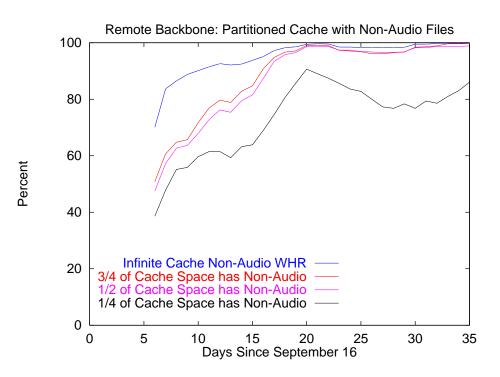
For Further Information

http://www.cs.vt.edu/~chitra/www.html

Contents:

- workload trace files
- trace manipulation tools
- tcpdump filter with http decode to write Common Log Format
- simulation (with source code)

Work In Progress


- 1. Reconciling our simulation results with others (Univ. Saskatchewan, Korea)
- 2. Extended study with non-educational workloads
- New policy: latency-based (e.g., European users want North American documents to remain in cache)
- 4. Experimental observation of modified Harvest cache that uses SIZE, LFU, latency policies (looking for sites that want to run it...)
- 5. Help for dynamic documents that can't be cached:

Delta-based encoding in HTTP

Conclusions

- HR, WHR of university workloads highly influenced by academic calendar
- To reduce server load (HR), use SIZE as primary key.
- Secondary key was immaterial with SIZE as primary key.
- To reduce network volume (WHR), best policy is inconclusive, but worst is size.
- Hyper-G's key ordering is backwards for reducing server load (HR).
- Size is a natural policy to use in two level caches. HR,WHR are low if primary cache large.
- Partitioning cache by media type was effective in one server with popular audio Web site.

Non-audio partition

Partition size of 1/4 reduces WHR, but larger partitions have no penalty after about day 20.

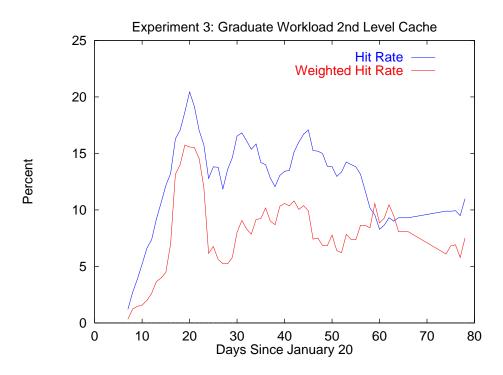
Workload BR, audio partition

In log run, partitioning cache doesn't affect WHR.

Partition size (1/4, 1/2, 3/4) doesn't make much difference after day 14.

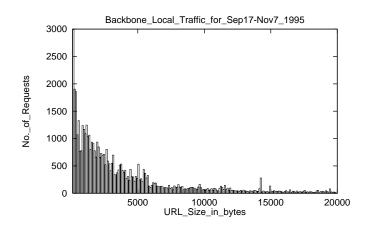
Exp. 4: Partitioning Cache by Media

Simulate

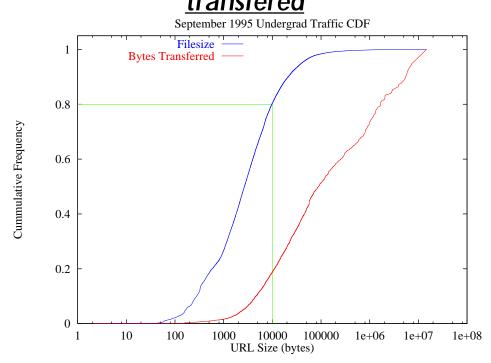

- cache size = 10% of max needed
- two partitions: audio and non-audio

Exp. 3: Two Level Caching

Simulate


- primary cache size = 10%, 50% of max needed for no replacement
- secondary cache size = infinite
- best primary key for HR: SIZE

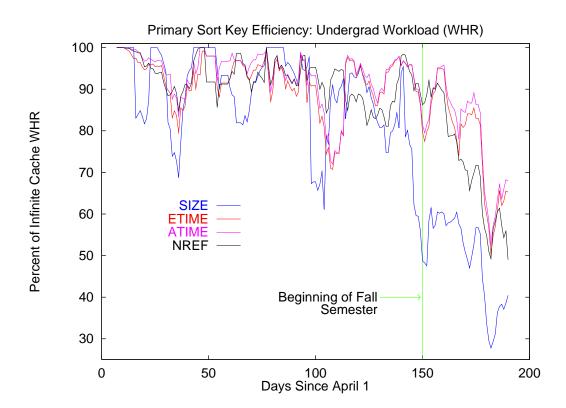
Workload G (10% of max needed):



Why Size?

Distribution of doc sizes requested

<u>Cumulative distribution of bytes requested and</u> transfered

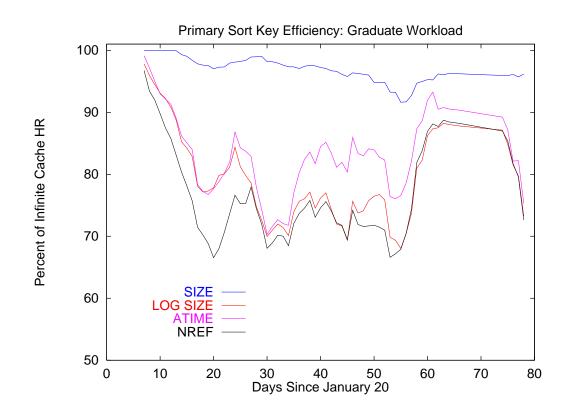


Why Size?

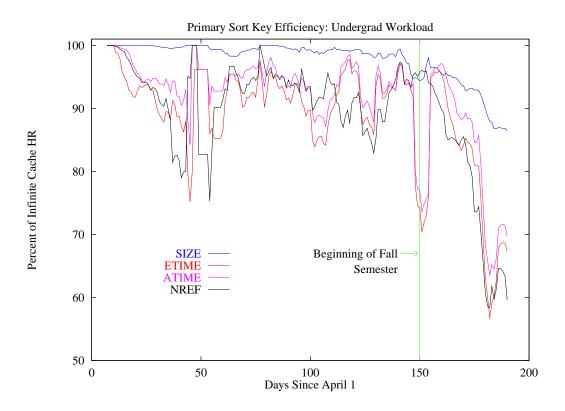
- Most accesses are for smaller documents
- A few loarge documents take the space of many small documents
- Concentration of large interreference times

Exp. 2: Weighted Hit Rate

Workload U:


Size is worse than other keys!

Weighted Hit Rate


- Results on best primary key are inconclusive
- Most references are from small files, but most bytes are from large files

Exp 2: Second Workload (Cache Size = 10% of max needed)

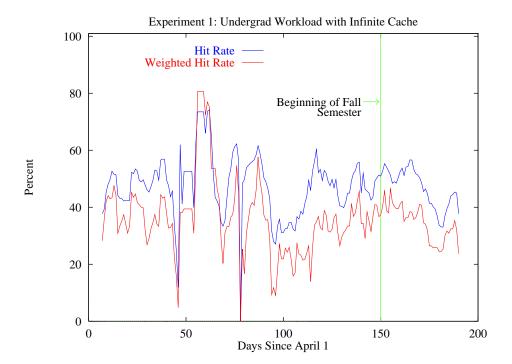
Size is better by a bigger margin...

Experiment 2: Primary Key Comparison (Cache Size = 10% of max needed)

Exp 2: Removal Policy Comparison

Simulate

- cache size = 10%, 50% of max needed for no replacement
- all primary keys
- certain primary/secondary combinations


Graph U (undergrad) --SHOWN--:

- SIZE superior primary key (with random secondary)
- Secondary key shows only marginal improvement when primary key has many ties

-16-

Other workloads:

• SIZE superior in all workloads

Exp 1: Max Theoretical HR, WHR

Simulate infinite cache (plot 7 day moving average)

Workload U (undergrad) --SHOWN--:

- Seasonal variation (e.g., new students in fall access new URLs)
- Cumulative HR=44.9%, WHR=31.4%

Workload C (classroom):

- Did not show high hit rate as expected
- Increased HR near exams

Workload BR (remote clients on backbone):

 Hit rates over 90% due to proximity of proxy to servers

Simulation Assumptions

1. Valid Access:

- a legal request
- document "passes" the cache
 Simulate only requests with HTTP return code 200.

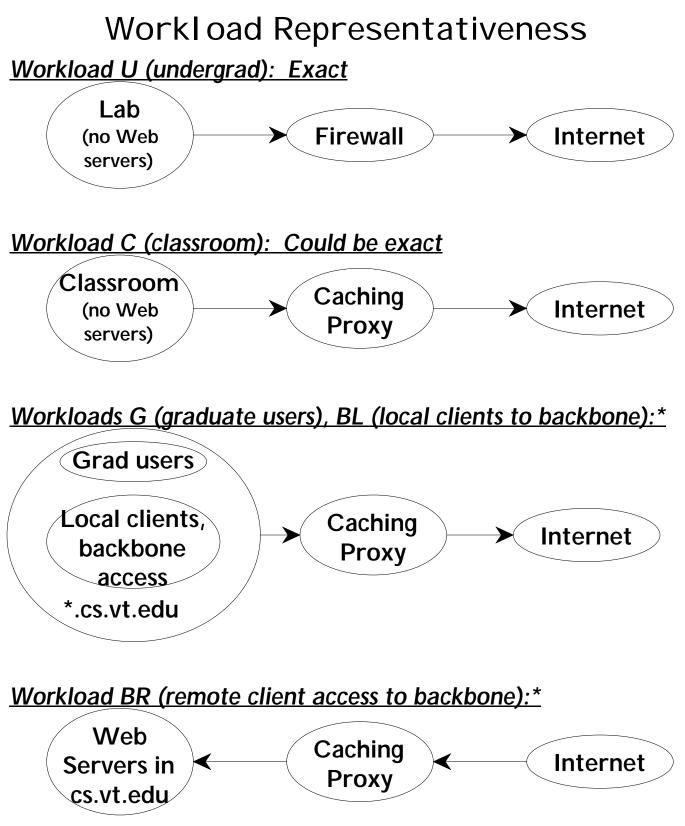
2. Definition of hit:

In reality, a "hit" is either

- proxy has doc, and doc estimated consistent
- proxy has doc, doc estimated inconsistent, and CONDITIONAL-GET returns no doc

But 3 workloads traces lack last-modified times. Thus we use alternate definition:

Hit = match in URL and size


- 3. When URL in common log file has size zero:
 - If URL appeared earlier with non-zero size, use last size in simulation
 - Otherwise URL is probably a dynamic doc don't cache in simulation

Experiment Overview

- Trace-driven simulation
- Compare removal policies, viewed as sorting problems
- Answer:
 - 1. Maximum theoretical HR, WHR
 - 2. Best replacement policy
 - 3. Effectiveness of second level cache
 - 4. Effectiveness of partitioning cache by media type (Question raised by Kwan, McGrath, Reed, Nov. 95, IEEE Computer)

Workload Comparison

Work-				Mos	st
load	Days	Accesses	Size (Gb)	%Refs	%Bytes
U	185	188,674	2.26	graphics	graphics
С	95	13,127	0.15	text	graphics
G	78	45,400	0.56	graphics	graphics
BR	37	227,210	9.38	graphics	audio
BL	37	91,188	0.64	graphics	graphics

*Measures reported are upper bounds on performance

Sorting Key Example

Time
URL

Size(kB)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	B	C	B	B	A	D	E	C	D	F	G	A	D	H
1.9	1.2	9	1.2	1.2	1.9	15	8	9	15	0.3	1.9	1.9	15	5.2

URL	Α	B		D	E	F	G	H
SIZE	1.9	1.2	9.0	15.0	8.0	0.3	1.9	5.2
$\lfloor \log_2(\text{SIZE}) \rfloor$	10	10	13	13	13	8	10	12
ETIME	1	2	3	7	8	11	12	15
ATIME	13	5	9	14	8	11	12	15
NREF	З	3	2	3	1	1	1	1

Primary Key	Secondary Key	Sc	orted l	ist oj	f UR	Ls a	t tim	ϵ 15-	+
SIZE	ATIME	D^*	C	E	H	G	A	B	F
$[\log_2(SIZE)]$	ATIME	E^*	C	D	H	B	G	A	F
ETIME	n/a	A*	B	C	D	E	F	G	H
ATIME	n/a	B *	E^*	C	F	G	A	D	H
NREF	ETIME	$ E^* $	F	C	H	C	A	B	D

Removal Algorithms

(What to Remove When Cache is Full)

In use or in literature:

- LRU
- Hyper-G: LFU, then LRU, then SIZE
- Pitkow/Recker: server algorithm that replaces files entering on oldest days first, then LRU in current day
- LRU-MIN: In round *i*, use LRU on documents larger than 2^{-*i*} of incoming doc size

Our study -- sorting keys:

SIZE	document size (bytes)
ETIME	time doc entered cache
NREF	number references to doc
ATIME	time doc last accessed

Two more motivated by literature, which exercise secondary key to greater degree:

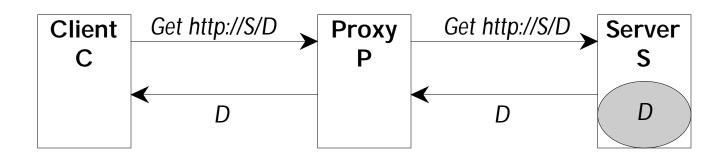
- DAY(ATIME) day doc last accessed
- Log₂ SIZE

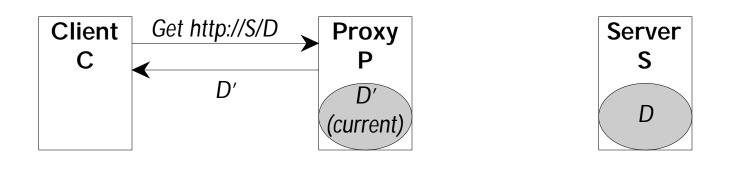
Choice of Performance Measures

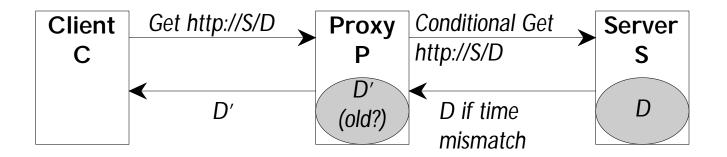
Three objectives of proxy caching:

- 1. Reduce number of requests reaching server
- 2. Reduce volume of network traffic
- 3. Reduce end user's latency

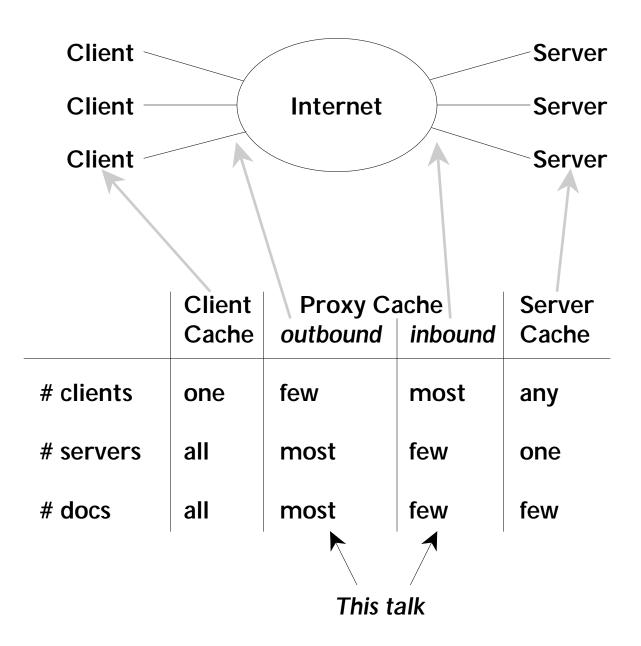
Corresponding measures:


- Hit Rate (HR):
 % requests satisfied by cache (shows fraction of requests not sent to server)
- 2. Volume measures:
 - Weighted hit rate (WHR):
 % client-requested bytes returned by proxy (shows fraction of bytes not sent by server)
 - Fraction of packets not sent
 - Reduction in distance traveled (e.g., hop count)
- 3. Latency time


We use HR and WHR.


Caching Proxies Limitations

- Static and infrequently changing documents only
- Cache can't always recognize dynamic documents (e.g., script writers must use no-cache pragma in HTTP 1.1)
- Cache returns old document version if consistency estimation is wrong
- Copyright laws could legislate proxies out of existence
- Pay-per-view not accommodated today


WWW Caching Proxies

Cache Locations

Why Caching Proxies?

<u>Problem:</u> Multiple, identical copies of WWW documents pass through same network links

- Wastes network resources
- Increases server workload
- Increases latency seen by user

Solution: Migrate document copies from servers to users

- Distribution model
- Caching model [An old idea - FTP: Danzig, Hall, Schwartz SIGCOMM93]
 - At Web client
 - At Web server
 - In network through proxy servers

Outline

- 1. WWW Caching Proxies
- 2. Choice of Performance Measures
- 3. Removal Algorithms
- 4. Workloads
- 5. Experiments
- 6. Conclusions

Removal Policies in Network Caches for WWW Documents

Sigmetrics 96

Stephen Williams Marc Abrams Ed Fox Ghaleb Abdulla

30 August 1996 Department of Computer Science Virginia Tech Blacksburg, VA

Charles R. Standridge

Industrial Engineering FAMU-FSU College of Engineering Tallahassee, FI

Supported by NSF SUCCEED consortium, NSF Educational Infrastructure grant, and NSF Research Infrastructure grant