needs to be
done next to make the WebMovie system even more attractive:

l One of our future goals is to alleviate the main drawback of
our compression scheme: the data volume to be transmitted is
still higher than it could be using MPEG-compression. A
further reduction of the data volume may be performed by
adapting the encoding of the video data to be transmitted even
more to the standards proposed ‘in [6], [S], or [9], e.g.
dynamically creating motion vectors.

l Another really interesting field of research is the improvement
of the scalability of the iterative’movie transmission. The
current version of WebMovie only performs a segmentation
of the movie information by sending the single frames out-of-
order. Actually, there are many other methods to break up this
information: instead of using the vertical decomposition of the
movies’ information into levels of frame rates, a horizontal
decomposition into levels of image quality might be
performed as well (see [12]). Improved JPEG-standard
algorithms like successive approximation or spectral selection
might be used (see [7]).

l The iterative strategy for data transmission shown in this
paper has been applied to the WebMovie system, which has
been designed to transmit video data via low bandwidth
communication channels. As mentioned above, the strategy
itself may be applied to almost any type of media - not only
video.
In order to provide a full movie transmission system, the
current WebMovie system might be extended by facilities for
the iterative transmission of high-quality audio streams. Audio
may be delivered in telephony quality during the first iteration
of the transmission - to be improved to high-fidelity in further
iterations.

6 References
i<

[I] Amir, E., McCanne, S., Zhang, H. ,,An Application-level
Video Gateway”. Proceedings of the 3rd ACM It$ernational
Conference on Multimedia. San Francisco, CA, November
1995.

[2] Arman, F., Hsu, A., Chiu, M. ,,Image Processing on
Compressed Data for Large Video Databases“. Proceedings
of the 1st ACM I nternational Conference on Multimedia.
August 1993. ,,

[3] CompuServe Incorporated. GIF89a Specijication. Colum-
bus, OH, 1990. Software on-line.12

[4] Dasen, M., Fankhauser, G., Plattner, B. An Error Tolerant,
Scalable Video Stream Encoding and Compression ‘for

‘* http://www.w3.org/pub/WWW/Graphic~GIF/spec-gifXBa.txt’

: Mobile Computing. ACTS Mobile Summit 96. Granada,
Spain, November 1996.

[SJ Hoffman, D., Speer, M., Fernando, G. ,,Network Support for
Dynamically I’ Scaled Multimedia Data Streams”,
Proceedings of 4th International Workshop on Network and
Operating System Support for Digital Audio and Video! pp,
25 I-262. Lancaster, UK, 1993.

[6] IS0 I 1172. Information technology - Coding of moving
pictures and associated audio for digital storage media at
up to about I;5 Mbit/s. International Organization for
Standardization, Geneva, 1993.

[7] ’ * IS0 10918, IT&T Rec. T.81. Information Technology -
Digital compression and coding of continuous-tone still
images. International Organization for Standardization,
Geneva, 1992.

[S] IS0 13818. Infirmation technology - Generic coding of
moving pictures and associated audio information. Intcr-
national Organization for Standardization, Geneva, 1996.

[9] ITU-T Rec. H.261. Video Codec for &diovisual Services at
px64 kbitls. International Telecommunication Union,
Geneva, 1990.

1

[’

IO] Krishnamurthy, A., Little, T.D.C. ,,Connection-Oriented
Service Renegotiation for Scalable Video Delivery“,
Proceedings of the Ist IEEE Interhational Conference on
Multimedia Computing and Systems: pp. 502-507. Boston,
MA, May 1994.

I I] McCanne, S., Jacobson, V. ,,vic: A Flexible Framework For
Packet Video”. Proceedings of the 3rd ACM International
Conference on Multimedia. San Francisco, CA, November
1995.

[12] Merz, M. Iterative Re$nement of Video Streams. MSc
thesis, University of Ulm, Germany, 1996.

[13] Merz, M. The WebMovie Homepage. Software on-line.”

[14] Rowe,, L. A., Smith, B. C. ,,A Continuous Media Player“,
Proceedings of the 3rd International Workshop on Network
and OS Support for Digital Audio and Video. San Diego,
CA, 1992.

[IS] Rowe, L. A., Pate], K. D., Smith, B. C., Liu, K. ,,MPEG
Video in Software: Representation, Transmission, and
Playback”. Proceedings of the IS&T/SPIE High Speed
Networking and Multimedia Computing. San Jose, CA,
February 1994.

[16] Smith, B. C. A Survey of Compressed Domain Processing
Techniques. Software on-line.*d

[17]. Smith, B. C. Implementation Techniques for Continirous
Media Systems and Applications. PhD thesis, University of
California, Berkeley, CA, 1993.

[IS] Tanenbaum, A. S. Modern Operating Systems. Prcntice-
‘, Hall, 1992.

[19] Wolf, K. H., Froitzheim, K., Weber, M. ,,Interactive Video
and Remote Control via the World Wide Web“. Interactive
Distributed Multimedia Systems and Services: pp. 91-104.
Springer, Berlin, 1996.

I3 http://www-vs.informatik.uni-ulm.de/Mitarbeiter/
Merz/webmovie/index.html

I’ http://www.uky.edu/--kieman/DL/bsmith.html

290

