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Communication protocol design to facilitate re-use based on the
object-oriented paradigm
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The main motivation for the present work stems from the wide gap which exists between the research efforts devoted to developing
formal descriptions for communication protocols and the effective development methodologies used in industrial implementations. We
apply Object-Oriented (OO) modelling principles to networking protocols, exploring the potential for producing re-useable software
modules by discovering the underlying generic class structures and behaviour. Petri Nets (PNs) are used to derive re-useable model
elements and a slightly modified TTCN notation is used for message sequence encoding. This demonstrates a formal, practical approach
to the development of a protocol implementation through OO modelling. Our utilisation of PNs in the context of object based modelling
allows for isolation of the behavioural characterisation of objects into a separate design plane, treated as a meta-level object control. This
separation permits greater execution flexibility of the underlying object models. It is that very aspect of our modelling approach which
can be utilised in software implementations where dynamically determined ‘re-programming’ (i.e., change of procedures) is needed.
For example, one of the requirements in wireless networking software is the ability to cope with ever-changing transmission/reception
conditions and that, in turn, creates greatly varying error rates. Similarly, handoff procedures create situations where dynamically
determined change of operational modes is required. To illustrate the modelling concepts, the paper addresses the problem of inter-layer
communication among multiple protocol entities (PEs), assuming the standard ISO/OSI Reference Model. A generalised model called
the Inter-Layer Communication (ILC) Model is proposed. An example of a PE based on the Alternating-Bit Protocol (ABP) is also
discussed. The final example demonstrates how meta-level object control (PNs) allows for the dynamic selection of different ARQ based
algorithms.

1. Introduction

1.1. Motivation

When we talk about the communication protocol devel-
opers, we mean at least one of the two following groups of
professionals:

(i) ISO experts who, usually as members of an ex-
pert group, formulate standards and specify commu-
nication system services with the relevant protocols.
They should be regarded as true protocol design-
ers/developers (on a very high, abstract level). Ideally,
Formal Description Techniques (FDTs) are the main
supporting tool for the needs of this group.

(ii) Industry experts who specify networking products
(based on ISO standards). They have to be able to
understand already specified standards and interpret
their meaning unambiguously, while making suitable
choices for the target environment and product require-
ments. This second group represents designers and
developers of implementations of communication pro-
tocols.

There is a noticeable developmental gap between ISO
formulated standards and the final form of the communi-
cation software products. There is no smooth transition
between these two extremes.

In addition to the above, rapid developments in network-
ing software resulting from the introduction of new tech-
nologies such as wireless data communication networks, de-

mand more efficient networking software design methods.
An application of PNs to object based modelling gives a
well-known mathematical formalism to behavioural aspects
of object models (which they presently lack).

1.2. The challenges of mobile and wireless networks

The example on ARQ procedures in section 6 illustrates
the current refinements on our earlier work on OO design
[16]. Mobile and wireless communication systems pose
specific demands on software designers. Some of the more
important ones are:

• delivery of efficient, compact, replaceable(re-useable)
and highly specialised software components,

• ability to cope with volatile radio transmission/reception
parameters introducing a high level of uncertainty about
the Quality of Service (QOS) provided by radio based
networks in the delivery of data packets,

• adaptable (self-configuring and/or replaceable) network
management functions (accounting, statistics gathering,
real-time monitoring) which, in turn, directly influence
the total cost of running the networking infrastructure,

• delivery of supporting software architectural compo-
nents with configurations that require minimal operator
run-time intervention.

In the first years of development in mobile communica-
tion systems, precedence was given to solving a number of
formidable technical (radio transmission, hardware and call
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switching) problems. The recent interest in wireless net-
works has created the need for a more systematic approach
to the adherence to protocol architectures within the frame-
work of ISDN and B-ISDN standards [5,19,23,26,28,35]
In our opinion, software self-configurability (mobility) and
QOS issues are the most demanding and difficult to tackle,
particularly when high data transmission rates of 10 Mb/s
or more and multimedia applications are required.

1.3. Present situation

The current industrial practice in network software de-
sign and modelling is unsatisfactory. Implementors very
often practise a ‘black magic art’, with substantial dupli-
cation of efforts by starting new projects from scratch and
re-inventing what others have done. There are a number
of reasons justifying this situation. This may be due to
commercial secrecy or deadline-driven project management
not supporting the generalised, tool building approach to
communications software development. Also, Vissers [37]
points out that among the ISO experts there is no consen-
sus on how to take the full advantage of using FDTs. The
following points are worth emphasising.

• In an overview of the state of the development of Formal
Description Techniques (FDTs), Vissers [2] indicated
that wider acceptance to using FDTs to describe existing
and new protocols and services was still needed in the
OSI community. The gap between the high expectations
of benefits derived from using FDTs and the everyday
industrial practice may remain for a long while. How-
ever, in the future the entire process of protocol de-
sign, verification, testing and derivation of implementa-
tion descriptions is expected to be FDT based.

• While descriptions of protocols are very detailed and
many attempts have been made to formalise their verifi-
cation/validation, very little practical work has been di-
rected towards developing a systematic design method-
ology which:

(i) emphasises a detailed algorithmic description from
the design specification taking into account the con-
straints imposed by the implementation environ-
ment,

(ii) identifies underlying primitives and abstractions to
form the basis for the re-use of structures and de-
signs when developing a protocol implementation.

• Generally, when beginning a new implementation of
a protocol the work is started from scratch, relying
perhaps on the ASN.1 engine to aid the development
process.

• Abbott and Peterson [1] emphasised the need to develop
new approaches to protocol engineering, and pointed to
OO modelling as an important basis for such approaches.
However, they provided neither a comprehensive con-
ceptual model nor a detailed software structure model

as the foundation for an OO protocol engineering and
implementation methodology. Bapat [3] and Box et al.
[9] provided other interesting insights into the applica-
tion of OO modelling concepts in the networking area.
OO development of real-time distributed systems was
presented by Selic et al. [34].

• We believe that the derivation of communication proto-
col implementations should be done through modelling
on a more abstract level, as suggested by Reisig [30,31].
This conceptualisation should be in terms of the model
elements at hand and their relationship with other model
elements via well-defined interface specifications.

• Several previous approaches have used different types of
Petri Nets such as Place-Transition Nets [2,8,27], Nu-
merical Petri Nets [36] and Object-Oriented Petri Nets
[24] to model communication protocols. Their main
objective was to model a protocol for the purpose of
verification. In marked contrast, our approach is to use
Petri Nets as a mechanism for development of the in-
frastructure for implementation.

• We aim to expose the generic aspects of protocol imple-
mentation(s) as an OO conceptual model emphasising
the dynamic interaction of the objects involved. This
allows the early identification of re-useable model ele-
ments during the modelling and design stages.

The literature on protocol implementation design treats a PE
in isolation, concentrating on protocol features and services.
Halsall [12] discusses some of the issues addressed in this
paper. From a practical point of view, we contend that it is
more beneficial to model an ILC and, within its context, the
individual PE’s operation. This is why the problem domain
is divided into two parts representing two different levels
of abstraction which ought to be considered in any network
software model, design and implementation. The top level
deals with the inter-layer communication (ILC). The corre-
sponding model of the ILC is described in section 3. We
view the ILC model as a type of inter-process communi-
cation (IPC) mechanism, as detailed in Hanish [13]. The
lower modelling level deals with the way an individual PE
interacts with its environment. A suitable model for a PE
based on ABP is described in section 4.

As suggested in Dillon and Tan [11], section 2 lists the
modelling tasks according to the accepted industry practice
of identifying at least two modelling phases for the deriva-
tion of static and dynamic features. Note that these phases
and modelling tasks are limited to conceptual modelling is-
sues only. In section 5, we describe the modelling method
and show how a high-level PN is mapped into an OO model
element, suggesting a suitable type of PN to utilise. We also
derive a model element’s behaviour description and encode
it using TTCN notation.
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2. Object modelling tasks

Consider the general environment in which a networking
software sub-system operates within a network node, as
depicted in figure 1. The aim here is twofold.

1. Create a general OO environmental model in which

1.1. the networking software sub-system operates,

1.2. the PEs and other correspondents interact,

2. Provide maximum flexibility in configuring and ini-
tialising all correspondents comprising the model ele-
ments.

A summary of the modelling tasks (MT) to be performed
follows [11]:

Conceptual Modelling Phase: Static model.

MT1: Analyse the natural language problem statement and
select the concepts used.

MT2: Select candidate class objects.

MT3: Determine essential relationships among candidate
class objects.

Conceptual Modelling Phase: Dynamic model.

MT4: Identify the model’s essential events and messages.

MT5: Petri Net high-level model representation.

MT6: Identify external events and messages.

MT7: Identify internal objects’ static structures.

Conceptual Modelling Phase: Component cataloguing.

MT8: Build object class documentation in the form of a
class dictionary.

It is worth emphasising at this point that modelling tasks
MT1–MT3 may be tackled in a number of ways as de-
scribed by various methodologies such as OMT, Booch,
Yourdon/Coad and recently UML (Rational Corp.).

A question arises, how does our approach differ from
other accepted OO methodological approaches? Our ap-
proach is complementary in the sense that it allows utili-
sation of other methodologies. In addition, we propose to
put more emphasis in modelling activities on:

• analysis of concurrency,

• utilisation of computational semantics of a category of
Coloured Petri Nets (CPNets),

• modelling dynamics of object interactions.

The use of CPNets gives immediate access to a number of
well developed algorithms for simulation and formal veri-
fication of designs.

To put it briefly, in our approach, we view every design
step as visually driven with tabular documentation support
assuming that it can also be simulated and formally verified.
We also try to provide support for a two level designs:

(1) derivation of re-useable model elements (this activity
is akin to analysis),

Figure 1. A general view of the networking software operational environ-
ment.

(2) composition of new designs by re-using existing ele-
ments (this activity is akin to synthesis) from a cata-
logue of model elements.

3. An overview of the ILC

OSI/ISO layering suggests a certain division of func-
tions and services associated with each layer. However, it
is insufficient from the software designer’s point of view.
Finer granularity of functionality and service selection is
required. We start from these general layering principles
and associated assumptions and consider a protocol entity
as an object existing within an environment defined in the
context of the local operating system’s facilities and ser-
vices. In this section, we present a problem statement in
a condensed format. We often refer to various parts of
the system under consideration as objects without explana-
tions on how they have been derived. Examples of object
derivation are given in section 5.1.

From figures 2 and 12, a network node (local system)
is viewed as a message sink/generator in relation to other
nodes. Therefore it must have message buffering capa-
bilities to adjust the uneven message flow resulting from
different message processing rates existing in the external
network environment and among the local system’s inter-
nal objects. In our model this responsibility for flexible
buffering of messages rests with the ILC object (called in
figure 12 the Mailer object). The flexibility is achieved
through associating a pair of queues with each identified
correspondent. In consequence, the ILC object controls the
operation of InQ and OutQ of each of the correspondents as
well as the correspondent’s execution state. In figure 13 we
distinguish two states, suspended or active with the process-
ing of one message at a time.

In figure 12, it is implied that each PE is an object which
executes concurrently with other correspondents, synchro-
nising only through message exchanges. A PE executes in
a non-preemptable regime driven by the contents of its in-
put queue InQ. It communicates with other correspondents



288 A.A. Hanish, T.S. Dillon / Communication protocol design

Figure 2. An initial view of the ILC model.

via generic ‘send’ and ‘recv’ messages. Suitable access to
the timer messages is provided via the TimerEvtSrc object
and to the other specialised kernel services such as access
to the physical device drivers.

The message format exchanged between any two corre-
spondents within a local system is called a Service Request
Block (SRB). An SRB is an object class whose instances
become a realisation of the OSI’s abstract service primi-
tives. It contains references to all the necessary service de-
tails such as service type, parameters and data. Halsall [12]
calls a similar data/message functionality an Event Control
Block (ECB).

All SRBs have the same format but the repertoire of mes-
sages (SRB types) available at individual interfaces to var-
ious correspondents differs. Each PE ‘knows’ the adjacent
layer PEs and other correspondents (such as TimerEvtSrc)
in terms of their local identities (addressing information).
So, each SRB carries the addresses of the source and desti-
nation objects. This ensures proper functioning of the ILC
object as an SRB delivery service provider (Mailer). As
in the ISO/OSI model [15], each PE adheres to the upper
and lower interface specifications allowing communication
with PEs in adjacent layers.

Each PE follows the specific protocol rules for exchang-
ing messages (called Protocol Data Units – PDUs) with
the remote system’s peer entity. It also has to ‘know’ how
to address remote peer PEs. The treatment of addressing
issues (Service Access Points (SAPs) and NSAP global ad-
dressability) is embedded within each PE’s implementation
and does not concern the operation of the ILC object.

The layer membership of each PE is regarded as a sys-
tem administrator’s configuration problem resolved dynam-
ically during the system’s startup time. The Startup object
is responsible for the initialisation of the ILC entity and
indirectly of each PE within a local system.

Since all PEs are message driven, a timer source gener-
ated message becomes just another message type received
and processed asynchronously by each PE (if required).
Communication with the TimerEvtSrc (figure 12) object

instance allows all correspondents to schedule their own
time events optionally.

The network operator (the Operator object in figure 12)
generates unsolicited messages at randomly determined
times, allowing local node network management issues to
be incorporated within the ILC model.

The main advantage of developing an ILC model as we
suggest lies in the fact that it separates local operating sys-
tem concerns from a PE’s operation, thus allowing the PE’s
implementation to be independent of the available commu-
nications hardware and operating system features.

From the discussion above, it should be clear that the
ILC is represented as an object which operates as an oper-
ating system’s kernel recognised preemptable process acting
as a real-time traffic controller providing the following:

(i) buffering/queuing of messages for inter-layer and ex-
ternal networking environment communication,

(ii) detachment of PEs from the local operating system’s
environment,

(iii) a form of inter-task (inter-process) communication fa-
cility among all PEs,

(iv) control of each PE’s execution state.

4. An overview of a PE

Again, in what follows in this section, should be treated
as a condensed description of the problem statement.

By comparison with the description given in section 3,
we require that each PE is represented as an object which
operates as a non-preemptable process which:

(i) executes concurrently with other PEs,

(ii) synchronises with other PEs only through exchange of
messages,

(iii) processes messages one at a time, in the atomic fash-
ion,

(iv) has access to a timer and buffer management functions,

(v) communicates with its environment via generic
send(srb)/recv(srb) messages,

(vi) does not concern itself with the local operating sys-
tem’s dependencies,

(vii) coordinates its execution only with ILC.

We will only briefly mention that designing a PE in-
volves some specific protocol analysis and that requires a
number of additional steps to be taken such as:

(i) the analysis of the English language protocol’s proce-
dural description,

(ii) operational description of the protocol in the form of:

• timing diagrams illustrating all/special cases of mes-
sage exchanges,
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Figure 3. ABP’s description of service boundaries.

• pseudo-code or SDL (or some other FDT based) pro-
tocol description,

• specification of PDU formats (usually given in
ASN.1 notation).

To illustrate the generic structure of a PE, we consider
the ABP protocol [4]. Figure 3 shows only the service
boundaries and assumed PDUs.

We map the PE/ABP object into the ILC model structure
(figures 12–14) and determine its internal composition so
it allows the derivation of re-useable classes. The basic set
of re-useable model elements suitable for any type of PE
is given in figure 4. Note that FSM control aspects are not
shown because the structure for the entire PE has been bro-
ken down into a number of state machines embedded within
individual objects. We view a PE as essentially consisting
of a number of generic objects selected through the mod-
elling process to suit the particular protocol specification.
Since we do not have a ready-made catalogue of re-useable
parts, we have to build a set of generalised classes using
analysis and decomposition. For example, an object called
ServiceAcceptor is an abstract class. Its specialisation de-
rived specifically for ABP is called AbpServiceAcceptor.
So, the derived class structure could be as follows:

ServiceAcceptor,
ABPServiceAcceptor,
(and possibly other service acceptors).

There are other re-useable parts defined as abstract
classes such as the Initialiser, Transporter, Distributor and
ProtocolUtility. Each of these classes will have a number
of specialisations tailored to the specific requirements of
various protocols.

We view the basic PE functionality essentially as initial-
isation and data transfer. All other functions are selectable
during the modelling stages. For instance, the Connector
handles establishment and maintenance of connections.

We regard connection handling as part of a higher-level
abstraction compared with connectionless communication.

Figure 4. PE’s internal structure.

Hence, the basic functionality is implemented via a con-
nectionless service (or, in other cases, a single connection).
AckControl is an optional element treated as one of the util-
ities a protocol might use. Other utilities used by every pro-
tocol are SrbBuilder and PduGenerator. The output trans-
fer’s functionality can be structured in a number of ways.
In our implementation example, the OutQ handling is the
individual PE’s responsibility (figures 13 and 14).

5. Modelling method

The OO modelling suggested by the authors such as
Rumbaugh [32], Booch [7] and Coad/Yourdon [10] does
not emphasise enough the dynamic aspect of modelling,
treating it merely as an extension of static (data) modelling
and utilising a similar methodology. The latest UML ver-
sion of Rational Corp. [29] tries to alleviate this problem
The approach taken by Jacobson [20] with case modelling
gained some acceptance because it emphasises the dynam-
ics of message exchanges. We suggest a further expansion
of OO modelling and analysis by showing a top-down, com-
positional development of Petri Nets (PNs) with message
sequence encoding and applying it to the networking pro-
tocol domain. We use PNs as suggested by Reisig [30,31]
not for traditional verification purposes, but as a gener-
alised modelling and design tool for the derivation of the
generic class structure which may be used as the basis for
implementation. The use of a PN exposes in a very natural
manner possible parallelism and inter-dependencies. This
is particularly appealing within the OO paradigm. Our PN
approach to modelling service primitive handling within a
PE (figure 15), is based on the work of Bourget [8].

Message sequence encoding is another subject which we
explore in the context of OO protocol modelling [11]. We
have taken the existing ISO TTCN standard [17], modi-
fying it slightly to serve our needs not for testing but for
the general purpose description of message sequencing. It
can be used effectively within the OO paradigm for design,
implementation, automatic test case generation, simulation
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and testing of OO models. In addition, an object catalogu-
ing practice can be enhanced by the tabular TTCN based
format.

5.1. Multiple views of objects

It is useful to be able to clearly distinguish in the mod-
elling process how objects are viewed and manipulated. We
use the following four planes of viewing objects.

5.1.1. User/application plane
Objects are perceived by their functionality/data ma-

nipulation capabilities and a modeller/designer develops a
judgement on how well they fit together. The latter is a
designer’s view on object interface compatibility. For the
time being, we will use a pragmatic approach in defining
‘the fit’ between two objects very much in the style of
the work of electronic engineers. When trying to match
two or more ICs, they evaluate the ‘closeness of the fit’
by comparing the description of two interfaces (usually pin
description) from a catalogue of parts called a Data Book,
and then work around those interfaces possibly adding some
components ‘in-between’ to make the interfaces work prop-
erly. This plane is the top and most abstract design level
for object-oriented implementations where a designer takes
pre-fabricated objects and matches their interfaces through
analysis of problem domain requirements and a catalogue
of software parts. Incompatibilities may then be removed
by, for instance, introducing new, more specialised sub-
classes or, intermediate objects might be added. The user
level views may be complemented by the use-case style of
analysis [20].

5.1.2. Model plane
Entire systems are modelled and object classes are de-

rived in this plane. We use CPNets (Jensen [22]) as a
tool for modelling, debugging, simulation and verification.
CPNets represent an abstract view of behaviour of the mod-
elled system and its individual parts. A translation of model
elements from the User Plane view (a catalogue of parts)
onto CPNet view is provided usually in the form of ap-
propriate part labelling system. Dynamics of model ele-
ment interactions are encoded by CPNs with support of the
TTCN notation. CPNets represent a dynamic, behavioural
model of object classes (on a meta-level), controlling the
execution of the underlying object model.

5.1.3. Formal plane
This represents a translation of CPNets into a mathe-

matical formalism with a suitably chosen set of rules for
manipulation of CPNet representations.

5.1.4. Implementation plane
It deals with low-level implementation details of a for-

mally defined model. Usually a number of components
are involved such as implementation of CPNets simulator,

Table 1
A fragment of word analysis table.

Word/Name/Phrase Related functionality

Startup One of the correspondents,
PE configuration process, initialises
ILC and all PEs

Inter-layer communication entity Provides an SRB delivery service
ILC among all correspondents
Protocol entity PE Absorbs SRBs from input queue

performs protocol specific process
sends SRBs to output queue

Service request block SRB A uniform message format
exchanged among ILC and all

Table 2
A fragment of the candidate object classes table.

A candidate object class Characterised by

Startup PE configuration process,
initialises ILC and all PEs

Messenger Manages InQ and OutQ,
controls the execution of each PE

PEntity Has its own identity(address),
executes a protocol specific process,

ServiceRBlk SRB is a uniform message format
exchanged among all correspondents

graphical elements manipulator, verification tool for CP-
Nets.

5.2. Static modelling

The derivation process of static/class structure of a
model is well developed with many available method-
ologies (e.g., [7,10,20,29,32]). Using the graphical and
methodological suggestions of Dillon and Tan [11], the
derived diagrams for the ILC model indicating the class
structure are given in figures 5 and 6.

We found that modelling tasks are easier to perform
when they are enhanced by following a tabular format.

For example, in MT1, a modeller not only studies the
natural language description or some other form of problem
statement but also greatly enhances his/her own understand-
ing when presenting selection of relevant words or names
in the tabular form (see table 1).

Note that in table 1 we would normally list all relevant
words or phrases without suggestion as whether they rep-
resent a good name for a class or not.

Another example (see table 2) of the use of tabular rep-
resentation refers to MT2 when after the problem domain
analysis a designer has to choose an initial (and still subject
to many revisions) set of classes.

Table 2 prepares for MT7 where the detailed object
class’s internal data structures are defined as shown in ta-
ble 3.

Finally in MT3, during the static phase modelling, a de-
signer must arrive at a representation of essential relation-
ships among candidate object classes. We follow sugges-
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Figure 5. ILC – non hierarchical relationships.

Figure 6. ILC – Queue class hierarchy.

Table 3
A table fragment showing internal class object’s static structure.

Class name Class data Instance data Comments

Messenger operState,
corrPriorityList,
queueList

PEntity peAddr, layer: peaddr
operationalState active/suspend

ServiceRBlk serviceType,
peSrcAddr,
peDstAddr,
dataRef, ref to PDU
serviceParams

tions made in [11] but representations derived from other
methodologies may as well be easily included.

It is often desirable at a certain level of abstraction to
make a distinction between a component and a part treated
as a single entity. To avoid confusion, we use the phrase
“a model element” for both cases. Model elements identi-
fied during the modelling process become abstract building
blocks that are used later in constructing software appli-
cations. Modelling tasks presented in subsequent sections

Figure 7. An example of CPNet.

assume as a starting point an understanding of the structure
of the model which was developed in the static modelling
phase. Some intuitive understanding of the model’s func-
tionality should also be developed during the static mod-
elling phase, as it is difficult to justify an object’s existence
without appreciating to some degree its functionality.

No assumption is made that static modelling has finalised
the model’s structure in any way. On the contrary, the
structure is open to further modifications and improvements
during dynamic modelling. As dynamic modelling reveals
more details to the model builder, often new elements are
retro-fitted in the static structure or existing elements are
removed.

Symbols used in figures 5–7 have the following mean-
ing:

• a diamond shape denotes a non-hierarchical relationship,

• a circle/oval shape denotes an object class,

• a horizontal bar with one or more vertical branches de-
notes composition relationship (is-part-of, belongs-to),

• an arrow labelled with ISA denotes an ISA relationship
(specialisation to generalisation).

5.3. Petri Net drawings

Dillon and Tan [11] advocate a particular class of high
level nets, called State Controlled Petri Nets (SCPN) as
a mechanism for modelling the dynamics of OO systems.
The SCPNs are a special case of Coloured Petri Nets of
Jensen [22]. By a simple example we only give the feel
for the formalism used in Colour Petri Nets (see figure 7).

Transition’s t1 activation (firing) is constrained by the
guard expression. Each place is a depository of tokens
which are arbitrary data types. The token type is determined
by its colour set (here A, B, C are defined elsewhere). The
arc expressions could involve conditional, inter-arc depen-
dent token selection, e.g., z could be replaced by “if x is
odd then 1`b else 3`b” where type(b) = B. Places will
normally have multiple occurrences of individuals of the
same type. Hence, 3`b means: take three ‘b’ individuals
of type B. Variables x, y, z have to be bound to some
tokens of the appropriate type. In general, arc expressions
have to evaluate to a token(s) of the corresponding place’s
type/colour set. In most of our examples in this paper we
omit many of the elements of CPNets to emphasise the
modelling principles when using CPNets. The traditional
control token (black dot) is regarded as a colourless token.

For the purposes of this discussion, tokens are arbitrary
messages in the communication sense rather than object-
oriented messages. These tokens are treated as objects, i.e.,
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class structured data types. Firing of transitions triggers
some procedure activation which is executed in an atomic
fashion.

While deriving PN drawings, the compositional rule in
the top-down approach is enforced. Both places and transi-
tions may be further detailed through refinement or embed-
ding. We initially develop a PN net drawing concentrating
on the model itself (i.e., its functionality). Typically, places
and transitions are replaced by more detailed nets up to a
certain abstraction level. Throughout the process, imme-
diate annotations and labels for every transition and every
place must be made.

Sometimes the appropriate name for a place is not ap-
parent, but transitions are usually well defined and can be
labelled easily. When there is difficulty in labelling one or
more transitions, one has to look at the entire model de-
veloped so far and assess informally its correctness. Very
often a transition which we think ‘must be’ at some spot in
the drawing and for which we cannot find a proper descrip-
tion indicates that either something is missing in the model,
or our understanding of what is required of that model is
insufficient.

5.4. Model element description

Model elements can be characterised as

model element = virtual wiring + behaviour + data

• model element could be a composite object, or a simple,
atomic part object – both have their own methods and
data.

• virtual wiring means a passive interface description, a
set of all possible messages plus optional parameters at
each designated point of interaction.

• behaviour is described by a set of all possible sequences
of messages for every given point of interaction organ-
ised into a set of dialogue cases (encoded using a mod-
ified TTCN notation).

• data consist of a set of references to other objects de-
scribing the object’s state.

Our treatment of the object’s method interface needs
some clarification. From figure 8, a subset of methods in
Object X accesses Object Z’s methods ‘a’ and ‘b’. Simi-
larly, a subset of methods in Object Y accesses three meth-
ods ‘b’, ‘c’ and ‘d’ in Object Z. Hence, while in theory the
interface of Z (methods a, b, c, d) is visible and accessible
to both Object X and Object Y, in practice only Object Z’s
methods ‘a’ and ‘b’ are visible to Object X and methods
‘b’, ‘c’ and ‘d’ are visible to Object Y. It is useful when
carrying out dynamic modelling to capture this ‘limited’
visibility aspect of object interactions because of the need
to map a subset of available methods associated with an
object to a PN place.

Those different interactions of objects can be modelled
through what we call points of interactions and an object
could have more then one point of interaction with other

Figure 8. Interfaces and method visibility.

objects. Points of interaction are labels identifying cor-
respondents. They are conceptually similar to Points of
Control and Observation (PCOs) [17]. In terms of net-
working protocol requirements, a PCO may coincide with
a Service Access Point (SAP) identifier. In our OO proto-
col modelling exercise, we treat SAP addressing as a totally
different issue, pertinent only to the internal protocol oper-
ation (or protocol entity addressing). As illustrated in sec-
tion 5.6, a point of interaction is mapped onto a Petri Net
place of some description. The consequence of distinguish-
ing multiple PCOs within an object is their limited external
visibility. This feature already exists in OO environments
where typically the object’s methods are grouped into pri-
vate/internal or externally visible methods. Furthermore,
for reasons of convenience, the externally visible methods
are also grouped into specialist categories. That last fea-
ture of categorisation does not usually impair the external
accessibility of methods. The main purpose of these re-
marks is to identify the use of methods against individual
PCOs/correspondents ensuring the compositional/additive
effect of dialogue structure/behaviour associated with each
model element.

We view model elements as communicating agents and
often refer to them as correspondents. In fact, it is our
conviction that the OO paradigm can meet the challenge
of building an OO system as a simulation model of a
network of communicating correspondents structured in
some specific way (including both class and communica-
tion/message exchange structuring). The strong suggestion
here is that models of communication protocols should be
built in an OO fashion according to the communication
principles which they themselves embody.

5.5. Specification of points of interaction

Once a PN has been refined to a sufficiently detailed
level (it is the modeller’s decision where to stop the refine-
ment process based on the requirements specification of
the model) then the virtual wiring for the model elements
is designed. We propose a table format as in figure 9 ad-
hering in appearance to the TTCN conventions. Note that
we distinguish all individual points of interaction acces-
sible to a model element. At least one such point exists
for every element namely, the universal interface open to
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Table 4
A fragment of class-activities table.

Class name Related activity

Startup initialise Messenger,
configure a PEntity,
initialise a PEntity

Messenger activate a PE,
suspend a PE,
deliver an SRB/process send–recv

PEntity send an SRB,
receive an SRB,
request a timer event,
cancel a timer event

InQ dequeue an SRB
enqueue an SRB

TimerEvtSrc schedule timer event,
cancel timer event

any correspondent. Typically, there will be an ‘internal’
point of interaction as well that allows methods within an
object to invoke other private object’s methods. Points of
interaction are defined directly from the PN drawing as
specifically named places. The example in figure 9 indi-
cates one or more method names associated with each point
of interaction. The list of methods is subject to further im-
provements.

5.6. Model element’s behaviour encoding

Based on a thorough understanding of class definitions
and their static relationships within the problem domain, the
designer, in the modelling step MT4, is required to develop
a good grasp of each class’s functionality. Again, as table 4
illustrates, this is done best in the tabular form. It should
be clear that the MT4 step already indicates what methods
are applicable for each of the classes. During the previous
modelling steps each class’s functionality was informally
discussed but here we register the initial set of applicable
methods in preparation for the step MT6.

After completing MT4, a designer develops a CPNet
representation/drawings (see section 5.7) in succession of
refinements and/or embeddings and then encodes message
sequences. The basis for this modelling task is the final,
unfolded PN drawing for a model element. A simple map-
ping takes place:

• each model element’s labelled place is mapped into a
TTCN PCO identifier,

• in general, a labelled transition is mapped into a method.

The mapping of transitions requires a note of cau-
tion. During the construction of method sequences, it is
not always obvious whether we refer to another object’s
method/functionality or whether we need another method
name within the currently activated object. To locate the
object membership of a given method correctly, we need a
good grasp of the static model’s features (particularly class
structuring) and their purpose.

We use the following amendments to the TTCN notation
(figure 9):

1. Each table identifies a Model Element and the Refer-
ence at the top. For cataloguing purposes, one might
add some form of a Petri Net Drawing identification
associated with the element’s behavioural or virtual
wiring tables.

2. The Verdict part in TTCN tables is omitted here.

3. We have retained the Constraints part with the con-
straints stated explicitly for easy visual verification.
The TTCN notation uses as a supporting tool the
ASN.1 notation which in our case could be very con-
venient for the design and implementation phases.

4. We have added one pseudo-event called RETURN to
verify objects returned by synchronous communication
based on the Call-a-method/RETURN-an-object con-
vention existing in most of the OO execution environ-
ments.

5. TTCN does not cater for concurrent processing. There
is no ‘execute in parallel’ type operator. We contend
that model elements executing concurrently and com-
municating asynchronously should be documented in
such a way that their role in the model is not ambigu-
ous. Usually some appropriate description of additional
constraints pertaining to the model element’s role as an
independently operating agent is sufficient. We utilise
TTCN notational convention by encoding concurrent
interfaces as alternatives. The operational mode should
be clear from the PN drawing and the additional docu-
mentation. Alternative solutions should be investigated
in the future. Usually, independently operating agents
will have the FOREVER label shown and referred to
in the TTCN style behavioural table.

6. Labels denoting points of interaction are explicitly
stated in front of “!” and “?” event designations and
those are followed by the method names. There is only
one generic ‘recv’ method. The internal ‘send’ method
always converts the private ‘send’ into the destination
object’s ‘recv’. Should the receiving object require
additional checking of the sender’s identity, such in-
formation is available through the current execution
context of the receiving object.

7. At the end of each behavioural table we make a check
list of the externally visible events/methods, as opposed
to the ones used internally by the object’s methods.

8. TTCN test cases are event trees with parameters passed
to each tree as required. We relaxed that treatment
since there is no need to use parameters in the same
way. Typically the notation “! recv(srb)” describes an
activation of the ‘recv’ method with the reference to
a ServiceRBlk class instance passed in ‘srb’. When
required, this notation could be supplemented with ad-
ditional detail in the constraints column. For exam-
ple, “srb.type = U Data Req” indicates the compulsory
value within the srb object instance reference.
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Figure 9. Interfaces and method visibility.

5.7. An example of PN based modelling

Only some steps of the gradual, top-down approach us-
ing Petri Nets are given here. Dotted elliptic/rectangular
shapes are place model elements and transition model el-
ements respectively with their refinements shown within.
Black-edged rectangles usually show the environmental
boundaries. We start from some general notion of Net-
Process interacting with a communications device (fig-
ure 10). Both are a part of the local operating system
environment. In general, we treat places and transitions as
objects in our model. Places are usually the passive accep-
tors of messages and transitions are active elements which
transform messages and produce new ones. Note that we
distinguish between messages flowing through places and
methods (also messages in OO parlance).

The main rule applied in this process is that places
are replaced by S-sets and transitions are replaced by
T-sets, as described in Reisig [30,31]. After some ini-
tial refinements we arrive at the view presented in fig-
ure 11. Note that although the main model object is called
NetProcess, the interaction points labelled as ‘DeviceServ-
in’ and ‘DeviceServ-out’ are PCOs of both the NetProcess
and ExternalDev objects, the latter being external to our
model. Hence, for each model element we always include
its externally defined points of interaction because they are
a part of its virtual wiring. There are more elements inter-
acting with the NetProcess object then shown in figure 11.
From the problem domain description we know that they all
are independent processes. After a few more refinements,
we arrive at the ILC model view shown in figure 12 (the

Figure 10. An example of behaviour encoding.

NetProcess object). In this dynamic model enhancement,
we retain as much as possible of those model elements de-
rived in the previous static phases [14]. Each individual
element has the same refinement procedure applied to it
recursively until a sufficient level of detail is achieved to
warrant unambiguous design and implementation decisions.
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Figure 11. An initial top level PN.

Figure 12. A Petri-Net representation (Channel-Agency variety) of the
ILC model.

As the top-down PN structure allows for multiple levels of
control abstraction, it also allows related abstractions for
message passing. The latter are maintained through virtual
wiring and interface specs.

Note that each of the detailed nets will have appropri-
ate documentation created for it in the form of the virtual
wiring (figure 9) and behavioural tables (figure 10). This
forms the basis of a catalogue of parts created by the mod-
elling process. In our implementation, we have introduced
a hierarchical system of identifiers for each drawing and ta-
ble (not shown here), reflecting the top-down PN structure.

Taking as a starting point figure 12 and then following
through figures 13–15 it is easy to see how a composition
of individual PNets has been achieved. The examples given
represent only a selected subset of objects for illustrative
purposes. Note also how interfaces (places) are labelled to
achieve ‘connectivity’ with other objects.

The TTCN style message/method sequencing follows
naturally from a PNet representation. For instance, com-
pare figure 13 with figure 16.

6. Dynamically adjustable ARQ

6.1. Introduction

Various Automatic Repeat Request (ARQ) strategies are
implemented to suit different protocol requirements in many

Figure 13. The top level control of a PE.

Figure 14. PE/ABP internal structure.

Figure 15. ABP service primitive processing.

layers. Typically, they exist in the Data Link layer. They
may even be a part of an end-user written database query
application program utilising IP interface system calls.
Here we assume the following: a Data Link (DL) protocol
entity (PE) provides services to its user (a Network Layer)
protocol entity utilising services of a Physical Layer (PHL)
protocol entity through well-defined interface points called
Service Access Points (SAPs).

The ARQ error handling strategies utilise either stop-
and-wait, selective repeat or continuous transmission re-
gimes. There are a number of continuous transmission
ARQ variants described in the technical literature, each
with its own throughput efficiency characteristics making
it suitable only for some types of data exchange [6,33,38].
Most of them assume that the transmission channel error
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Figure 16. An example of PE’s message sequencing.

rate does not change considerably over a period of time.
However, in circumstances such as those existing in satel-
lite or cellular radio communication systems, transmission
of data is highly volatile with randomly changing error rates
and long propagation delays. These conditions require the
adoption of a flexible, dynamically adjustable ARQ strategy
such as the one described in Yao [38].

Here, the major development phases of the ARQ han-
dler prototype are documented. It assumes a continuous,
dynamically modifiable ARQ strategy following the algo-
rithm described in Yao [38]. Two particular algorithms
are utilised, the basic Go-Back-N [33] and Birrell’s Pre-
emptive Retransmission [6] (also called n-Copy).

Due to space limitations, we will show only some as-
pects of the proposed methodological approach.

6.2. Object model of the ARQHandler

The ARQHandler may be treated as an object based re-
useable component with well-defined interfaces. The gen-
eral structure of a PE (see figure 4) requires a component
element which we call the DataTransporter. It handles in-
bound and outbound traffic within a PE and calls upon

Figure 17. A partial view of a PE’s major components.

services of more specialised object components (see fig-
ure 17).

For our purposes, it is sufficient to distinguish messages
containing ‘data’, ‘ack’ or ‘nack’. These messages are
carried in objects called ServiceRequestBlocks (SRB). An
SRB represents an implementation of an abstract service
primitive. SRBs contain all the required information about
the service which a PE provides to its user (another PE
in the layer above). Normally, a PE would handle traf-
fic in both directions (to and from the external network),
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thus implementing sender and receiver elements. Initially,
we concentrate on a sender handling the outbound traffic
and responses received from the remote PE via the feed-
back channel. How physically the channel transmission is
implemented (full-duplex, simplex channel(s)) is not impor-
tant. Also, other parts of a PE’s design such as connection
management and the proper DL protocol operation (such as
in LAPB, LAPD) are omitted.

6.3. Some assumptions

The main purpose here is the derivation of the ARQ han-
dler component which is the major part of the OutTrans-
ferControl. It might be the only part with some interfacing
code. The message type labelled as ‘out-data’ in figure 17
represents a number of octets which are received and have
no special meaning on this level. This data is handed over
by some other software components (not shown) for deliv-
ery to the remote receiver.

It is important to note that the various ARQ algorithms
assume the same operational mode of the remote receiver.
This is the basis for implementation of the adaptive ARQ
schemes such as the one described in [38]. Also, when the
ARQ strategy adjustment takes place (the ARQ algorithm
switch is totally transparent) the acknowledgment queue
(AckQ) contents remain intact. The newly chosen ARQ
algorithm continues processing out-data, nacks and acks as
before the switch.

All (re-)transmissions, error checking and acknowledg-
ment handling are performed internally by the ARQ handler
component according to the available various ARQ strate-
gies. These strategies are chosen dynamically depending
on the inferred channel error rate. In consequence, the ob-
jects implementing the low error rate or the high error rate
handling algorithms may be executing at any time instance.
Following suggestions in [38], these two objects implement
respectively the Go-Back-N [33] and n-Copy [6] ARQ al-
gorithms. Furthermore, it is assumed that the DL protocol
data units (PDUs) are well-defined data structures recog-
nised by both the receiver and sender. All sequence num-
bers are used modulo N , where N is some number agreed
by the sender and receiver. The CRC or some other er-
ror checking algorithm is used. Moreover, for the sender’s
side, the round trip propagation delay, the window size, the
transmission repeat factor, the maximum number of octets
which can be sent in one transmission attempt over the
chosen communication channel (max DL PDU size), the
threshold values of Alpha (for counting Nacks) and Beta
(for counting Acks), and a timeout value are all suitably
chosen.

6.4. Dynamic ARQ selection algorithm

The ARQ strategy is selected based on constant monitor-
ing of successful (Ack) and unsuccessful (Nack) transmis-
sion attempts and inferring on that basis the current channel
error state [38]. There are two constants which are arbi-
trarily chosen, Alpha and Beta, and a counter AckCount.

Table 5
A list of candidate objects and their attributes.

Class name Attributes Comments

ArqHandler Communicates with
AckQ and AckControl,
responsible for window control,
(re-)transmissions,
message sequence number
generation, timeout handling
and timer source handling

MaxWindowSize
currentWindowSize
SeqNumModulus
assignNextId Id for the next data message
RepeatMsg For n-Copy (re-)transmissions
ackControlRef A pointer
ackQRef A pointer

AckControl Responsible for interpretation of
Acks and Nacks, reconfig., i.e.,
switching between the two ARQ
strategy’s, execution of ARQ
algorithms in respect
to the AckQ contents

Alpha
Beta
ackCount
nextAckId Next expected sequence

number
arqHandlerRef A pointer
ackQRef A pointer

AckQ Communicates with
ArqHandler and AckControl,
responsible for generation of
QItem objects and storing them
in chronological order, queue
maint. (additions, deletions of
QItems), some ARQ strategy
dependent specialised functions

queueLength The optimal queue organisatio
is the implementation time
decision

queueRef The actual queue pointer
QItem id The sequence number

timoutCount
status AckPending, Retransmit
RepeatMsg
outDataRef A pointer

The sender may be in either the low error rate (L) or high
error rate (H) state. In the L state the Nacks are counted
and compared with the Alpha value. In the H state, the
Acks are counted and compared with Beta value. When
the threshold value is reached, the counter is cleared and
the transition to the other state takes place with the appro-
priate adjustment of the sender’s ARQ strategy algorithm.

6.5. Conceptual analysis

The problem description analysis, supported by the study
of representative research papers, leads to the list of candi-
date classes and their attributes given in table 5.
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Figure 18. ArqHandler’s static relationships.

Figure 19. Top level component virtual wiring.

Figure 20. ArqHandler virtual wiring.

6.6. Essential relationships

Note that LErrTr and HErrTr facilitate the ARQ strat-
egy specific data transfer. They differ only in the initiali-

Figure 21. AckQ CPNet representation.

Figure 22. AckControl CPNet representation.

sation routines. Otherwise, all functionality is provided by
the common super-class ArqHandler. Similarly, LerrArq
and HerrArq differ in acknowledgment treatment for differ-
ent ARQ strategies. A further requirement is a transparent
switch between (LErrTr, LErrArq) and (HErrTr, HErrArq)
instances of object class pairs.

6.7. Inter-object virtual wiring

By creating virtual wiring documentation such as that
shown in figure 9, it may be modelled as in figures 19 and
20. Note that the labelled points of interactions will become
(in the next design stage) a part of Petri Net representation
(see refinements in figures 21–23).
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Figure 23. ArqHandler CPNet representation.

6.8. A CPNet model element representation

Each model element can now be treated on its own mer-
its and a suitable Petri Net can be drawn, giving a new
design perspective on each individual object’s behaviour.
Note that CPNets become quite simple in the context of in-
dividual object class definitions. Points of interactions be-
come places and external virtual wiring can be interpreted
as a fusion of places, connecting specified Petri (Sub-)Nets
that correspond to various object classes. Alternatively, by
convention we omit (to avoid cluttering) PN transition bars
between any two connected POIs. Consider figure 20 as
an example. Three objects ArqHandler, AckControl, and
AckQ can be abstracted to PN places that are connected
through appropriate transitions (omitted in figure 20 by con-
vention) between corresponding places (POIs). Thus, the
ArqHandler’s virtual wiring of figure 20 represents a valid
Petri net (as a meta-level control structure). Omitted transi-
tion bars represent generic message transfer (send/receive)
between the POIs of the appropriate correspondents. Also,
note that after the CPNet specification stage, the initial ob-
ject virtual wiring might be augmented with some additional
points of interactions (e.g., ‘infoDone’) due to new require-
ments forcing a designer to synchronise some of the events
(method execution). In ArqHandler, we have enforced the
rule of processing one message at a time. It is always in-
structive to analyse created CPNets from the point of view
of concurrent executions. Note that some transitions might
produce a null result (without generating an output token).

The full ArqHandler prototype documentation is lengthy
(in excess of 80 pages). The analysis of virtual wiring of
objects and the derivation of CPNet representations pro-
vides a new way of looking at any object’s behavioural
and other supporting functionality. In our prototype, the
achieved economy of function use was striking (6–10 meth-
ods per object class). CPNets provide another plane of
object behaviour specification, a meta-level control of the
underlying object model.

The design of the ARQ protocol indicated above, illus-
trates the power of the methodology for design of network-
ing software of the sort found in mobile networks.

7. Conclusions

Dynamic interactions in OO representations have al-
ways posed difficulties for system modellers and designers.
These difficulties are even more strongly emphasised when
modelling and designing networking protocols. It is there-
fore important to develop a good mechanism for modelling
the object interactions. We focused on the way a protocol
implementation can be derived through the OO modelling
process involving both static and dynamic features.

In this paper, we have shown how the use of a very
general form of Petri Nets can serve the purpose of dynamic
object modelling and detailed message sequence derivation
in a compositional fashion. The method lends itself easily
to the specification of re-useable model elements.
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By defining objects, their properties and interactions,
one obtains a good understanding of the ramifications of
protocol implementation within particular environments or
within a particular software tool. During the dynamic mod-
elling stage the introduction of new object classes may be
required.

The advantages of the use of Petri Nets are well un-
derstood and do not need restating. The TTCN notation
has proven to be an excellent tool for precise message se-
quence encoding mainly due to its simplicity, visual appeal
and well understood semantics. It also allows for the in-
corporation of automated design tools. Both Petri Nets and
TTCN encoding can be used for verification and testing as
well as for modelling, design and implementation of net-
working software of the sort found in mobile networks.
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