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Abstract—The paper considers the problem of minimizing the en-
ergy used to transmit packets over a wireless link via lazy schedules
that judiciously vary packet transmission times. The problem is mo-
tivated by the following key observation: In many channel coding
schemes, the energy required to transmit a packet can be signif-
icantly reduced by lowering transmission power and transmitting
the packet over a longer period of time. However, information is
often time-critical or delay-sensitive and transmission times cannot
be made arbitrarily long. We therefore consider packet transmis-
sion schedules that minimize energy subject to a deadline or a delay
constraint. Specifically, we obtain an optimal offline schedule for a
node operating under a deadline constraint. An inspection of the for-
m of this schedule naturally leads us to an online schedule which is
shown, through simulations, to be energy-efficient. Finally, we relax
the deadline constraint and provide an exact probabilistic analysis
of our offline scheduling algorithm. We then devise a lazy online
algorithm that varies transmission times according to backlog and
show that it is more energy efficient than a deterministic schedule
that guarantees stability for the same range of arrival rates.

I. INTRODUCTION

Ubiquitous wireless access to information is gradually
becoming reality. Dedicated-channel voice transmission
(as in most existing cellular systems, e.g. GSM, IS-95)
has already become a widespread and mature technology.
Packet-switched networks are being considered for hetero-
geneous data (combined voice, web, video, etc. ) to effi-
ciently use the resources of the wireless channel. Wireless
LANs and personal area networks, where packetization is
more suited to the bursty nature of the data, are being de-
veloped and deployed. More recently, ad-hoc networks
and networks of distributed sensors are being designed u-
tilizing the robustness and asynchronous nature of trans-
missions in packet networks.

A key concern in all of these wireless technologies is
energy-efficiency. The mobility of a hand-held wireless
device is limited by the fact that its battery has to be reg-
ularly recharged from a power source. In a sensor net-
work, the sensors may not be charged once their energy
is drained, hence the lifetime of the network depends crit-
ically on energy. It has therefore been of wide interest
to develop low power signaling and multiaccess schemes,
signal processing circuits and architectures to increase bat-
tery life.

There has been a lot of research on transmission power

control schemes over the past few years (see, for exam-
ple,[3], [8], [10], [11], [13], [16], [18]). The chief moti-
vation of these schemes, however, has not been to directly
conserve energy but rather to mitigate the effect of inter-
ference that one user can cause to others. The specific
aims ranged from obtaining distributed power control al-
gorithms to determining the information theoretic capacity
achievable under interference limitations ([1],[12]).

Whereas most power control schemes aim at maximiz-
ing the amount of information sent for a given average
power constraint, a recent study that we are aware of
([2]) considers minimizing the power subject to a speci-
fied amount of information being successfully transmitted.
Rather than minimizing power, [5] considers the question
of minimizing energy directly; and compares the energy
efficiency, defined as the ratio of total amount data deliv-
ered and total energy consumed, of several medium access
protocols.

In this paper we consider the problem of minimizing the
energy used by a node in a wireless data network to trans-
mit packetized information within a given amount of time.
The setup attempts to model a number of realistic wire-
less networking scenarios. (i) A node with finite lifetime
and finite energy supply such as in a sensor network [14].
(ii) A battery operated node with finite-lifetime informa-
tion; that is, information that must be transmitted before a
deadline. (iii) A battery operated node that is periodical-
ly recharged. In this case minimizing transmission energy
ensures that the node does not run out of energy before it
is recharged.

To minimize transmission energy we vary packet trans-
mission times and power levels to find the optimal sched-
ule for transmitting the packets within the given amount
of time. The idea of minimizing energy by varying packet
transmission time is based on the following key observa-
tion: It is possible to reduce energy by lowering transmis-
sion power and transmitting the packet over a longer peri-
od of time. Clearly more time cannot hurt, since one can
always do nothing during the extra time. But one can do
much better– examples in the the next section demonstrate
that many channel coding schemes can take advantage of



this extra time to significantly reduce transmission energy.
In particular, the examples suggest that when the channel
is time-invariant the packet transmission energy is strictly
decreasing and convex in transmission time.

The above discussion implies that it makes sense to
transmit information over a longer period of time to con-
serve energy. However, since all packets must be transmit-
ted within the given amount of time, the transmission time
of any one packet cannot be arbitrarily long as this would
leave too little a time for the transmission of future pack-
ets and increase the overall energy spent. The rest of the
paper attempts to understand this trade-off precisely, and
to exploit it to devise energy-efficient schedules.

Outline of paper

In Section II we set up the framework for modeling the
minimum energy packet transmission scheduling problem
for a node with a finite lifetime

�
and introduce notations

to be used throughout the paper. In Section III we find the
energy-optimal offline transmission schedule. We call this
schedule lazy since it fully exploits any lulls in packet ar-
rival times to conserve energy by slowing down transmis-
sion. In Section IV we formulate the optimal offline sched-
ule in a manner that naturally suggests an online schedule.
We show that this online schedule is quite energy efficient
– it achieves average energy that is surprisingly close to the
optimal offline algorithm. The comparison is done using
simulations since it is hard to conduct analytical compar-
isons for finite

�
.

By letting
�����

and assuming Poisson arrivals, we
are able to conduct an exact analysis of the optimal of-
fline schedule (as outlined in the Appendix). This not on-
ly gives us insight into how to design energy-efficient on-
line schedules, but also suggests a formulation of the on-
line scheduling problem where we seek to minimize trans-
mission energy subject to average packet delay constraint,
instead of the deadline constraint

�
. Under this formu-

lation we find that a lazy schedule that transmits packets
for longer times when the backlog is low and for shorter
times when the backlog is high outperforms the determin-
istic schedule which uses a fixed packet transmission time
for all packets.

This is an interesting comparison because among sched-
ules that are independent of the packet arrival process
(and hence are oblivious of backlogs), the deterministic
schedule achieves the smallest average delay1, which im-
plies that it has the highest transmission times, and hence
the lowest energy. The fact that lazy schedules are more
energy-efficient than the deterministic schedule, therefore,
demonstrates the need to take advantage of lulls in packet
arrival times.

�
By the well-known folk theorem “determinism minimizes delay”

[17].
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Fig. 1. Packet arrivals in � �	��
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Finally, Section V outlines further work and concludes
the paper.

II. THE MODEL AND NOTATION

We begin by modeling a node whose lifetime is finite,
equal to

�
, say. Consider a transmitter-receiver pair. The

transmitter needs to send a random number, � , of packets
that arrive in the time interval � ��� ��� (see Figure 1). The
packets are all assumed to be of equal length2. In the fig-
ure, the arrival times of packets, ��� , are marked by crosses
and inter-arrival epochs are denoted by ��� . Without loss of
generality, we may assume that the first packet is received
at time � . For convenience we define ����� ��� ��� ,
and hence � ��  "! �#�$� � . Let %& �(' & !)� &+* �+,+,+,-� & � � be
the transmission durations of the packets as obtained by a
schedule. All packets must be transmitted to the receiver
within � ��� ��� .

Definition 1: A vector %& �.� & !",+,+, & �0/ of transmission
durations is feasible if
(i) For 13254768� , �:9�  "! & �<; �:9�  "! �#� .
(ii) � ��  "! & �<2 � .
In words, no packet may begin transmitting before it has
arrived and all transmissions must be over by time

�
.

We seek an answer to the question: How should the
scheduler choose %& so that the total energy used to transmit
all the packets is minimized?

Let =>' & � denote the energy required to transmit one
packet over a duration & . The only assumptions we make
about =>' & � are:
(i) =>' & � ;?� .
(ii) =>' & � is monotonically decreasing in & .
(iii) =>' & � is strictly convex in & .

Assumption (i) is obvious. We shall now demonstrate
that assumptions (ii) and (iii) hold by considering the en-
ergy required to reliably transmit one bit of information
over a wireless link. The following two examples assume
a discrete time Additive White Gaussian Noise (AWGN)
channel model for the wireless link and consider two dif-
ferent channel coding schemes.
1. Optimal channel coding: Consider an AWGN wireless
channel with average signal power constraint @ and noise
power A . As is well known [6], the information theo-
retically optimal channel coding scheme, which employs
B
This assumption is made for simplicity of presentation. The results

easily extend to the general case of variable packet lengths.
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Fig. 2. Energy per bit vs. transmission time with optimal coding.

randomly generated codes, achieves the Shannon channel
capacity given by� ! � 1��� ��� * � 1	� @A�
 bits/transmission , (1)

More precisely given any � 6
� 6 1 information can be
reliably transmitted at rate � ��� � ! . To determine the
energy per bit = , note that ��� !� can be interpreted as the
number of transmissions per bit and substitute in equation
(1) to get

= ���	@ ���	A ' ������ � 1 � ,
It is easy to see that = is monotonically decreasing and
convex in � , and that as � approaches infinity the energy
required to transmit a bit, =�� � *� � � � � 1 , ������� . Figure
2 plots = vs. � for A(� 1 and �8� ��, ��� . The range of �
in the plot corresponds to SNR values from 20dB down to
0.11dB. This is a typical range of SNR values for a wire-
less link. In this range = can be decreased by a factor of
20 by increasing transmission time and correspondingly
decreasing power.
2. A suboptimal channel coding scheme: To show that
our observation holds for other, suboptimal channel cod-
ing schemes, we consider scheme using antipodal signal-
ing [15] and binary block error correction coding again
over an AWGN wireless link. It can be shown that the
minimum error probability per bit using antipodal signal-
ing over an AWGN channel is given by ��!#"%$ @A�& �
where ! is the well known Gaussian ! -function. Using
this signaling scheme the channel is converted into a bi-
nary symmetric channel (BSC) with cross over probabili-
ty  . The optimal binary error correction coding scheme
achieves the Shannon capacity for the BSC, given by

0 0.5 1 1.5 2 2.5
0

1

2

3

4

5

6

7

8

9

10

E
ne

rg
y,

 w

2 2 2 2 2 2 
Transmissions, s 

Fig. 3. Energy per bit vs. transmission time for the suboptimal coding
scheme. � * � 1 �(' '  � bits/transmission �

where
' '  � is the binary entropy function. Thus for any

�$6)� 6 1 , information can be reliably transmitted at rate���*� � * . Again interpreting � � !� to be the number of
transmitions per bit, the energy per bit can be computed as
a function of � as depicted in Figure 3 for A � 1 and � �
��, ��� . Note that again = is monotonically decreasing and
convex in � , and converges to a limit =�� � � , 1	��� , which
is, as expected, larger than that using optimal coding. The
range of � in the figure corresponds to SNR between 20dB
to -3.7dB. In this range = drops by over a factor of 8.

The assumption that energy is a decreasing function of
transmission duration implies that the schedule must allow
each packet to be transmitted over as long a time as possi-
ble. However, since all packets must be transmitted within�

units of time, the transmission time of any one pack-
et cannot be arbitrarily long as this will leave too little a
time for the transmission of future packets and increase
the overall energy spent. But, it is possible that no packets
may arrive in the future and therefore the node may well
have transmitted the current packet until time

�
!

It is precisely this tension we wish to address. We first
consider the problem of designing an optimal “offline” al-
gorithm, assuming that all arrival times are known at time
0. The structure of the optimal offline schedule will give
us guidelines for designing online algorithms which, by
definition, make their decisions without knowledge of the
future.

III. OPTIMAL OFFLINE SCHEDULING

In this section we determine the energy-optimal offline
schedule. After briefly introducing the basic setup, a nec-
essary condition for optimality is stated (Lemma 1). This
motivates the definition of a specific schedule %&,+ (Defini-



tion 2). The schedule %&,+ is shown to be feasible (Lemma
2), and the energy-optimal offline schedule (Theorem 1).

Suppose that the arrival times ��� � � � 1 �+,+,+, � � of �
packets, which arrive in the interval � ��� ��� , is known at
time 0. As before, assume that � ! � � . The problem is
to determine %& , the vector of transmission times, so as to
minimize =>'+%& � � � ��  "! =>' & � � .

The assumption that =>' & � decreases with & trivially im-
plies it is sub-optimal to have transmission times such that
� � & � 6 � . For, we could simply increase the transmis-
sion times of one or more packets and reduce =>'+%& � . Hence
we will only consider transmission schedules %& which sat-
isfy � � & �"� � .

Lemma 1: A necessary condition for optimality is

& �<; & � �"! for
����� 1 �+,+,+, � � � 1��#, (2)

Proof. Let %& be a feasible vector such that & �$6 & � �"!
for some

���	� 1 �+,+,+, � � � 1�� . Further suppose that it is
optimal. Consider the schedule %
 such that 
 � � 
 � �"!>��
� � �
� ���* and 
�� � &�� for ���� � � � � 1 . It is easy to verify
that %
 is feasible. Comparing the energies used by %& and
%
 we obtain

=>'+%& �
� =>'+%
 � � =>' & � � � =>' & � �"! �� =>' 
 � �
� =>' 
 � �"! �
� =>' & � � � =>' & � �"! �

� � =>' & �,� & � �"!� ������� ���
where inequality '�� � follows from the strict convexity of
=>'
� � . This contradicts the optimality of %& and proves the
lemma.

The proof of the above lemma suggests the form of the
optimal offline schedule: Equate the transmission times of
each packet, subject to feasibility constraints. We proceed
to do just this and define the optimal schedule next.

Given packet inter-arrival times � ��� ��� � 1 �+,+,+, � �!� , let
4�"3�5� , and define# ! � $&%('

9*)�+ !�, - - - , �&. �<14 9/
�  "! �#�
� and

4 ! �0$&%(' � 421 14 9/
�  "! �#� �

# !*�#,
For � ;:1 , let# � �"! � $&%('

9*)�+ !�, - - - , �23 954 . �<14 9/
�  "! � 954 � �6� and

4 � �"! � 4 � �7$&%('98 4:1 � 9�  "! � 954 � �4 � # � �"!<; �

where 4 varies between 1 and � � 4 � . We proceed as
above to obtain pairs ' # � � 4 � � until 4 � � � for the
first time3. Let = = $9> � � �?1 4 � � �!� . The pairs
' # � � 4 � � �@� � 1 �+,+,+, �A= are used to define %& + below, and
Theorem 1 shows that %& + is the optimal offline schedule.

Definition 2: Let %& + be the schedule defined as follows:

& +� � # � if 4 � 3 !�6 � 254 � , (3)

Figure 4 shows an example of this schedule. The ar-
rivals in the figure have been randomly generated (with
exponentially distributed inter-arrival intervals of mean 1)
in a time window of

� � � � . The heights of the bars are
proportional to the magnitudes of the � ’s and & + ’s.
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Fig. 4. An example run of B ’s (top) and CED s (bottom)

Lemma 2: The following hold for the schedule %&,+ of
Definition 2:
(
�
) It is feasible and � ��  "! & +� � � .

(
�@�

) It satisfies the condition stated in Lemma 1.

Proof. We first establish (
�
). For 132547284�! ,

9/
�  "!
& +� �:4 # ! ;54 9/

�  "!
�#�
4 �

9/
�  "! �#� �

where the inequality follows from the definition of # ! .
Similarly for 4 !�6847254 * ,

9/
�  "!
& +� � 4 ! # ! � ' 4 � 4 ! � # *

; 9 �/
�  "! �#�,� ' 4 � 4 ! � 9/

�  9 � �"! �#�
4 � 4 !

� 9/
�  "! �#��,F

Note that, by definition, G�HJI:G5H5K � . Therefore the G5H are increasing
with L and will equal M for some L .



Proceeding thus, we obtain that � 9�  "! & +� ; � 9�  "! �#� for
all 4 �+13254728� .

To finish the proof of (
�
) it only remains to show that

� ��  "! & +� � � . Now

�/
�  "!
& +� � �/�  "! ' 4 � � 4 � 3 ! � # � � (4)

where 4�"$� � and 4 � ��� . By definition of # � and 4 � ,
it follows that for each �

' 4 � � 4 � 3 ! � # � � 954/
9  954�� � �"! � 9 ,

Using this at equation (4), we get � ��  "! & +� � � ��  "! �#�<��
. This establishes (

�
).

As for (
�@�

), it suffices to show that # � � # � �"! since
this implies & +� ; & +� �"! for each

�
. We first show that # ! �# * . For any 4 � � 4 ! �51 � 4 * / ,# ! � ��! �5,+,+, � � 9 �4 !������ ��! �5,+,+, � � 9 �4 � � 9 � �"! �5,+,+, � � 94

� 4 !
4
# ! � ' 4 � 4 ! �4

'�� 9 � �"! �5,+,+, � � 9 �4 � 4 ! �
where '�� � follows from the definition of # ! . Choosing
4 �:4 * , we get# ! � 4 !4 * # ! � 4 * � 4 !4 *

# * �
from which it follows that # ! � # * .

In an exactly similar fashion it can be shown that # * �#�� and, more generally, that # � � # � �"! for any � �+172� 2 = � 1 . This establishes (
�@�

) and completes the proof
of the lemma.

Theorem 1: The schedule %& + of Definition 2 is the opti-
mum offline schedule.
Proof. Consider any other feasible schedule %& . Let

�
be the

first index where & ���� & +� . We show that =>'+%& � � =>' %&,+ � .
There are two possibilities to consider.

Case 1: & � � & +� . Since � � &�� � � (else, %& would idle for
some time, making it sub-optimal), there must be at least
one � � � for which &�� 6 & +� . Let �7� $9> � � � 1 � 6	� 2
� � &�� 6 & +� � . Consider the schedule %
 defined as follows:
 � � & � ��� (5)
	� � &
� � � (6)
�� � &�� for all � �� � ��� (7)

where
� � $9> � � ' & � � & +� � �	' & +� � &
� � � .

Claim 1: The schedule %
 is feasible.
Proof of Claim 1: Since � � 
�� � � � &�� � � , the second
condition for feasibility is verified. By the definition of the
indices

�
and � , and the feasibility of %& and %&,+ , it follows

that

9/�  "! 
�� � 9/�  "! &�� ; 9/�  "! � � for 1 25472 � � 1 (8)

�/�  "! 
�� ;
�/�  "! & +� ; �/�  "! � � (9)

9/�  "! 
�� ; 9/�  "! & +� ; 9/�  "! � � for
� 68472�� (10)

9/�  "! 
�� � 9/�  "! &�� ; 9/�  "! � � for 4 � ��, (11)

This verifies the first condition for feasibility and proves
Claim 1.

Claim 2: =>'+%
 � 6 =>'+%& � .
Proof of Claim 2:

=>'+%& �
� =>'+%
 � � =>' & � � � =>' &
� �� =>' 
 � �
� =>' 
	� �
� =>' & � �
� =>' & � ���$�� =>' &
� �
� =>' &
� � �$������� ���

where inequality '�� � follows from two facts: (i) =>'
� � is
strictly convex and decreasing, and (ii) & � � &
� . That is,
for any real-valued function f that is strictly convex and
decreasing, and for any � ��
 ��� � such that �06�
 , we have� '�
 �+� � '�
 ��� � � � '�� �+� � '��,� � � � � , where �$6 � 6�
 � � .
This proves Claim 2.

Thus, under Case 1, any feasible schedule %& may be
modified to obtain a more energy efficient schedule %
 .
Therefore schedules which are different from %&,+ in the
sense of Case 1 are sub-optimal.

Case 2: & �36 & +� . We shall argue for a contradiction and
show that such a %& is infeasible.

From the definition of %&,+ we know that & +� � # � ,
assuming 4 � 3 ! 6 � 2 4 � . In fact & +� � # � for all
4 � 3 !�6��"254 � .

Since
�

is the first index where %& and %&,+ disagree, & � �& +� for all � 6 � . Suppose that the schedule %& satisfies the
condition of Lemma 1 (else it is sub-optimal and we are
done). It follows that & �<; ,+,+,�; & 954 , and we get

954/
�  "!
& +� � 954/

�  "!
& � , (12)



But, by definition of %&,+ ,
954/
�  "!
& +� � �/

�  "! ' 4
� � 4 � 3 ! � # � � 954/

�  "! �
� ,

Equation (12) now gives � 954�  "! & � 6 � 954�  "! � � , implying
that %& is infeasible.

This contradiction concludes Case 2 and the proof of
Theorem 1 is complete.

In short, lazy scheduling trades-off delay for energy. To
do this, it necessarily buffers packets. The dramatic ener-
gy savings that come from simply keeping a small buffer
is best illustrated by an example: Imagine a scheme that
keeps a buffer size of zero (hence transmission times can
at most be set equal to inter-arrival times). For the set
of packet arrivals shown in Figure 4, the optimal offline
schedule achieves an energy of 65.445 and the zero-buffer
scheme (which, therefore, has no queuing delay) achieves
an energy 77.78 � 1	� � ; five orders of magnitude larger (us-
ing an energy function & ' ���� � 1 � ).

IV. ONLINE SCHEDULING

In this section we develop and evaluate energy efficient
online scheduling algorithms based on the optimal offline
algorithm discussed in the previous section. In order to
design online algorithms that are energy efficient on aver-
age, one needs the statistics of the arrival process. Whilst
our approach is general, for concreteness and tractability,
we assume Poisson arrivals for the analysis conducted in
this paper. We note that Poisson arrivals are unrealistic in
the wireless LAN environment, where arrivals tend to be
more bursty. In fact, we have observed that when arrival-
s are bursty, lazy scheduling performs even better than in
the Poisson case; for, one can take advantage of a small
queueing delay and greatly reduce transmission energy.

We proceed by first formulating the offline algorithm
in a manner that is suited for online use (Section IV-A).
Based on this formulation we propose an online algorith-
m (Section IV-B) and, using simulations, show that on the
average it is almost as energy efficient as the optimal of-
fline schedule (Section IV-C).

We then investigate the important special case of
� �

�
. In this case we are able to analyze the optimal offline

schedule exactly (in the Appendix), obtain an online lazy
schedule as a result of this analysis, and perform compar-
isons of the energy efficiency of the lazy schedule and a
fixed-transmission time online algorithm (Section IV-D).

A. Online formulation of offline schedule

Consider the time interval � ��� ��� and as before assume
that a packet arrives at time 0. Suppose also that packets
arrive as a Poisson process of rate

�
. Conditioned on there

being � � 1 arrivals in '���� ��� , let the inter-arrival times
be denoted by � � . Denote the optimal offline schedule for

these � packets by %&,+ . The time at which the ���
	 packet
starts transmitting is

� +� � � 3 !/ �  "! & +� ,
The quantity 
 � , given by


 � � $&%(' � 421 9 3 !/ �  "! �$�
6 � +� � � � �
is the backlog in the queue when the ���
	 packet starts trans-
mitting. Observe that this backlog does not include the ���
	
packet; that is, if 
 � � 1 , then there is precisely one packet
(namely, the ' � � 1 � �
	 ) in the queue when the ���
	 packet
starts transmitting. Finally, let

� ��� � � � 1 �+,+,+, � � � � � 
 � �
be the inter-arrival times between packets that arrive after� +� . Thus, when the ���
	 packet starts transmitting the situ-
ation is this: (i) The “time to go” equals

� � � +� , (ii) there
are 
 � packets currently backlogged, (iii) � � � � 
 � pack-
ets are yet to arrive and the first of these will arrive in

� !
units of time, the second will arrive in

� ! � � * units of
time, etc.

With this notation and some algebra, it can be shown
that & +� is also given by

&
� � � $&%('
9*)�+ !�, - - - , �23 � � ��� 4 � . � 1

4 � 
 � 9/ �  � � �
�#, (13)

That is, the optimal offline schedule applies exactly the
same formula for computing the transmission time of each
packet by taking into account the current backlog, future
arrivals, and the time to go!

B. Online algorithm

The form of the optimal offline schedule, %&,+ , we have
obtained strongly suggests the following online algorithm:
The transmission time of a packet that starts being trans-
mitted at time � 6 � when there is a backlog of 
 packets
can be set equal to the expected value of the random vari-
able

& '�
 ��� � � $&%('
9*)�+ !�, - - - , �&. 8 1

4 � 
 9/
�  "! �$�A; � (14)

where 
 is the current backlog, � � are the inter-arrival
times of the (random number) � of packets that will ar-
rive in ' � � ��� .

In the following, schedules based on �0' & '�
 ��� ��� will be
used. Note that these algorithms are not necessarily opti-
mal.

To proceed, we need to evaluate �0' & '�
 ��� ��� . This is dif-
ficult to do analytically when

�
is finite. In the simulations

of the next section, (Section (IV-C) �0' & '�
 ��� ��� is evaluated
numerically.
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Fig. 5. A comparison of the online algorithm with the optimal offline
algorithm.

C. Simulations: Finite time horizon

Using simulations we compare the energies expended
by the online algorithm defined above and the optimal of-
fline algorithm. The setup is as follows. A finite time hori-
zon

� � 1	� sec is chosen. We assume a packet length of� � 1	� KBits and a maximum packet transmission rate of
100 packets per second. Within the time period

�
, we as-

sume that packets arrive according to a Poisson process at
a loading factor of

� � ��, � (i.e. an arrival rate of 70 pack-
ets per second). Since it is possible for packets to arrive
arbitrarily close to the finish time

�
, if we insist that these

very late arrivals also be transmitted before the deadline�
, then any algorithm, including the optimal offline algo-

rithm, incurs a huge energy cost. This makes comparisons
of performance difficult and meaningless. We therefore
use a “guard band” � around the finish time and disallow
packets from arriving after time

�7� � . For the comparison
we use the following formula4 for the packet transmission
energy = as a function of packet transmission time & in
seconds,

=>' & � �
& 1	���
��, ��� ' ��� � �� � 1 � , (15)

Figure 5, which plots the energy per packet against
transmission time, shows that the online algorithm is al-
most as energy-efficient as the optimal offline algorithm.

D. Infinite time horizon: Formulation and simulations.

The algorithm presented above was directly motivated
by the optimal offline algorithm. It is of interest to let

�
The formula is obtained using the information theoretic capacity for-

mula in equation (1) for the AWGN channel with noise power �
	��
and rate 
�	�� (or SNR 	�����B�� ) to transmit a 10Kbit packet in 10msec,
i.e. reliable transmission at link speed of 1 Mbits per second.
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Fig. 6. A plot of ��� C�� � ��� vs. � for !"	#� .

� � �
and look at how the lazy schedule performs in

terms of energy and delay. As an added bonus, the infinite-
horizon problem turns out to be exactly analyzable when
arrivals are Poisson, seemingly of independent interest.
Defining �0' & '�
 ����$ �0' � > $ �&% � & '�
 ��� ��� , it is shown in
the appendix that �0' & '�
 ��� � � !
��� �' '�( �) � � �

9  "!
!
9 � � . Fig-

ure 6 plots �0' & '�
 ��� as a function of the backlog 
 when
the arrivals are a rate 1 Poisson process. As can be seen,
the average transmission time of the offline schedule de-
creases with the backlog, approaching !' as the backlog, 
 ,
approaches infinity.

This exact analysis of the offline algorithm not only pro-
vides us with insight into the manner in which transmis-
sion times should depend on backlog, but also suggests a
specific online schedule. Unlike the finite

�
case where

online schedules can be compared solely on the basis of
their energy expenditure, when

� � � packet delays must
be taken into consideration. Otherwise, energy compar-
isons become meaningless since we can simply let trans-
mission times be arbitrarily long and obtain the minimum
possible transmission energy per packet.

Accordingly, suppose packets arrive according to a rate�
Poisson process at a transmission node with infinite

queue capacity. The node transmits a packet  for a dura-
tion & '�
 � when the backlog in the queue, excluding packet , is 
 . The arrival rate

�
is not known at the transmitter,

but it is known that
� 2 �+* ��, . The transmitter needs to

be designed to ensure stability, and since
�-* ��, is a worst

case estimate of the arrival rate, stability will be ensured if
the rate of transmission is higher than

�+* ��, . Since a lazy
schedule varies transmission times depending on the back-
log according to the function & '�
 � , for stability it suffices
that & '�
 � 6 !'/.1032 for all 
 large enough.



�
Lazy schedule Deterministic schedule

Eng/pk � ����� �
Dly/pk � ����� � Eng/pk � ����� �

Dly/pk � ����� �
.3 72.9 0.0471 1004.6 0.0166
.4 93.6 0.1305 1004.6 0.0468
.5 125.4 0.2981 1004.6 0.1066
.6 175.9 0.6322 1004.6 0.2349
.7 242.0 1.2105 1004.6 0.4694
.8 333.1 2.3134 1004.6 0.9653
.9 487.9 5.0856 1004.6 2.2323

TABLE I

AVERAGE ENERGY/PACKET AND AVERAGE QUEUING DELAY/PACKET

FOR LAZY AND DETERMINISTIC OVER AN INFINITE TIME HORIZON.

DELAY VALUES ARE IN MILLISECONDS.

We now compare the specific lazy schedule that set-
s &�� ����� '�
 � � � � !
��� �'/.1032 '�( �) � � �

9  "!
!
9 � � to a determinis-

tic schedule with &�	�

� '�

� � �'/.1032 . Note that as long as�86 1 , both scheduling algorithms ensure stability for ar-

rival rates less than
�+* ��, . We performed simulations us-

ing both scheduling algorithms for � � , � � ,
�-* ��, � 1 ,

varying
�

from , � to , � . To allow energy and delay to come
close to equilibrium, each simulation was performed for� ��� � � � arrivals. The results are given in Table I.

The energy/packet values in Table I are dimensionless
due to the normalization with noise PSD (see Equation
(15)), and the energy values correspond to average SNR
per packet of approximately

���
dB to ��� dB for Lazy, and��� dB for Deterministic.

The results in the table demonstrate that the lazy sched-
ule achieves significantly lower energy than the detemi-
nistic with moderate increase in average delay. This en-
ergy saving is significant since for a given mean service
time, the deterministic schedule achieves the smallest av-
erage delay among all schedules that are independent of
the arrival process and hence oblivious to backlogs [17].
In turn this implies that the deterministic schedule has the
largest transmission times and hence the lowest energy a-
mong backlog-oblivious schedules. The fact that our sub-
optimal lazy schedule is more energy efficient than the de-
terministic schedule demonstrates the advantage of lazy
scheduling.

V. CONCLUSIONS

Conservation of energy is a key concern in the design
of wireless networks. Most of the research to date has
focused on transmission power control schemes for in-
terference mitigation and only indirectly address energy
conservation. In this paper we put forth the idea of con-
serving energy by lazy scheduling of packet transmissions.
This is motivated by the observation that in many channel
coding schemes, the energy required to transmit a packet

over a wireless link can be significantly reduced by lower-
ing transmission power and transmitting the packet over a
longer period of time. However, information is often time-
critical or delay-sensitive, and transmission schedules can-
not be made too lazy by letting transmission times be ar-
bitrarily long. We therefore considered packet transmis-
sion schedules that minimize energy subject to a deadline
or a delay constraint. Specifically, we obtained an opti-
mal offline schedule for a node operating under a deadline
constraint. An inspection of the form of this schedule nat-
urally lead us to an online schedule, which was shown,
through simulations, to be quite energy-efficient. Finally,
we relaxed the deadline constraint and provided an exact
probabilistic analysis of our offline scheduling algorithm.
We then devised an online algorithm, which varies trans-
mission times according to backlog and showed that it is
more energy efficient than a deterministic schedule with
the same stability region and similar delay.

Several important problems remain open. The most ob-
vious is that of finding the optimal online schedule in the
finite and infinite

�
cases. The question of how much en-

ergy can be saved by using lazy scheduling in practice has
not been addressed in the paper. The theoretical and sim-
ulation results we presented, however, are encouraging e-
nough to warrant further investigation into the use of lazy
scheduling in real world wireless networks.
Acknowledgements: The authors thank Chandra Nair for
his help with some of the simulations.

REFERENCES

[1] N. Bambos, “Towards Power-Sensitive Network Architectures in
Wireless Communications”, IEEE Personal Communications, 5(3),
1998.

[2] N. Bambos and S. Kandukuri, “Power Control Multiple Access
(PCMA) in Wireless Networks”, 1999.

[3] N. Bambos and G. Pottie, “Power control based admission policies
in cellular radio networks”, GLOBECOM ’92

[4] E. Uysal Biyikoglu, B. Prabhakar and A. El Gamal, “Energy-
Efficient Transmission over a Wireless Link via Lazy Packet
Scheduling,” CSL Technical Rep. CSL-TR-00-810, Stanford Uni-
versity, December 2000.

[5] A. Chockalingam, M. Zorzi, “Energy Efficiency of Media Access
Protocols for Mobile Data Networks,” IEEE Trans. Comm., 46, pp.
1418-21, 1998.

[6] T. Cover, J. Thomas, Elements of Information Theory, Wiley Series
in Telecommunications, John Wiley & Sons, 1991.

[7] R. Durrett, Probability:Theory and Examples, Duxbury Press,
1996.

[8] G.J. Foschini, “A Simple Distributed Autonomous Power Control
Algorithm and its Convergence”, IEEE Trans. on Vehicular Tech-
nology, 42(4), 1993.

[9] R. G. Gallager, Discrete Stochastic Processes, Kluwer Academic
Publishers, Boston, 1995.

[10] A. Goldsmith, “Capacity and dynamic resource allocation in broad-
cast fading channels,” ����
�� Annu. Allerton Conf. Communication,
Control and Computing, pp. 915-924.

[11] S. Grandhi, J. Zander and R. Yates, “Constrained power control”,
International Journal of Wireless Personal Communications, 1(4),
1995.

[12] S. Hanly and D. Tse, “Power Control and Capacity of Spread-
spectrum Wireless Networks”, Automatica, 35(12), 1999.

[13] D. Mitra, “An asynchronous distributed algorithm for power con-
trol in cellular radio systems”, Proc 4 
�� WINLAB Workshop, 1993.



[14] G.J. Pottie, “Wireless sensor networks”, Information Theory Work-
shop ’98, Killarney, Ireland. June 1998.

[15] J.G. Proakis and M. Salehi, Communication Systems Engineering,
Prentice-Hall, 1994.

[16] P. Viswanath, V. Anantharam and D. Tse, “Optimal Sequences,
Power Control and Capacity of Synchronous CDMA Systems with
Linear MMSE Multiuser Receivers”, IEEE Transactions on Infor-
mation Theory, vol. 45(6), Sept., 1999.

[17] J. Walrand, An Introduction to Queueing Networks, Prentice Hall,
1988.

[18] J. Zander, “Transmitter Power Control for Co-channel Interference
Management in Cellular Radio Systems”, Proc 4 
�� WINLAB Work-
shop, 1993.

VI. APPENDIX

Consider a transmitter which, at time 0, has 
 packets in
the queue. Suppose that � packets arrive at this node in
� ��� ��� , with the first of these arriving at time 0. This situ-
ation can be modeled as � ��
 packets arriving in � ��� ���
with ��!7� � � � � ��� � � and � � ����  "! �#� � � . Then, as
we have seen in Section IV-A, the optimal offline sched-
ule will transmit the first packet for an amount of time, say& � '�
 � , which is given by

& � '�
 � � $&%('
9*)�+ !�, - - - , � ���6. �<14 9/

�  � �#�
� (16)

� $&%('
9*)�+ !�, - - - , �&. � 1

4 � 
 9/
�  �� �#�
�#, (17)

Here we analyze the optimal offline schedule by allow-
ing
�

to approach infinity. Thus suppose that the arrivals
in � ��� ��� occur as a rate

�
Poisson process and let

�
go to

infinity to get

& '�
 � � �����+ 9 � !5. � 1
4 � 
 9/

�  "! �$�6�#� (18)

where the �$� are i.i.d. mean 1�� � exponential random vari-
ables. Let �-� � � ��  "! �$� , and let

&
	 '�
 � � $&%('+ !�� �
� 	 . � 1� � 
 �-�6�#,
Lemma 3:

�0' &
	 '�
 ��� � 1	� 
�

	/
9  "!

1
' 4 � 
 � * (19)

Proof: The following recursion can be shown to hold using
an induction argument for � ; � :

�0' &
	 '�
 ��� � �0' &
	 3 !)'�
 ��� � ' 1 � 
 �� '
� � 
 � * (20)

Since �0' & ! '�
 ��� � !' � !
��� � , the above recursion implies the
lemma. Details can be found in [4].

Corollary 1: For & '�
 � � ����� � � !�� �� � � > $ 	 % � &
	 '�
 �
�0' & '�
 ��� � ' 1	� 
 �� '��

*� � �/
*  "!

1# * � (21)

Proof: Since &
	 '�
 � increases in � , by the Monotone Con-
vergence Theorem [7], we obtain that

�0' & '�
 ��� � � > $	 % � 1	� 
�

	/
9  "!

1
' 4 � 
 � *

� ' 1	� 
 �� '��
*� � �/

*  "!
1# * � ,


