
Seeing the Whole in Parts: Text Summarization for
Web Browsing on Handheld Devices

Orkut Buyukkokten Hector Garcia-Molina Andreas Paepcke
Digital Libraries Lab(InfoLab), Stanford University, Stanford, CA 94305, USA

E-mail: {orkut, hector, paepcke}@db.stanford.edu

ABSTRACT

We introduce five methods for summarizing parts of Web pages on
handheld devices, such as personal digital assistants (PDAs), or
cellular phones. Each Web page is broken into text units that can
each be hidden, partially displayed, made fully visible, or
summarized. The methods accomplish summarization by different
means. One method extracts significant keywords from the text
units, another attempts to find each text unit’s most significant
sentence to act as a summary for the unit. We use information
retrieval techniques, which we adapt to the World-Wide Web
context. We tested the relative performance of our five methods by
asking human subjects to accomplish single-page information search
tasks using each method. We found that the combination of
keywords and single-sentence summaries provides significant
improvements in access times and number of pen actions, as
compared to other schemes.

Keywords
Personal Digital Assistant, PDA, Handheld Computers, Mobile
Computing, Summarization, WAP, Wireless Computing,
Ubiquitous Computing

1. INTRODUCTION
Wireless access to the World-Wide Web from handheld personal
digital assistants (PDAs) is an exciting, promising addition to our
use of the Web. Much of our information need is generated on the
road, while shopping in stores, or in conversation. Frequently, we
know that the information we need is online, but we cannot access
it, because we are not near our desk, or do not wish to interrupt the
flow of conversation and events around us. PDAs are, in principle, a
perfect medium for filling such information needs right when they
arise.

Unfortunately, PDA access to the Web continues to pose difficulties
for users [14]. The small screen quickly renders Web pages
confusing and cumbersome to peruse. Entering information by pen,
while routinely accomplished by PDA users, is nevertheless time
consuming and error-prone. The download time for Web material to
radio linked devices is still much slower than landline connections.
The standard browsing process of downloading entire pages just to
find the links to pursue next is thus poor for the context of wireless
PDAs.

We have been exploring solutions to these problems in the context
of our Power Browser Project [4]. The Power Browser provides
displays and tools that facilitate Web navigation, searching, and
browsing from a small device. In this paper we focus exclusively on
a new page browsing facility that is described in [5]. This facility is

employed after a user has searched and navigated the Web, and
wishes to explore in more detail a particular page. At this point, the
user needs to gain an overview of the page, and needs the ability to
explore successive portions of the page in more depth. Figure 1
shows a screen shot of the interface described in [5].

We arrive at the page summary display of Figure 1 by partitioning
an original Web page into ‘Semantic Textual Units’ (STUs). In
summary, STUs are page fragments such as paragraphs, lists, or
ALT tags that describe images. We use font and other structural
information to identify a hierarchy of STUs. For example, the
elements within a list are considered STUs nested within a list STU.
Similarly, elements in a table, or frames on a page, are nested. Note
that the partitioning of Web pages and organization into a hierarchy
is deduced automatically and dynamically (by a proxy). The Web
pages do not need to be modified in any way, which is a significant
advantage of our approach over schemes that rely on pages specially
structured for PDAs. (Please see [5] for details on how STUs are
extracted from pages, and how they are ordered into a hierarchy.)

Figure 1: Screenshot of our PDA Power Browser

Copyright is held by the author/owner.
WWW10, May 1-5, 2001, Hong Kong.
ACM 1-58113-348-0/01/0005.

652

Initially, only the top level of the STU hierarchy is shown on the
screen. In Figure 1 this top level consists of four STUs in lines 1-
4. (When this page is initially visited, lines 5-13 are blank.
Incidentally, the line numbers are only for convenience here and
do not appear on the display.) Each STU is initially “truncated”
and displayed in a single line.

Users may use left-to-right pen gestures or the ‘+/-’ nesting
controls to open the hierarchy, as shown in lines 5-13. The lower-
level STUs are shown indented. For example, the STU of line 4
has been expanded, revealing lines 5-9. Then the STU of line 9
was expanded to reveal lines 10-13. The STU of line 3 has not
been expanded, and hence the ‘+’ on that line.

As mentioned above, initially STUs are displayed on a single line.
In fact, in Figure 1 we only see the first portion of each STU’s
first sentence. If an STU contains more text, a ‘line marker’ (black
bubble) indicates that more information is available. For example,
the STU of line 6 only shows the text “The Palm m100 handheld
is the f”. The user can progressively open the STU by tapping on
the bubble marker (see Figure 2). In particular, after the first tap,
the first three lines of the STU are shown. A half-empty line
marker signals that text is still available. A second tap reveals all
of the STU. In this case, an empty line maker indicates that the
entire STU is revealed. The system thus reveals each STU in up to
three display states (two if the STU was smaller than or equal to
three lines, or one state if the entire STU fits on a single line).

Note that this scheme reorganizes the Web page at two levels. The
first is a structural level, which users control by opening and
closing the STU hierarchy as they tap on the ‘+/-’ characters on
the screen. The second level is the successive disclosure of
individual STUs that is controlled through the line markers. Thus,
a STU like the one in line 7 of Figure 1 can be “opened” in two
ways: tapping the bubble reveals its textual content (e.g., text in a
paragraph), while tapping on its ‘+’ reveals nested STUs (e.g., list
items under this paragraph).

Using this two-level, ‘accordion’ approach to Web browsing,
users can initially get a good high-level overview of a Web page,
and then “zoom into” the portions that are most relevant. Indeed,
the results of our user studies in [5] indicate that users respond
well to this scheme and can complete browsing tasks faster than
with conventional browsers that attempt to render a page as it
would be seen on a full display.

This scheme relies on users being able to determine which is a
good STU to “drill into” simply by reading a one line “summary”
of the STU. If the first line of the first sentence is not descriptive,
then users may be mislead. Since this summarization is the key
aspect for effective browsing on small devices, in this paper we
carefully develop and evaluate other options for summarizing
STUs.

In particular, we develop summarization schemes that select
important keywords, and/or that select the most descriptive
sentence within a STU. We also consider the question of what to
disclose after the initial keywords or key sentence. If a user wants
more detail, should we disclose more keywords or more key
sentences? Or at some point should we revert to progressively
showing the text from its beginning? We compare our
summarization techniques through user experiments, and show
that browsing times can be significantly reduced by showing good
summaries.

Our work builds on well known techniques for text summarization
[17]. However, there are important practical differences between
the traditional task of summarizing a document, and our problem
of summarizing Web pages. In particular, traditional
summarization is not progressive. A document is summarized, and
the user decides whether to read the full document. Since many
Web pages have very diverse content (as an extreme case, think of
summarizing the Yahoo! home page), it does not make sense to
summarize the entire page as one unit. Rather, we believe it is best
to partition the page, and attempt to summarize the parts.
However, partitioning means that we have less text to work with
as we summarize, so it may be harder to determine what sentences
or keywords are more significant. In this paper we study how
traditional summarization techniques can be used in concert with
progressive disclosure, and how to tune summarization parameters
to deal with small portions of text.

There is also the issue of hyperlinks, which does not arise in
traditional summarization. That is, should hyperlinks be shown
and be active in the summaries? What if a hyperlink starts in one
of the lines displayed in a summary, but continues on to other
lines? Should the fact that a sentence has a hyperlink be weighted
in deciding if the sentence is “important”? We briefly discuss
some of these questions in this paper.

Another difference with traditional schemes is the computation of
collection statistics. Many summarization techniques (including
ours) need to compute how frequently a word (term) occurs in the
document collection, or how many documents in the collection
have a given word. In our case, the Web is our collection, but it is
very hard to collect statistics over the entire Web. And even if we
could, the table of term frequencies would be too large to hold in
main memory for efficient summarization. Thus, we are forced to
“approximate” the collection statistics, as will be described in this
paper.

2. ALTERNATIVE STU
REPRESENTATION METHODS
We have focused on five methods for displaying STUs, and
performed user testing to learn how effective each of them are in
helping users solve information tasks on PDAs quickly. All of the
methods we tested retain our accordion browser approach of
opening and closing large structural sections of a Web page. But

Figure 2: An STU Progressively Displayed in
Three States

653

the methods differ in how they summarize and progressively
reveal the STUs.

Every method we tested displays each STU in several states, just
as our previous accordion browser did. But the information for
each state is prepared quite differently in each method. All
displays are textual. That is, none of the STU displays images.
(There has been work on image compression for PDA browsers
[11], but these techniques have not yet been incorporated into our
browser.) The methods we tested are illustrated in Figure 3. They
work as follows:

• Incremental: The first method is the same as our previous
accordion browser [5] where each STU is revealed gradually in
three states; the first line, the first three lines and the whole STU.
• All: This display method shows the text of an entire STU in a
single state. No progressive disclosure is enabled.
• Keywords: The third method displays in its first state the
‘important’ keywords that occur in the STU. We will describe
below how we determined which of the STU’s words are
considered important keywords. We show all of the keywords on
the display, even if they extend beyond a single line and wrap
down to additional lines. The second state shows the first three
lines of the STU. The third state shows the entire STU.
• Summary: This method consists of only two states. In the
first state the STU’s ‘most significant’ sentence is displayed. The
second state shows the entire STU. We describe below how
significant sentences are selected.
• Keyword/Summary: This method combines the previous two
methods. The first state shows the keywords. The second state
shows the STU’s most significant sentence. Finally, the third state
shows the entire STU.

There are, of course, many other ways to mix keywords, summary
sentences, and progressive disclosure. However, in our initial
experience, these 5 schemes seemed the most promising, and
hence we selected them for our experiments. Also note that in all
of these methods, only one state is used if an entire STU happens
to fit on a single line. Similarly, if an STU consists of only one
sentence, the most significant sentence is the entire STU and there
are no additional state transitions.

Figure 4 shows an example that applies all five methods to one
STU on www.onhealth.com. The ALL method at the top of Figure
4 is shown in two columns for reasons of presentation in this
publication only. On PDAs and cellular phones, the display is
arranged as a single column. The ALL method displays all of the
STU’s text. The empty line marker on the left indicates to the user
that the STU cannot be expanded further.

Output of the Incremental method, while truncated at the bottom
for display purposes here, would continue down the PDA screen

to the end of the STU. This method, again, shows one line, then
three lines, and finally the entire STU. The line markers indicate
how much information is left hidden in each disclosure state. The
Keyword method has extracted keywords “vaccine", “diseases”,
“diarrhea”, and “cholera” from the full STU. For the method’s
second disclosure state we recognize the first three lines of the
STU. The third state is, as always, the full STU. The Summary
method has extracted the second sentence from the STU as a
summary. This method’s second state is the entire STU. The
Summary/Keyword method, finally, combines keywords and
summary.

All of our states, except Keywords, display hyperlinks when
encountered. For example, if a summary sentence contains a link,
it is displayed and is active. (If the user clicks it, the top-level
view of the new page is shown.) In the Incremental method, if the
link starts at the end of a truncated line, the visible portion of the
link is shown and is active. (Since the whole link is not seen, the
user may not know what the link is.) With Keywords
summarization, no links are displayed, even if a keyword is part of
some anchor text. In this case we felt that a single keyword was
probably insufficient to describe the link. Furthermore, making a
keyword a link would be ambiguous when the new keyword
appears in two separate links.

Stepping back, Figure 5 shows how users’ requests for Web pages
are processed, and how summarized pages are generated. The
components of Figure 5 are located in a Web proxy through which
Web page requests from PDAs are filtered. We will provide
detailed explanations for the dark gray components in subsequent

Figure 3: Five Methods for
Progressively Disclosing STUs

Figure 4: Examples for Each
Progressive Disclosure Method

654

sections. The User Manager keeps track of PDA user preferences
(e.g., preferred summarization method, timeout for downloading
Web pages), and of information that has already been transmitted to
each active user’s PDA. This record keeping activity is needed,
because the proxy acts as a cache for its client PDAs. Once a
requested Web page, possibly with associated style sheet, has been
downloaded into the proxy, a Page Parser extracts all the page
tokens. Using these tokens, the Partition Manager identifies the
STUs on the page, and passes them to the Organization Manager,
which arranges the STUs into a hierarchy. In Figure 1, the results of
the Organization Manager’s work are the entries that are preceded
by the ‘+’ and ‘-’ characters.

The Summary Generator (second module up from the bottom of
Figure 5) operates differently for our five STU display methods. For
the Incremental and ALL methods, this module passes STUs straight
to the Representation Manager for final display. For the Keyword
and Keyword/Summary methods, the Summary Generator relies on
the Keyword Extractor module. This module uses a dictionary that
associates words on the Web with word weights that indicate each
word’s importance. The module scans the words in each STU and
chooses the highest-weight words as keywords for the STU. These
keywords are passed to the Summary Generator.

For the Summary and Keyword/Summary methods, the Summary
Generator relies on the Sentence Divider and the Sentence Ranking
modules. The Sentence Divider partitions each STU into sentences.
This process is not always trivial [19, 20, 23]. For example, it is not
sufficient to look for periods to detect the end of a sentence, as
abbreviations, such as “e.g.” must be considered. The Sentence
Ranking module uses word weight information from the dictionary
to determine which STU sentence is the most important to display.

The Representation Constructor, finally, constructs all the strings
for the final PDA display, and sends them to the remote PDA over
a wireless link. The Representation Constructor draws target
device information from the Device Profiles database (e.g., how
many lines in the display, how many characters per line). This
database allows the single Representation Constructor to compose
displays for palm sized devices and for cellular phones. The
respective device profiles contain all the necessary screen
parameters.

We now go into more detail on how the summarization process
works. Again, this process involves the dark gray modules in
Figure 5. This process includes summary sentence and keyword
extraction.

3. THE SUMMARIZATION PROCESS
The Incremental and ALL STU display states are easy to generate,
because they do not require any text analysis. The remaining three
methods require the extraction of significant keywords, and the
selection of a ‘most significant’ sentence from each STU. We use
the well-known TF/IDF and within-sentence clustering techniques
to find keywords and summary sentences. However, these
techniques have traditionally been used on relatively
homogeneous, limited collections, such as newspaper articles. We
found that the Web environment required some tuning and
adaptation of the algorithms. We begin with a discussion of our
keyword extraction.

3.1 Extracting Keywords
Keyword extraction from a body of text relies on an evaluation of
each word’s importance. The importance of a word W is
dependent on how often W occurs within the body of text, and
how often the word occurs within a larger collection that the text
is a part of. Intuitively, a word within a given text is considered
most important if it occurs frequently within the text, but
infrequently in the larger collection. This intuition is captured in
the TF/IDF measure [24] as follows:

n

N
tfw ijij 2log×= where

ijw = weight of term jT in document iD

ijtf = frequency of term jT in document iD

N = number of documents in collection

n = number of documents where term jT occurs at least once

Parameter n in this formula requires knowledge of all words
within the collection that holds the text material of interest. In our
case, this collection is the World-Wide Web, and the documents
are Web pages.

Given the size of the Web, it is impossible (at least for us) to
construct a dictionary that tells us how frequently each word
occurs across Web pages. Thus, the system of Figure 5 uses an
approximate dictionary that contains only some of the words, and
for those only contains approximate statistics. As we will see, our
approximation is adequate because we are not trying to carefully
rank the importance of many words. Instead, typically we have a
few words in an STU (recall that STUs are typically single text Figure 5: Processing a Web Page Request from a PDA

655

paragraphs), and we are trying coarsely to select a handful of
important words. Because our dictionary is small, we can keep it
in memory, so that we can evaluate keywords and sentences
quickly at runtime.

To build our approximate dictionary, we analyzed word
frequencies over 20 million Web pages that we had previously
crawled and stored in our WebBase [13]. Figure 6 illustrates how
the dictionary was created, and Figure 7 shows the number of
words in the dictionary after each step. The Page Parser in Figure
6 fetches Web pages from our WebBase and extracts all the words
from each page. The Page Parser sends each word to the Counter
module, unless the word is a stop word, or is longer than 30
characters. Stop words are very frequent words, such as “is”,
“with”, “for”, etc.

The Counter module tags each unique word with a number and
keeps track of the number of documents in which the word occurs.
The top bar in Figure 7 shows how many words we extracted in
this counting procedure.

Once counting is complete, the words that occur less than 200
times across all the pages are eliminated. This step discards 98%
of the words (second bar in Figure 7). Notice that this step will
remove many person names, or other rare words that may well be
very important and would make excellent keywords for STUs.
However, as discussed below, we will still be able to roughly
approximate the frequency of these missing words, at least as far
as our STU keyword selection is concerned.

The remaining words are passed through a spell checker which
eliminates another 84% of these remaining words. The size of the
dictionary has now shrunk to 48 thousand words (Figure 7).

Finally, words that have the same grammatical stem are combined
into single dictionary entries. For example, ‘jump’ and ‘jumped’
would share an entry in the dictionary. We use the Porter
stemming algorithm for this step of the process [21]. The
resulting dictionary, or ‘stem list’ contains 22,390 words,
compared to 16,527,532 of the originally extracted set. The
words, and the frequency with which each word occurs in the 20
million pages, are stored in a dictionary lookup table. The
frequencies are taken to be approximations for the true number of
occurrences of words across the entire Web.

At runtime, when ‘significant’ keywords must be extracted from

an STU, our Keyword Extractor module proceeds as follows. All
the words in the STU are stemmed. For each word, the module
performs a lookup in the dictionary to discover the approximate
frequency with which the word occurs on the Web. The word’s
frequency within the Web page that contains the STU is found by
scanning the page in real time. Finally, the word’s TF/IDF weight
is computed from these values. Words with a weight beyond some
chosen threshold are selected as significant.

A special situation arises when a word is not in the dictionary,
either because it was discarded during our dictionary pruning
phase, or it was never crawled in the first place. Such words are
probably more rare than any of the ones that survived pruning and
were included in the dictionary. We therefore ensure that they are
considered as important as any of the words we retained.
Mathematically, we accomplish this prioritization by multiplying
the word’s document frequency with the inverse of the smallest
collection frequency that is associated with any word in the
dictionary. Given that we are only searching for keywords with
TF/IDF weight above a threshold, replacing the true small weight
by an approximate but still small weight, has little effect. Thus,
given this procedure, we can compute the TF/IDF score for all
words on any Web page.

Finally, notice that in our implementation we are not yet giving
extra weight to terms that are somehow “highlighted.” We believe
that when a term is in italics, or it is part of an anchor, it is more
likely to be a descriptive keyword for an STU. We plan to extend
the weight formula given earlier to take into account such
highlighting.

3.2 Extracting Summary Sentence
Two of our methods, Summary, and Keyword/Summary require
the Sentence Ranking module of our system to extract the most
important sentence of each STU. In order to make this selection,
each sentence in an STU is assigned a significance factor. The
sentence with the highest significance factor becomes the
summary sentence. The significance factor of a sentence is
derived from an analysis of its constituent words. Luhn suggests
in [16] that sentences in which the greatest number of frequently
occurring distinct words are found in greatest physical proximity
to each other, are likely to be important in describing the content
of the document in which they occur. Luhn suggests a procedure
for ranking such sentences, and we applied a variation of this
procedure towards summarization of STUs in Web pages. The
procedure’s input is one sentence, and the document in which the

Figure 6: Creating a Dictionary of Weighted Words
Figure 7: Trimming the Dictionary Collected from

20 Million Web Pages

656

sentence occurs. The output is an importance weight for the
sentence.

The procedure, when applied to sentence S, works as follows.
First, we mark all the significant words in S. A word is significant
if its TF/IDF weight is higher than a previously chosen weight
cutoff W. W is a parameter that must be tuned (see below).
Second, we find all ‘clusters’ in S. A cluster is a sequence of
consecutive words in the sentence for which the following is true:
(i) the sequence starts and ends with a significant word. And (ii)
fewer than D insignificant words must separate any two
neighboring significant words within the sequence. D is called the
distance cutoff, and is also a parameter that must be tuned. Figure
8 illustrates clustering.

In Figure 8, S consists of nine words. The stars mark the four
words whose weight is greater than W. The bracketed portion of S
encloses one cluster. The assumption for this cluster is that the
distance cutoff D>2: we see that no more than two insignificant
words separate any two significant words in the figure. We
assume that if Figure 8’s sentence were to continue, the portions
outside brackets would contain three or more insignificant words.

A sentence may have multiple clusters. After we find all the
clusters within S, each cluster’s weight is computed. The
maximum of these weights is taken as the sentence weight. Luhn
[16] computes cluster weight by dividing the square of the
number of significant words within the cluster by the total number
of words in the cluster. For example the weight of the cluster in
Figure 8, would be 4x4/7.

However, when we tried to apply Luhn’s formula, we achieved
poor results. This was not surprising, since our data set is
completely different from what Luhn was working with. Therefore
we tried several different functions to compute cluster weight. We
achieve the best cluster weighting results by adding the weights of

all significant words within a cluster, and dividing this sum by the
total number of words within the cluster.

We conducted user tests to help us tune the weight and distance
cutoffs for cluster formation and to inform our selection of the
above cluster weighting function. Figure 9 shows the steps we
took.

We selected ten three-sentence STUs from Web pages of ten
different genres. We asked 40 human subjects to rank these
sentences according to the sentences’ importance. We then passed
the STU set and the results of the human user rankings to a
Prediction Tuning Unit. It used the dictionary and these two
inputs to find the parameter settings that make the automatic
rankings best resemble the human-generated rankings.

Figure 10 summarizes the results of the human-generated
rankings. For example, for the “Sports” STU, about 44% percent
of the human subjects said the most descriptive sentence was
number 1 (of that STU), and that the second most descriptive
sentence was number 2. (Thus, the sentence ranking was 1-2-3.)
Another 44% preferred the sentence ordering 2-1-3, while about
12% liked 1-3-2. Clearly, ranking is subjective. For example,
subjects disagreed in six ways on the ranking of the three
education sentences, although about half of the subjects did settle
on a 3-2-1 ranking. Finance clearly produced a 1-2-3 ordering,
while the result for technical news is almost evenly split between
a 1-2-3, and a 2-1-3 order. In most cases, however, there is a
winning order.

These results in hand, the task was to tune the cutoffs and the
cluster weighting formula so that automatic ordering would
produce rankings that matched the human-generated results as
closely as possible. Figure 11 illustrates this optimization
problem. The two axis represent the parameters, distance and
weight cutoff. The lightness of each area is proportional to how
many of the most-popular rankings (or second most popular
rankings) are selected at that setting. For instance, with a weight
cutoff of 2 and a distance cutoff of 3, we get a very dark area,
meaning that with these parameter values almost none of the two
most-popular human rankings are selected.

The brightest region in Figure 11 has the optimum cutoff values, 2
for the distance cutoff and 3.16 for the weight cutoff. These are
the values used by our system. With these values, the automatic
ranking agreed with the most preferred human-generated ranking
70% of the time, and with the second-most preferred ranking 20%
of the time.

Figure 8: Finding Word Clusters within Sentences

Figure 9: Tuning Cluster Selection
Figure 10: Results of Human-Generated

STU Sentence Ranking

657

4. EXPERIMENTS
Armed with a tuned test system, we designed user experiments that
would reveal which of the five methods of Figure 3 worked best for
users. In particular, we wanted to determine which method would
allow users to complete a set of sample information exploration
tasks fastest, and how much I/O (pen gestures) users needed to
perform for each method.

We constructed an instrumented Palm Pilot and Nokia cellular
phone emulator and added it as a user front-end to the test system
described in Figure 5. The emulator does not simulate a complete
Palm Pilot or cellular phone in the sense that it could run programs
written for these devices. It rather performs only the functions of our
browser application. The emulator does maintain a live connection
to our Web proxy, which, in turn, communicates with the Web. If
users were to follow links on the emulator display (which they did
not for this set of experiments), then the emulator would request the
page from the proxy and would display the result. We can toggle the
display between the Palm Pilot and the cellular phone look-alike, so
that we can assess the impact of the cellular phone’s smaller screen.
We have not performed the cellular phone experiments yet.

The emulator displays a photo-realistic image of a 3COM Palm
Pilot or Nokia phone on a desktop screen. Instead of using a pen,
users perform selection operations with the mouse. We consider this
substitution acceptable in this case, because our experiments
required no pen swiping gestures. Only simple selection was
required. The emulator is instrumented to count selection clicks, and
to measure user task completion times.

Four panels are aligned in a column to the right of the emulator’s
PDA/phone display (Figure 12). The top panel provides information
about the current state of the display. The current page size gives the
total number of lines that are currently visible. This number changes
as the emulator is switched among PDA and cellular phone mode.
The total page size shows the number of lines currently available,
either being displayed, or accessible through scrolling. The mouse
panel maintains a running count of user activity. The scroll entry
shows the cumulative number of mouse clicks expended for
scrolling. The view entry accrues mouse clicks used for expanding
and collapsing STUs and the structural hierarchy (the ‘+’ and ‘-’
controls of Figure 1). The navigation entry tracks how often users
follow links. The view panel, finally, contains two pull-down list
controls. The first is used to change which device is being emulated,
PDA or cellular phone. The second pull-down list allows the
operator to choose between the five methods for STU display
(Incremental, Keyword, etc.).

Below the device display, a pull-down list is used to select a

starting URL, or a task identifier, which is internally translated
into a starting URL. The start button is pushed at the beginning of
each experimental session. The stop button ends the session and
saves all user data to disk. The ‘<<’ button acts like a browser
‘BACK’ button, and returns to a previous URL. This button is
only used for experiments that involve browsing.

When using the emulator for an experiment, the subject or the
operator selects one of the methods from the pull-down list in the
view panel. A task is selected in the task/URL selection field. The
start button begins the experiment, the stop button ends it. Each
task for the series of experiments reported on here involved a
single Web page and one question about that page. We limited
tasks to cover only a single page to ensure that we restricted
measurements to cover summarization issues, as opposed to
browsing artifacts, such as network delays, false trails, and
subjects’ adjustment to different page styles. Subjects used the
mouse to expand and collapse portions of each page, and to open
or close STUs as they looked for the answers to questions we
posed about the page.

We selected Web pages for these tasks to be of varying length, but
large enough not to fit on a single PDA screen. The questions we
asked varied as well. Some questions requested subjects to find a
particular link on the page. Others asked subjects to find
particular pieces of content within the page. Each question had a
well-defined answer, rather than being open-ended. Web pages
and questions were selected without our viewing the results of the
summarization. Table 1 shows the list of 10 tasks that we asked
users to perform.

Table 2 provides statistics about each task’s Web page. The
average number of STU’s on each of our tasks’ Web pages was
33. The average total page length was 155 PDA lines. The number
of sentences in each STU varied from 1 to 10. The number of
lines in each STU varied from 1 to 48. A Palm Pilot device can
display 13 lines at a time with our browser, the cellular phone

Figure 11: Finding the Proper Cutoffs for Word Weight
and Distance

Figure 12: Instrumented PDA Emulator for
our User Experiments

658

device can display eight. Given the PDA’s screen size, a 48-line
STU would be displayed as pages on the PDA and 6 pages on the
cellular phone. The one-line STUs would fit on a single page. In
short, we ensured that we exposed users to STUs of widely
varying lengths. Some easily fit onto one screen, others required
scrolling when expanded.

For our experiment, we consecutively introduced 15 subjects with
strong World-Wide Web experience and at least some Computer
Science training to our five STU exploration methods. Each
subject was introduced to the emulator, and allowed to complete
an example task using each of the methods. During this time,
subjects were free to ask us questions about how to operate the

emulator, and how to interact with the browser for each of the
methods. Once we had answered all of the subject’s questions,
we handed him a sheet of paper that instructed him on the
sequence in which he was to run through the tasks, and which
method to use for each. Subjects clicked the start button once they
had selected a task and method. This action displayed the
collapsed Web page for the task. Once subjects had found the
answer to the task’s question by opening and closing the structural
hierarchy and individual STUs, they clicked the stop button.

The instructions we gave to each subject had them use each
method twice (for different tasks). We varied the sequence in
which subjects used the methods. In this way each task was
tackled with different methods by different subjects. We took this

step to exclude performance artifacts based on method order, or
characteristics of the matches between particular tasks and
methods.

4.1 User Performance
Figure 13 summarizes the average task completion time for each
method. The figure shows that in six out of 10 tasks method
Incremental performed better than the ALL method. The methods
are thus close in their effectiveness. These results seem to indicate
that showing the first line of the first sentence is often not
effective, probably because STUs on the Web are not as well
structured as paragraphs in carefully composed media, such as, for
example, articles in high-quality newspapers. Thus, showing the
full text of the STU and letting the user scroll seems to be as
effective as first showing just the first sentence. Recall however,
that the ALL method shows the entire text of a single STU, not the
text of the entire page. Thus the ‘+/-’ structural controls are still
being used even for the ALL method.

We see that for one half of all tasks (5 out of 10), the Summary
method gave the best task completion time, and for the other half,
the Summary/Keyword method yielded the best time. The time
savings from using one of these summarization techniques amount
to as much as 83% compared to some of the other methods! Using
at least one of these techniques is thus clearly a good strategy.

Notice that both pairs Incremental/ALL, and Summary/Keyword-
Summary tend to be split in their effectiveness for any given task.
In the case of Incremental and ALL, the completion time ratio
between the methods was at least two in five of our 10 tasks. In
Task 2, for example, Incremental took about 80 seconds, while
ALL required 160 seconds for completion, a ratio of 2. On the
other hand, ALL was much better than Incremental in Task 7.

Table 1. The 10 Tasks Our 15 Subjects Completed
on the PDA Emulator

 Description

Task 1
From the Bureau of Census home page find a link to
News for Federal Government Statistics.

Task 2
From the Lonely Planet Honk Kong Web page find
when the Hong Kong Disneyland is going to open.

Task 3
From the Stanford HCI Page, find the link to
Interaction Design Studio.

Task 4
From the WWW10 Conference home page, find the
required format for submitted papers.

Task 5
From the 'upcomingmovies’ review of the movie
Contender: How was the character “Kermit
Newman” named?

Task 6
From Marc Najork’s Home page find the conference
program committees he participated in.

Task 7
From the science article in Canoe find out: What
percentage of bone cells can be converted to brain
cells?

Task 8
From the 'boardgamecentral' Web page find what
“boneyard” means in the dominoes game.

Task 9
From the 'zoobooks’ Web page find where penguins
live.

Task 10
From the Pokemon official site find the price of
Pokemon Gold and Silver.

Table 2. Number and Lengths of STUs for Each Task

Task 1 2 3 4 5 6 7 8 9 10
of

STUs
31 32 26 67 32 33 33 19 18 36

of
Lines

47 169 306 140 343 120 120 60 100 145

Figure 13: Task Completion Times for
All Methods and All Tasks

Figure 14: I/O Activity Required for
All Methods Over All Tasks

659

Similarly, Keyword and Keyword/Summary had completion time
ratios of two or higher in five of 10 tasks. In contrast, Keyword
and Summary more often yielded comparable performance within
any given task. Given that Summary and Keyword/Summary are
the two winning strategies, we need to understand which page
characteristics are good predictors for choosing the best method.
We plan to perform additional experiments to explore these
predictors.

Figure 14 similarly summarizes I/O cost: the number of pen taps
subjects expended on scrolling and the expansion and collapse of
STUs. Notice that in most of the cases either Summary or
Keyword/Summary gave the best results, reinforcing the timing
results of Figure 13. The reward for choosing one of the
summarization methods is even higher for I/O costs. We achieve
up to 97% savings in selection activity by using one of the
summarization methods.

Before processing the results of Figures 13 and 14 further to
arrive at summary conclusions about our methods, we examined
the average completion time for each user across all tasks. Figure
15 shows that this average completion time varied among users.

This variation is due to differences in computer experience,
browsing technique, level of concentration, and so on. In order to
keep the subsequent interpretation of these raw results
independent from such user differences, we normalized the above
raw results before using them to produce the additional results
below. The purpose of the normalization was to compensate for
these user variations in speed. We took the average completion
time across all users as a base line, and then scaled each user’s
timing results so that, on the average, all task completion times
would be the same. The average completion time for all users over
all tasks was 53 seconds.

To clarify the normalization process, let us assume for simplicity
that the average completion time was 50 seconds, instead of the
actual 53 seconds. Assume that user A performed much slower
than this overall average, say at an average of 100 seconds over all
tasks. Assume further that user B performed at an average of 25
seconds. For the normalization process, we would multiply all of
user A’s individual completion times by 1/2, and all of B’s times
by 2.

With these normalized numbers, we summarized the timing and
I/O performance for each method (Figures 16 and 17). Recall that
I/O performance is the sum of all mouse/pen actions (scrolling,
opening and closing STU’s, etc.).

Notice that ALL and Keyword are comparable in completion time.
One explanation for this parity could be that our keyword
selection is not good. A more likely explanation is that for our, on
the average, short STU lengths, a quick scan is faster than making
sense of the keywords.

Notice that on average, Summary and Keyword/Summary produce
a 39 second gain over Incremental, and an 18 second gain over
ALL. The two methods are thus clearly superior to the other
methods. In Figure 16 the two methods are head-to-head in timing
performance.

As we see in Figure 17, however, Keyword/Summary requires
32% fewer input effort than Summary. This difference gives
Keyword/Summary an advantage, because user input controls on
PDAs are small, and users need to aim well with the input pen. On
a real device, this small scale thus requires small-motor movement
control. Operation in bumpy environments, such as cars, can
therefore lead to errors. The combination of Figures 16 and 17
therefore give Keyword/Summary the lead in overall performance.

The difference in timing vs. I/O performance for
Keyword/Summary is somewhat puzzling, as one would expect
task completion time to be closely related to I/O effort. We would
therefore expect Keyword/Summary to do better in timing
performance than Keyword. We believe that the discrepancy
might be due to the cognitive burden of interpreting keywords.
That is, looking at the complete summary sentence is easier than
examining the keywords, as long as the summary sentence is not
too long.

In summary, we conclude from our studies that the
Keyword/Summary method is the best method to use for finding
answers to questions about individual Web pages on PDAs. While
the keywords require some mental interpretative overhead, the
savings in input interaction tips the balance to Keyword/Summary,

Figure 15: Differences in Average Task
Completion Times Among Users

Figure 16: Average Completion Time for
Each Method Across All Tasks

Figure 17: Average I/O Expenditure for
Each Method Across All Tasks

660

even though this method’s timing performance is comparable with
that of Summary.

4.2 System Performance
Recall that the deployment platform for our system is a wirelessly
connected PDA. The amount of information that is transferred
from the Web proxy to the PDA is therefore an important system-
level parameter that must be considered in an overall evaluation.
This information flow impacts the bandwidth requirements, which
is still in short supply for current wireless connections.

Table 3 summarizes the bandwidth-related properties of each
task’s Web page. Column 1 shows the total number of bytes
occupied by a fully displayed HTML page, when images and style
sheets are included. Column 2 shows the size once images and
style sheets are removed from the total. The third column lists the
number of bytes our system sends when transmitting STUs. The
average 90% savings of Column 3 over Column 1 stem from
stripping HTML formatting tags, and the discarded images. If we
just consider the HTML and ignore images, the average savings is
71%. Note that these transmission times are not included in our
timing data, since we were using the emulator for our
experiments. The numbers in Column 3 are for the ALL method.
The Keyword, Summary, and Keyword/Summary methods require
additional data to be transmitted: the keywords, and the start and
end indexes of the summary sentences in the transmitted data. On
average over all tasks, this additional cost is just 4% for Summary,
24% for Keyword, or 28% for Keyword/Summary. Even for the
latter worst case this still leaves a 87% savings in required
bandwidth for our browser.

Notice, that a 87% reduction in required bandwidth is highly
significant when operating our browser in a wireless environment.
To see this significance, consider that in terms of transmission time
over wireless links, an average size page (over the 10 tasks) would
take seven seconds for the ALL method on one popular wireless
network. Sending all of the HTML as well would take 24 seconds
over the same network. If images and style sheets were added in
addition, transmission of an average page would take up 77 seconds!

Compared to a browser that sends the full page, our browser’s
bandwidth parsimony would therefore amount to an 11-fold
improvement. Even a browser that discarded images and style
sheets, but transmitted all of the HTML tags would require three
times more bandwidth than our solution. The computation time for
transforming the original Web pages on the fast proxy is negligible,
compared to the transmission time.

5. RELATED WORK
Our Power Browser draws on two research traditions. The first is the
search for improving user interaction with text by designing non-
linear approaches to text displays and document models. Projects in
the second tradition have examined design choices for displays on
small devices.

One body of work in the first tradition has explored effective ways
of displaying documents and search results through the use of
structured browsing systems. See for example [6, 9, 22]. The long-
standing Hypertext community [8] has focused on tree structures for
interacting with multiple documents [10] and large table of contents
[7]. The Cha-Cha system allows users to open and collapse search
results. In this sense that system is similar to our displaying
individual Web pages as nested structures. But Cha-Cha applies this
concept over multiple pages, and the display is pre-computed. The
part of our Power Browser that we introduced in this paper focuses
on a single Web page, and all displays are dynamically computed.

Similarly, Holophrasting interfaces [25] have aimed to provide
visualization of textual information spaces by providing contextual
overviews that allow users to conceal or reveal the display of textual
regions. We use the Holophrasting principle for our STUs. But
rather than progressively disclosing a fixed body of text, some of the
methods we explored here apply Holophrasting to transformations
of the text, such as summaries or keywords.

Numerous approaches to browsing the Web on small devices have
been proposed in work of the second abovementioned tradition.
Digestor [2] provides access to the World-Wide Web on small-
screen devices. That system re-authors documents through a series
of transformations and links the resulting individual pieces. Our
technique is more in the tradition of Fisheye Views [12], where a
large body of information is displayed in progressively greater
detail, with surrounding context always visible to some extent.

Ocelot [1] is a system for summarizing Web pages. Ocelot
synthesizes summaries, rather than extracting representative
sentences from text. The system’s final result is a static summary.
Ocelot does not provide progressive disclosure where users can drill
into parts of the summary, as we do in the Power Browser. Another
system, WebToc [18], uses a hierarchical table of contents browser;
that browser, however, covers entire sites, and does not drill into
individual pages.

Similar to our Partition Manager, the system described in [15]
applies page partitioning to Web pages. The purpose of that
system’s partitioning efforts, however, is to convert the resulting
fragments to fit the ‘decks’ and ‘cards’ metaphor of WAP devices.

6. CONCLUSION
As small devices with wireless access to the World-Wide Web
proliferate, effective techniques to browse Web pages on small
screens become increasingly vital. In this paper, we developed a new
approach to summarize and browse Web pages on small devices.

Table 3. Bandwidth Requirements for
Different Browsing Alternatives

Task
Page Size

(Total
Bytes)

Page Size
(HTML
Bytes)

Packet
Size

(ALL)

Size Savings
(Compared to

Full Page)

1 51,813 18,421 1193 97.7%

2 45,994 18,309 4,969 89.2%

3 66,956 12,781 9,762 85.4%

4 17,484 11,854 3,736 78.7%

5 55,494 21,276 10,913 80.3%

6 23,971 6,583 1,079 95.5%

7 75,291 35,862 5,877 92.2%

8 44,255 9,394 1,771 96.0%

9 19,953 7,151 3,042 84.8%

10 114,678 17,892 4,342 96.2%

661

We described several techniques for summarizing Web pages, and
for progressively disclosing the summaries. Our user experiments
showed that a combination of keyword extraction and text
summarization gives the best performance for discovery tasks on
Web pages. For instance, compared to a scheme that does no
summarization, we found that for some tasks our best scheme cut
the completion time by a factor of 3 or 4.

7. REFERENCES
[1] A.L. Berger, V.O. Mittal, OCELOT: A System for

Summarizing Web Pages, Proc. of 23rd Annual Conf. on
Research and Development in Information Retrieval (ACM
SIGIR), 2000, pp. 144-151.

[2] T.W. Bickmore and B.N. Schilit, Digestor: Device-
independent Access to the World-Wide Web, In Proc. of 6th
Int. World-Wide Web Conf., 1997.

[3] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, and T.
Winograd, Power Browser: Efficient Web Browsing for PDAs,
In Proc. of the Conf. on Human Factors in Computing
Systems, CHI’00, 2000, pp. 430-437.

[4] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke, Focused
Web Searching with PDAs, In Proc. of 9th Int. World-Wide
Web Conf., 2000, pp. 213-230.

[5] O. Buyukkokten, H. Garcia-Molina, A. Paepcke, Accordion
Summarization for End-Game Browsing on PDAs and Cellular
Phones, In Proc. of the Conf. on Human Factors in Computing
Systems, CHI’01, 2001.

[6] M. Chen, M. Hearst, J. Hong and J. Lin, Cha-Cha: A System
for Organizing Intranet Search Results, In Proc. of 2nd
USENIX Symposium on Internet Technologies and
SYSTEMS (USITS), 1999.

[7] R. Chimera, K. Wolman, S. Mark and B. Shneiderman, An
Exploratory Evaluation of Three Interfaces for Browsing Large
Hierarchical Tables of Contents, ACM Transactions on
Information Systems, 12, 4, Oct. 94, pp. 383-406.

[8] J. Conklin, Hypertext: An Introduction and Survey, IEEE
Computer, 20(9), pp. 17-41,1987.

[9] D.E. Egan, J.R. Remde, T.K. Landauer, C.C. Lochbaum and
L.M. Gomez, Behavioral Evaluation and Analysis of a
Hypertext Browser, In Proc. of CHI’89, pp. 205-210.

[10] S. Feiner, Seeing the Forest for the Trees: Hierarchical Display
of Hypertext Structure, Conf. on Office Information Systems,
New York: ACM, 1988, pp. 205-212.

[11] A. Fox and E.A. Brewer, Reducing WWW Latency and
Bandwidth Requirements by Real-Time Distillation, Proc. of
5th Int. World-Wide Web Conf., 1996.

[12] G.W. Furnas, Generalized Fisheye Views, In Human Factors in
Computing Systems III, Proc. of the CHI'86 Conf., 1986, pp.
16-23.

[13] J. Hirai, S. Raghavan, H. Garcia-Molina, and A. Paepcke,
WebBase: A Repository of Web Pages, In Proc. of 9th Int.
World-Wide Web Conf., 2000, pp. 277-293.

[14] M. Jones, G. Marsden, N. Mohd-Nasir, K. Boone and G.
Buchanan, Improving Web Interaction on Small Displays, In
Proc. of 8th Int. World-Wide Web Conf., 1999, pp. 51-59.

[15] E. Kaasinen, M. Aaltonen, J. Kolari, S. Melakoski and T.
Laakko, Two Approaches to Bringing Internet Services to
WAP devices, In Proc. of 9th Int. World-Wide Web Conf.,
2000, pp. 231-246.

[16] H.P. Luhn, The Automatic Creation of Literature Abstracts,
IBM Journal of Research & Development, 2 (2), 1958, pp.
159-165.

[17] I. Mani and M.T. Maybury (editors), Advances in Automatic
Text Summarization, MIT Press, 1999.

[18] D.A. Nation, C. Plaisant, G. Marchionini and A. Komlodi,
Visualizing Web Sites using a Hierarchical Table of Contents
Browser: WebToc. In Proc. of 3rd Conf. on Human Factors
and the Web, 1997.

[19] D.D. Palmer and M.A. Hearst, SATZ: An Adaptive Sentence
Boundary Detector. http://elib.cs.berkeley.edu/src/satz/.

[20] D. D. Palmer and M.A. Hearst, Adaptive Multilingual
Sentence Boundary Disambiguation, In Computational
Linguistics, 23(2), 1997, ACL. pp. 241-269.

[21] M.F. Porter, An Algorithm for Suffix Stripping, Program,
14(3), pp. 130-137, 1980.

[22] W. Pratt, M.A. Hearst and L.M. Fagan, A Knowledge-Based
Approach to Organizing Retrieved Documents, In Proc. of
16th National Conf. on AI (AAAI-99), 1999.

[23] J.C. Reynar and A. Ratnaparkhi, A Maximum Entropy
Approach to Identifying Sentence Boundaries. In Proc. of the
5th Conf. on Applied Natural Language Processing, 1997.

[24] G. Salton, Automatic Text Processing, Addison-Wesley,
Chapter 9, 1989.

[25] S.R. Smith, D.T. Barnard and I.A. Macleod, Holophrasted
Displays in an Interactive Environment, Int. Journal of Man-
Machine Studies, 20:343-355, 1984.

VITAE
Orkut Buyukkokten is a Ph.D. student in the Department of
Computer Science at Stanford University, Stanford, California. He
is currently working on the Digital Library project and is doing
research on Web Browsing and Searching for personal digital
assistants.

Hector Garcia-Molina is a professor in the Departments of
Computer Science and Electrical Engineering at Stanford
University, Stanford, California. His research interests include
distributed computing systems, database systems and Digital
Libraries.

Andreas Paepcke is a senior research scientist and director of the
Digital Library project at Stanford University. For several years he
has been using object-oriented technology to address
interoperability problems, most recently in the context of distributed
digital library services. His second interest is the exploration of user
interface and systems technologies for accessing digital libraries
from small, handheld devices (PDAs).

662

