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ABSTRACT 

We introduce five methods for summarizing parts of Web pages on 
handheld devices, such as personal digital assistants (PDAs), or 
cellular phones. Each Web page is broken into text units that can 
each be hidden, partially displayed, made fully visible, or 
summarized. The methods accomplish summarization by different 
means. One method extracts significant keywords from the text 
units, another attempts to find each text unit’s most significant 
sentence to act as a summary for the unit. We use information 
retrieval techniques, which we adapt to the World-Wide Web 
context. We tested the relative performance of our five methods by 
asking human subjects to accomplish single-page information search 
tasks using each method. We found that the combination of 
keywords and single-sentence summaries provides significant 
improvements in access times and number of pen actions, as 
compared to other schemes.  
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1. INTRODUCTION 
Wireless access to the World-Wide Web from handheld personal 
digital assistants (PDAs) is an exciting, promising addition to our 
use of the Web. Much of our information need is generated on the 
road, while shopping in stores, or in conversation. Frequently, we 
know that the information we need is online, but we cannot access 
it, because we are not near our desk, or do not wish to interrupt the 
flow of conversation and events around us. PDAs are, in principle, a 
perfect medium for filling such information needs right when they 
arise. 

Unfortunately, PDA access to the Web continues to pose difficulties 
for users [14]. The small screen quickly renders Web pages 
confusing and cumbersome to peruse. Entering information by pen, 
while routinely accomplished by PDA users, is nevertheless time 
consuming and error-prone. The download time for Web material to 
radio linked devices is still much slower than landline connections. 
The standard browsing process of downloading entire pages just to 
find the links to pursue next is thus poor for the context of wireless 
PDAs. 

We have been exploring solutions to these problems in the context 
of our Power Browser Project [4]. The Power Browser provides 
displays and tools that facilitate Web navigation, searching, and 
browsing from a small device. In this paper we focus exclusively on 
a new page browsing facility that is described in [5]. This facility is 

employed after a user has searched and navigated the Web, and 
wishes to explore in more detail a particular page. At this point, the 
user needs to gain an overview of the page, and needs the ability to 
explore successive portions of the page in more depth. Figure 1 
shows a screen shot of the interface described in [5]. 

We arrive at the page summary display of Figure 1 by partitioning 
an original Web page into ‘Semantic Textual Units’ (STUs). In 
summary, STUs are page fragments such as paragraphs, lists, or 
ALT tags that describe images. We use font and other structural 
information to identify a hierarchy of STUs. For example, the 
elements within a list are considered STUs nested within a list STU. 
Similarly, elements in a table, or frames on a page, are nested. Note 
that the partitioning of Web pages and organization into a hierarchy 
is deduced automatically and dynamically (by a proxy). The Web 
pages do not need to be modified in any way, which is a significant 
advantage of our approach over schemes that rely on pages specially 
structured for PDAs. (Please see [5] for details on how STUs are 
extracted from pages, and how they are ordered into a hierarchy.) 

Figure 1: Screenshot of our PDA Power Browser 
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Initially, only the top level of the STU hierarchy is shown on the 
screen. In Figure 1 this top level consists of four STUs in lines 1-
4. (When this page is initially visited, lines 5-13 are blank. 
Incidentally, the line numbers are only for convenience here and 
do not appear on the display.) Each STU is initially “truncated” 
and displayed in a single line. 

Users may use left-to-right pen gestures or the ‘+/-’ nesting 
controls to open the hierarchy, as shown in lines 5-13. The lower-
level STUs are shown indented. For example, the STU of line 4 
has been expanded, revealing lines 5-9. Then the STU of line 9 
was expanded to reveal lines 10-13. The STU of line 3 has not 
been expanded, and hence the ‘+’ on that line. 

As mentioned above, initially STUs are displayed on a single line. 
In fact, in Figure 1 we only see the first portion of each STU’s 
first sentence. If an STU contains more text, a ‘line marker’ (black 
bubble) indicates that more information is available. For example, 
the STU of line 6 only shows the text “The Palm m100 handheld 
is the f”. The user can progressively open the STU by tapping on 
the bubble marker (see Figure 2). In particular, after the first tap, 
the first three lines of the STU are shown. A half-empty line 
marker signals that text is still available. A second tap reveals all 
of the STU. In this case, an empty line maker indicates that the 
entire STU is revealed. The system thus reveals each STU in up to 
three display states (two if the STU was smaller than or equal to 
three lines, or one state if the entire STU fits on a single line). 

Note that this scheme reorganizes the Web page at two levels. The 
first is a structural level, which users control by opening and 
closing the STU hierarchy as they tap on the ‘+/-’ characters on 
the screen. The second level is the successive disclosure of 
individual STUs that is controlled through the line markers. Thus, 
a STU like the one in line 7 of Figure 1 can be “opened” in two 
ways: tapping the bubble reveals its textual content (e.g., text in a 
paragraph), while tapping on its ‘+’ reveals nested STUs (e.g., list 
items under this paragraph). 

Using this two-level, ‘accordion’ approach to Web browsing, 
users can initially get a good high-level overview of a Web page, 
and then “zoom into” the portions that are most relevant. Indeed, 
the results of our user studies in [5] indicate that users respond 
well to this scheme and can complete browsing tasks faster than 
with conventional browsers that attempt to render a page as it 
would be seen on a full display. 

This scheme relies on users being able to determine which is a 
good STU to “drill into” simply by reading a one line “summary” 
of the STU. If the first line of the first sentence is not descriptive, 
then users may be mislead. Since this summarization is the key 
aspect for effective browsing on small devices, in this paper we 
carefully develop and evaluate other options for summarizing 
STUs. 

In particular, we develop summarization schemes that select 
important keywords, and/or that select the most descriptive 
sentence within a STU. We also consider the question of what to 
disclose after the initial keywords or key sentence. If a user wants 
more detail, should we disclose more keywords or more key 
sentences? Or at some point should we revert to progressively 
showing the text from its beginning? We compare our 
summarization techniques through user experiments, and show 
that browsing times can be significantly reduced by showing good 
summaries. 

Our work builds on well known techniques for text summarization 
[17]. However, there are important practical differences between 
the traditional task of summarizing a document, and our problem 
of summarizing Web pages. In particular, traditional 
summarization is not progressive. A document is summarized, and 
the user decides whether to read the full document. Since many 
Web pages have very diverse content (as an extreme case, think of 
summarizing the Yahoo! home page), it does not make sense to 
summarize the entire page as one unit. Rather, we believe it is best 
to partition the page, and attempt to summarize the parts. 
However, partitioning means that we have less text to work with 
as we summarize, so it may be harder to determine what sentences 
or keywords are more significant. In this paper we study how 
traditional summarization techniques can be used in concert with 
progressive disclosure, and how to tune summarization parameters 
to deal with small portions of text. 

There is also the issue of hyperlinks, which does not arise in 
traditional summarization. That is, should hyperlinks be shown 
and be active in the summaries? What if a hyperlink starts in one 
of the lines displayed in a summary, but continues on to other 
lines? Should the fact that a sentence has a hyperlink be weighted 
in deciding if the sentence is “important”? We briefly discuss 
some of these questions in this paper. 

Another difference with traditional schemes is the computation of 
collection statistics. Many summarization techniques (including 
ours) need to compute how frequently a word (term) occurs in the 
document collection, or how many documents in the collection 
have a given word. In our case, the Web is our collection, but it is 
very hard to collect statistics over the entire Web. And even if we 
could, the table of term frequencies would be too large to hold in 
main memory for efficient summarization. Thus, we are forced to 
“approximate” the collection statistics, as will be described in this 
paper. 

2. ALTERNATIVE STU 
REPRESENTATION METHODS 
We have focused on five methods for displaying STUs, and 
performed user testing to learn how effective each of them are in 
helping users solve information tasks on PDAs quickly. All of the 
methods we tested retain our accordion browser approach of 
opening and closing large structural sections of a Web page. But 

Figure 2: An STU Progressively Displayed in 
Three States 
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the methods differ in how they summarize and progressively 
reveal the STUs.  

Every method we tested displays each STU in several states, just 
as our previous accordion browser did. But the information for 
each state is prepared quite differently in each method. All 
displays are textual. That is, none of the STU displays images. 
(There has been work on image compression for PDA browsers 
[11], but these techniques have not yet been incorporated into our 
browser.) The methods we tested are illustrated in Figure 3. They 
work as follows: 

• Incremental: The first method is the same as our previous 
accordion browser [5] where each STU is revealed gradually in 
three states; the first line, the first three lines and the whole STU. 
• All: This display method shows the text of an entire STU  in a 
single state. No progressive disclosure is enabled. 
• Keywords: The third method displays in its first state the 
‘important’ keywords that occur in the STU. We will describe 
below how we determined which of the STU’s words are 
considered important keywords. We show all of the keywords on 
the display, even if they extend beyond a single line and wrap 
down to additional lines. The second state shows the first three 
lines of the STU. The third state shows the entire STU. 
• Summary: This method consists of only two states. In the       
first state the STU’s ‘most significant’ sentence is displayed. The 
second state shows the entire STU. We describe below how 
significant sentences are selected. 
• Keyword/Summary: This method combines the previous two 
methods.  The first state shows the keywords. The second state 
shows the STU’s most significant sentence. Finally, the third state 
shows the entire STU. 

There are, of course, many other ways to mix keywords, summary 
sentences, and progressive disclosure. However, in our initial 
experience, these 5 schemes seemed the most promising, and 
hence we selected them for our experiments. Also note that in all 
of these methods, only one state is used if an entire STU happens 
to fit on a single line. Similarly, if an STU consists of only one 
sentence, the most significant sentence is the entire STU and there 
are no additional state transitions. 

Figure 4 shows an example that applies all five methods to one 
STU on www.onhealth.com. The ALL method at the top of Figure 
4 is shown in two columns for reasons of presentation in this 
publication only. On PDAs and cellular phones, the display is 
arranged as a single column. The ALL method displays all of the 
STU’s text. The empty line marker on the left indicates to the user 
that the STU cannot be expanded further. 

Output of the Incremental method, while truncated at the bottom 
for display purposes here, would continue down the PDA screen 

to the end of the STU. This method, again, shows one line, then 
three lines, and finally the entire STU. The line markers indicate 
how much information is left hidden in each disclosure state. The 
Keyword method has extracted keywords “vaccine", “diseases”, 
“diarrhea”, and “cholera” from the full STU. For the method’s 
second disclosure state we recognize the first three lines of the 
STU. The third state is, as always, the full STU. The Summary 
method has extracted the second sentence from the STU as a 
summary. This method’s second state is the entire STU. The 
Summary/Keyword method, finally, combines keywords and 
summary. 

All of our states, except Keywords, display hyperlinks when 
encountered. For example, if a summary sentence contains a link, 
it is displayed and is active. (If the user clicks it, the top-level 
view of the new page is shown.) In the Incremental method, if the 
link starts at the end of a truncated line, the visible portion of the 
link is shown and is active. (Since the whole link is not seen, the 
user may not know what the link is.) With Keywords 
summarization, no links are displayed, even if a keyword is part of 
some anchor text. In this case we felt that a single keyword was 
probably insufficient to describe the link. Furthermore, making a 
keyword a link would be ambiguous when the new keyword 
appears in two separate links. 

Stepping back, Figure 5 shows how users’ requests for Web pages 
are processed, and how summarized pages are generated. The 
components of Figure 5 are located in a Web proxy through which 
Web page requests from PDAs are filtered. We will provide 
detailed explanations for the dark gray components in subsequent 

Figure 3: Five Methods for 
Progressively Disclosing STUs 

Figure 4: Examples for Each 
Progressive Disclosure Method 
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sections.  The User Manager keeps track of PDA user preferences 
(e.g., preferred summarization method, timeout for downloading 
Web pages), and of information that has already been transmitted to 
each active user’s PDA. This record keeping activity is needed, 
because the proxy acts as a cache for its client PDAs. Once a 
requested Web page, possibly with associated style sheet, has been 
downloaded into the proxy, a Page Parser extracts all the page 
tokens. Using these tokens, the Partition Manager identifies the 
STUs on the page, and passes them to the Organization Manager, 
which arranges the STUs into a hierarchy. In Figure 1, the results of 
the Organization Manager’s work are the entries that are preceded 
by the ‘+’ and ‘-’ characters. 

The Summary Generator (second module up from the bottom of 
Figure 5) operates differently for our five STU display methods. For 
the Incremental and ALL methods, this module passes STUs straight 
to the Representation Manager for final display. For the Keyword 
and Keyword/Summary methods, the Summary Generator relies on 
the Keyword Extractor module. This module uses a dictionary that 
associates words on the Web with word weights that indicate each 
word’s importance. The module scans the words in each STU and 
chooses the highest-weight words as keywords for the STU. These 
keywords are passed to the Summary Generator. 

For the Summary and Keyword/Summary methods, the Summary 
Generator relies on the Sentence Divider and the Sentence Ranking 
modules. The Sentence Divider partitions each STU into sentences. 
This process is not always trivial [19, 20, 23]. For  example, it is not 
sufficient to look for periods to detect the end of a sentence, as 
abbreviations, such as “e.g.” must be considered. The Sentence 
Ranking module uses word weight information from the dictionary 
to determine which STU sentence is the most important to display. 

The Representation Constructor, finally, constructs all the strings 
for the final PDA display, and sends them to the remote PDA over 
a wireless link. The Representation Constructor draws target 
device information from the Device Profiles database (e.g., how 
many lines in the display, how many characters per line). This 
database allows the single Representation Constructor to compose 
displays for palm sized devices and for cellular phones. The 
respective device profiles contain all the necessary screen 
parameters. 

We now go into more detail on how the summarization process 
works. Again, this process involves the dark gray modules in 
Figure 5. This process includes summary sentence and keyword 
extraction. 

3. THE SUMMARIZATION PROCESS 
The Incremental and ALL STU display states are easy to generate, 
because they do not require any text analysis. The remaining three 
methods require the extraction of significant keywords, and the 
selection of a ‘most significant’ sentence from each STU. We use 
the well-known TF/IDF and within-sentence clustering techniques 
to find keywords and summary sentences. However, these 
techniques have traditionally been used on relatively 
homogeneous, limited collections, such as newspaper articles. We 
found that the Web environment required some tuning and 
adaptation of the algorithms. We begin with a discussion of our 
keyword extraction. 

3.1 Extracting Keywords 
Keyword extraction from a body of text relies on an evaluation of 
each word’s importance. The importance of a word W is 
dependent on how often W occurs within the body of text, and 
how often the word occurs within a larger collection that the text 
is a part of. Intuitively, a word within a given text is considered 
most important if it occurs frequently within the text, but 
infrequently in the larger collection. This intuition is captured in 
the TF/IDF measure [24] as follows:  

n

N
tfw ijij 2log×=  where 

ijw = weight of term jT  in document iD  

ijtf = frequency of term jT  in document iD  

N = number of documents in collection 

n  = number of documents where term jT  occurs at least once 

Parameter n in this formula requires knowledge of all words 
within the collection that holds the text material of interest. In our 
case, this collection is the World-Wide Web, and the documents 
are Web pages. 

Given the size of the Web, it is impossible (at least for us) to 
construct a dictionary that tells us how frequently each word 
occurs across Web pages. Thus, the system of Figure 5 uses an 
approximate dictionary that contains only some of the words, and 
for those only contains approximate statistics. As we will see, our 
approximation is adequate because we are not trying to carefully 
rank the importance of many words. Instead, typically we have a 
few words in an STU (recall that STUs are typically single text Figure 5: Processing a Web Page Request from a PDA 
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paragraphs), and we are trying coarsely to select a handful of 
important words. Because our dictionary is small, we can keep it 
in memory, so that we can evaluate keywords and sentences 
quickly at runtime. 

To build our approximate dictionary, we analyzed word 
frequencies over 20 million Web pages that we had previously 
crawled and stored in our WebBase [13].  Figure 6 illustrates how 
the dictionary was created, and Figure 7 shows the number of 
words in the dictionary after each step.  The Page Parser in Figure 
6 fetches Web pages from our WebBase and extracts all the words 
from each page. The Page Parser sends each word to the Counter 
module, unless the word is a stop word, or is longer than 30 
characters. Stop words are very frequent words, such as “is”, 
“with”, “for”, etc. 

The Counter module tags each unique word with a number and 
keeps track of the number of documents in which the word occurs. 
The top bar in Figure 7 shows how many words we extracted in 
this counting procedure. 

Once counting is complete, the words that occur less than 200 
times across all the pages are eliminated. This step discards 98% 
of the words (second bar in Figure 7). Notice that this step will 
remove many person names, or other rare words that may well be 
very important and would make excellent keywords for STUs. 
However, as discussed below, we will still be able to roughly 
approximate the frequency of these missing words, at least as far 
as our STU keyword selection is concerned. 

The remaining words are passed through a spell checker which 
eliminates another 84% of these remaining words. The size of the 
dictionary has now shrunk to 48 thousand words (Figure 7). 

Finally, words that have the same grammatical stem are combined 
into single dictionary entries. For example, ‘jump’ and ‘jumped’ 
would share an entry in the dictionary. We use the Porter 
stemming algorithm for this step of the process [21].  The 
resulting dictionary, or ‘stem list’ contains 22,390 words, 
compared to 16,527,532 of the originally extracted set. The 
words, and the frequency with which each word occurs in the 20 
million pages, are stored in a dictionary lookup table. The 
frequencies are taken to be approximations for the true number of 
occurrences of words across the entire Web. 

At runtime, when ‘significant’ keywords must be extracted from 

an STU, our Keyword Extractor module proceeds as follows. All 
the words in the STU are stemmed. For each word, the module 
performs a lookup in the dictionary to discover the approximate 
frequency with which the word occurs on the Web. The word’s 
frequency within the Web page that contains the STU is found by 
scanning the page in real time. Finally, the word’s TF/IDF weight 
is computed from these values. Words with a weight beyond some 
chosen threshold are selected as significant. 

A special situation arises when a word is not in the dictionary, 
either because it was discarded during our dictionary pruning 
phase, or it was never crawled in the first place. Such words are 
probably more rare than any of the ones that survived pruning and 
were included in the dictionary. We therefore ensure that they are 
considered as important as any of the words we retained. 
Mathematically, we accomplish this prioritization by multiplying 
the word’s document frequency with the inverse of the smallest 
collection frequency that is associated with any word in the 
dictionary. Given that we are only searching for keywords with 
TF/IDF weight above a threshold, replacing the true small weight 
by an approximate but still small weight, has little effect. Thus, 
given this procedure, we can compute the TF/IDF score for all 
words on any Web page. 

Finally, notice that in our implementation we are not yet giving 
extra weight to terms that are somehow “highlighted.” We believe 
that when a term is in italics, or it is part of an anchor, it is more 
likely to be a descriptive keyword for an STU. We plan to extend 
the weight formula given earlier to take into account such 
highlighting. 

3.2 Extracting Summary Sentence 
Two of our methods, Summary, and Keyword/Summary require 
the Sentence Ranking module of our system to extract the most 
important sentence of each STU.  In order to make this selection, 
each sentence in an STU is assigned a significance factor.  The 
sentence with the highest significance factor becomes the 
summary sentence. The significance factor of a sentence is 
derived from an analysis of its constituent words. Luhn suggests 
in [16] that sentences in which the greatest number of frequently 
occurring distinct words are found in greatest physical proximity 
to each other, are likely to be important in describing the content 
of the document in which they occur. Luhn suggests a procedure 
for ranking such sentences, and we applied a variation of this  
procedure towards summarization of STUs in Web pages. The 
procedure’s input is one sentence, and the document in which the 

Figure 6: Creating a Dictionary of Weighted Words 
Figure 7: Trimming the Dictionary Collected from 

20 Million Web Pages 
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sentence occurs. The output is an importance weight for the 
sentence. 

The procedure, when applied to sentence S, works as follows. 
First, we mark all the significant words in S.  A word is significant 
if its TF/IDF weight is higher than a previously chosen weight 
cutoff W. W is a parameter that must be tuned (see below). 
Second, we find all ‘clusters’ in  S. A cluster is a sequence of 
consecutive words in the sentence for which the following is true: 
(i) the sequence starts and ends with a significant word. And (ii) 
fewer than D insignificant words must separate any two 
neighboring significant words within the sequence. D is called the 
distance cutoff, and is also a parameter that must be tuned. Figure 
8 illustrates clustering. 

In Figure 8, S consists of nine words. The stars mark the four 
words whose weight is greater than W. The bracketed portion of S 
encloses one cluster. The assumption for this cluster is that the 
distance cutoff D>2: we see that no more than two insignificant 
words separate any two significant words in the figure. We 
assume that if Figure 8’s sentence were to continue, the portions 
outside brackets would contain three or more insignificant words. 

A sentence may have multiple clusters. After we find all the 
clusters within S, each cluster’s weight is computed. The 
maximum of these weights is taken as the sentence weight. Luhn 
[16] computes cluster weight by dividing the square of the 
number of significant words within the cluster by the total number 
of words in the cluster. For example the weight of the cluster in 
Figure 8, would be 4x4/7. 

However, when we tried to apply Luhn’s formula, we achieved 
poor results.  This was not surprising, since our data set is 
completely different from what Luhn was working with. Therefore 
we tried several different functions to compute cluster weight. We 
achieve the best cluster weighting results by adding the weights of 

all significant words within a cluster, and dividing this sum by the 
total number of words within the cluster. 

We conducted user tests to help us tune the weight and distance 
cutoffs for cluster formation and to inform our selection of the 
above cluster weighting function. Figure 9 shows the steps we 
took. 

We selected ten three-sentence STUs from Web pages of ten 
different genres. We asked 40 human subjects to rank these 
sentences according to the sentences’ importance. We then passed 
the STU set and the results of the human user rankings to a 
Prediction Tuning Unit. It used the dictionary and these two 
inputs to find the parameter settings that make the automatic 
rankings best resemble the human-generated rankings. 

Figure 10 summarizes the results of the human-generated 
rankings. For example, for the “Sports” STU, about 44% percent 
of the human subjects said the most descriptive sentence was 
number 1 (of that STU), and that the second most descriptive 
sentence was number 2. (Thus, the sentence ranking was 1-2-3.) 
Another 44% preferred the sentence ordering 2-1-3, while about 
12% liked 1-3-2. Clearly, ranking is subjective. For example, 
subjects disagreed in six ways on the ranking of the three 
education sentences, although about half of the subjects did settle 
on a 3-2-1 ranking. Finance clearly produced a 1-2-3 ordering, 
while the result for technical news is almost evenly split between 
a 1-2-3, and a 2-1-3 order.  In most cases, however, there is a 
winning order. 

These results in hand, the task was to tune the cutoffs and the 
cluster weighting formula so that automatic ordering would 
produce rankings that matched the human-generated results as 
closely as possible. Figure 11 illustrates this optimization 
problem. The two axis represent the parameters, distance and 
weight cutoff. The lightness of each area is proportional to how 
many of the most-popular rankings (or second most popular 
rankings) are selected at that setting. For instance, with a weight 
cutoff of 2 and a distance cutoff of 3, we get a very dark area, 
meaning that with these parameter values almost none of the two 
most-popular human rankings are selected. 

The brightest region in Figure 11 has the optimum cutoff values, 2 
for the distance cutoff and 3.16 for the weight cutoff. These are 
the values used by our system. With these values, the automatic 
ranking agreed with the most preferred human-generated ranking 
70% of the time, and with the second-most preferred ranking 20% 
of the time. 

Figure 8: Finding Word Clusters within Sentences 

Figure 9: Tuning Cluster Selection 
Figure 10: Results of Human-Generated 

STU Sentence Ranking 
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4. EXPERIMENTS 
Armed with a tuned test system, we designed user experiments that 
would reveal which of the five methods of Figure 3 worked best for 
users. In particular, we wanted to determine which method would 
allow users to complete a set of sample information exploration 
tasks fastest, and how much I/O (pen gestures) users needed to 
perform for each method. 

We constructed an instrumented Palm Pilot and Nokia cellular 
phone emulator and added it as a user front-end to the test system 
described in Figure 5. The emulator does not simulate a complete 
Palm Pilot or cellular phone in the sense that it could run programs 
written for these devices. It rather performs only the functions of our 
browser application. The emulator does maintain a live connection 
to our Web proxy, which, in turn, communicates with the Web. If 
users were to follow links on the emulator display (which they did 
not for this set of experiments), then the emulator would request the 
page from the proxy and would display the result. We can toggle the 
display between the Palm Pilot and the cellular phone look-alike, so 
that we can assess the impact of the cellular phone’s smaller screen. 
We have not  performed the cellular phone experiments yet. 

The emulator displays a photo-realistic image of a 3COM Palm 
Pilot or Nokia phone on a desktop screen. Instead of using a pen, 
users perform selection operations with the mouse. We consider this 
substitution acceptable in this case, because our experiments 
required no pen swiping gestures. Only simple selection was 
required. The emulator is instrumented to count selection clicks, and 
to measure user task completion times. 

Four panels are aligned in a column to the right of the emulator’s 
PDA/phone display (Figure 12). The top panel provides information 
about the current state of the display. The current page size gives the 
total number of lines that are currently visible. This number changes 
as the emulator is switched among PDA and cellular phone mode. 
The total page size shows the number of lines currently available, 
either being displayed, or accessible through scrolling. The mouse 
panel maintains a running count of user activity. The scroll entry 
shows the cumulative number of mouse clicks expended for 
scrolling. The view entry accrues mouse clicks used for expanding 
and collapsing STUs and the structural hierarchy (the ‘+’ and ‘-’ 
controls of Figure 1). The navigation entry tracks how often users 
follow links. The view panel, finally, contains two pull-down list 
controls. The first is used to change which device is being emulated, 
PDA or cellular phone. The second pull-down list allows the 
operator to choose between the five methods for STU display 
(Incremental, Keyword, etc.).  

Below the device display, a pull-down list is used to select a 

starting URL, or a task identifier, which is internally translated 
into a starting URL. The start button is pushed at the beginning of 
each experimental session. The stop button ends the session and 
saves all user data to disk. The ‘<<’ button acts like a browser 
‘BACK’ button, and returns to a previous URL. This button is 
only used for experiments that involve browsing. 

When using the emulator for an experiment, the subject or the 
operator selects one of the methods from the pull-down list in the 
view panel. A task is selected in the task/URL selection field. The 
start button begins the experiment, the stop button ends it. Each 
task for the series of experiments reported on here involved a 
single Web page and one question about that page. We limited 
tasks to cover only a single page to ensure that we restricted 
measurements to cover summarization issues, as opposed to 
browsing artifacts, such as network delays, false trails, and 
subjects’ adjustment to different page styles. Subjects used the 
mouse to expand and collapse portions of each page, and to open 
or close STUs as they looked for the answers to questions we 
posed about the page. 

We selected Web pages for these tasks to be of varying length, but 
large enough not to fit on a single PDA screen. The questions we 
asked varied as well. Some questions requested subjects to find a 
particular link on the page. Others asked subjects to find 
particular pieces of content within the page. Each question had a 
well-defined answer, rather than being open-ended. Web pages 
and questions were selected without our viewing the results of the 
summarization. Table 1 shows the list of 10 tasks that we asked 
users to perform. 

Table 2 provides statistics about each task’s Web page. The 
average number of STU’s on each of our tasks’ Web pages was 
33. The average total page length was 155 PDA lines. The number 
of sentences in each STU varied from 1 to 10.  The number of 
lines in each STU varied from 1 to 48. A Palm Pilot device can 
display 13 lines at a time with our browser, the cellular phone 

Figure 11: Finding the Proper Cutoffs for Word Weight 
and Distance 

Figure 12: Instrumented PDA Emulator for 
our User Experiments 
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device can display eight. Given the PDA’s screen size, a 48-line 
STU would be displayed as pages on the PDA and 6 pages on the 
cellular phone. The one-line STUs would fit on a single page. In 
short, we ensured that we exposed users to STUs of widely 
varying lengths. Some easily fit onto one screen, others required 
scrolling when expanded. 

For our experiment, we consecutively introduced 15 subjects with 
strong World-Wide Web experience and at least some Computer 
Science training to our five STU exploration methods. Each 
subject was introduced to the emulator, and allowed to complete 
an example task using each of the methods. During this time, 
subjects were free to ask us questions about how to operate the 

emulator, and how to interact with the browser for each of the 
methods.  Once we had answered all of the subject’s questions, 
we handed him a sheet of paper that instructed him on the 
sequence in which he was to run through the tasks, and which 
method to use for each. Subjects clicked the start button once they 
had selected a task and method. This action displayed the 
collapsed Web page for the task. Once subjects had found the 
answer to the task’s question by opening and closing the structural 
hierarchy and individual STUs, they clicked the stop button. 

 

The instructions we gave to each subject had them use each 
method twice (for different tasks). We varied the sequence in 
which subjects used the methods. In this way each task was 
tackled with different methods by different subjects. We took this 

step to exclude performance artifacts based on method order, or 
characteristics of the matches between particular tasks and 
methods. 

4.1 User Performance 
Figure 13 summarizes the average task completion time for each 
method.  The figure shows that in six out of 10 tasks method 
Incremental performed better than the ALL method. The methods 
are thus close in their effectiveness. These results seem to indicate 
that showing the first line of the first sentence is often not 
effective, probably because STUs on the Web are not as well 
structured as paragraphs in carefully composed media, such as, for 
example, articles in high-quality newspapers. Thus, showing the 
full text of the STU and letting the user scroll seems to be as 
effective as first showing just the first sentence. Recall however, 
that the ALL method shows the entire text of a single STU, not the 
text of the entire page. Thus the ‘+/-’ structural controls are still 
being used even for the ALL method. 

We see that for one half of all tasks (5 out of 10), the Summary 
method gave the best task completion time, and for the other half, 
the Summary/Keyword method yielded the best time. The time 
savings from using one of these summarization techniques amount 
to as much as 83% compared to some of the other methods! Using 
at least one of these techniques is thus clearly a good strategy. 

Notice that both pairs Incremental/ALL, and Summary/Keyword-
Summary tend to be split in their effectiveness for any given task. 
In the case of Incremental and ALL, the completion time ratio 
between the methods was at least two in five of our 10 tasks. In 
Task 2, for example, Incremental took about 80 seconds, while 
ALL required 160 seconds for completion, a ratio of 2. On the 
other hand, ALL was much better than Incremental in Task 7. 

Table 1. The 10 Tasks Our 15 Subjects Completed 
on the PDA Emulator 

 Description 

Task 1 
From the Bureau of Census home page find a link to 
News for Federal Government Statistics. 

Task 2 
From the Lonely Planet Honk Kong Web page find 
when the Hong Kong Disneyland is going to open. 

Task 3 
From the Stanford HCI Page, find the link to 
Interaction Design Studio. 

Task 4 
From the WWW10 Conference home page, find the 
required format for submitted papers. 

Task 5 
From the 'upcomingmovies’ review of the movie 
Contender: How was the character “Kermit 
Newman” named? 

Task 6 
From Marc Najork’s Home page find the conference 
program committees he participated in. 

Task 7 
From the science article in Canoe find out: What 
percentage of  bone cells can be converted to brain 
cells? 

Task 8 
From the 'boardgamecentral' Web page find what 
“boneyard” means in the dominoes game. 

Task 9 
From the 'zoobooks’ Web page find where penguins 
live. 

Task 10 
From the Pokemon official site find the price of 
Pokemon Gold and Silver. 

Table 2. Number and Lengths of STUs for Each Task 

Task 1 2 3 4 5 6 7 8 9 10 
# of 

STUs 
31 32 26 67 32 33 33 19 18 36 

# of 
Lines 

47 169 306 140 343 120 120 60 100 145 

Figure 13: Task Completion Times for 
All Methods and All Tasks 

Figure 14: I/O Activity Required for 
All Methods Over All Tasks 
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Similarly, Keyword and Keyword/Summary had completion time 
ratios of two or higher in five of 10 tasks. In contrast, Keyword 
and Summary more often yielded comparable performance within 
any given task. Given that Summary and Keyword/Summary are 
the two winning strategies, we need to understand which page 
characteristics are good predictors for choosing the best method. 
We plan to perform additional experiments to explore these 
predictors. 

Figure 14 similarly summarizes I/O cost: the number of pen taps 
subjects expended on scrolling and the expansion and collapse of 
STUs. Notice that in most of the cases either Summary or 
Keyword/Summary gave the best results, reinforcing the timing 
results of Figure 13. The reward for choosing one of the 
summarization methods is even higher for I/O costs. We achieve 
up to 97% savings in selection activity by using one of the 
summarization methods. 

Before processing the results of Figures 13 and 14 further to 
arrive at summary conclusions about our methods, we examined 
the average completion time for each user across all tasks. Figure 
15 shows that this average completion time varied among users. 

This variation is due to differences in computer experience, 
browsing technique, level of concentration, and so on. In order to 
keep the subsequent interpretation of these raw results 
independent from such user differences, we normalized the above 
raw results before using them to produce the additional results 
below.  The purpose of the normalization was to compensate for 
these user variations in speed. We took the average completion 
time across all users as a base line, and then scaled each user’s 
timing results so that, on the average, all task completion times 
would be the same. The average completion time for all users over 
all tasks was 53 seconds. 

To clarify the normalization process, let us assume for simplicity 
that the average completion time was 50 seconds, instead of the 
actual 53 seconds. Assume that user A performed much slower 
than this overall average, say at an average of 100 seconds over all 
tasks. Assume further that user B performed at an average of 25 
seconds. For the normalization process, we would multiply all of 
user A’s individual completion times by 1/2, and all of B’s times 
by 2. 

With these normalized numbers, we summarized the timing and 
I/O performance for each method (Figures 16 and 17). Recall that 
I/O performance is the sum of all mouse/pen actions (scrolling, 
opening and closing STU’s, etc.). 

Notice that ALL and Keyword are comparable in completion time. 
One explanation for this parity could be that our keyword 
selection is not good. A more likely explanation is that for our, on 
the average, short STU lengths, a quick scan is faster than making 
sense of the keywords.  

Notice that on average, Summary and Keyword/Summary produce 
a 39 second gain over Incremental, and an 18 second gain over 
ALL. The two methods are thus clearly superior to the other 
methods. In Figure 16 the two methods are head-to-head in timing 
performance. 

As we see in Figure 17, however, Keyword/Summary requires 
32% fewer input effort than Summary. This difference gives 
Keyword/Summary an advantage, because user input controls on 
PDAs are small, and users need to aim well with the input pen. On 
a real device, this small scale thus requires small-motor movement 
control. Operation in bumpy environments, such as cars, can 
therefore lead to errors. The combination of Figures 16 and 17 
therefore give Keyword/Summary the lead in overall performance. 

The difference in timing vs. I/O performance for 
Keyword/Summary is somewhat puzzling, as one would expect 
task completion time to be closely related to I/O effort. We would 
therefore expect Keyword/Summary to do better in timing 
performance than Keyword. We believe that the discrepancy 
might be due to the cognitive burden of interpreting keywords. 
That is, looking at the complete summary sentence is easier than 
examining the keywords, as long as the summary sentence is not 
too long. 

In summary, we conclude from our studies that the 
Keyword/Summary method is the best method to use for finding 
answers to questions about individual Web pages on PDAs. While 
the keywords require some mental interpretative overhead, the 
savings in input interaction tips the balance to Keyword/Summary, 

Figure 15: Differences in Average Task 
Completion Times Among Users 

Figure 16: Average Completion Time for 
Each Method Across All Tasks 

Figure 17: Average I/O Expenditure for 
Each Method Across All Tasks 
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even though this method’s timing performance is comparable with 
that of Summary. 

4.2 System Performance 
Recall that the deployment platform for our system is a wirelessly 
connected PDA. The amount of information that is transferred 
from the Web proxy to the PDA is therefore an important system-
level parameter that must be considered in an overall evaluation. 
This information flow impacts the bandwidth requirements, which 
is still in short supply for current wireless connections. 

Table 3 summarizes the bandwidth-related properties of each 
task’s Web page. Column 1 shows the total number of bytes 
occupied by a fully displayed HTML page, when images and style 
sheets are included. Column 2 shows the size once images and 
style sheets are removed from the total. The third column lists the 
number of bytes our system sends when transmitting STUs. The 
average 90% savings of Column 3 over Column 1 stem from 
stripping HTML formatting tags, and the discarded images. If we 
just consider the HTML and ignore images, the average savings is 
71%. Note that these transmission times are not included in our 
timing data, since we were using the emulator for our 
experiments. The numbers in Column 3 are for the ALL method. 
The Keyword, Summary, and Keyword/Summary methods require 
additional data to be transmitted: the keywords, and the start and 
end indexes of the summary sentences in the transmitted data. On 
average over all tasks, this additional cost is just 4% for Summary, 
24% for Keyword, or 28% for Keyword/Summary. Even for the 
latter worst case this still leaves a 87% savings in required 
bandwidth for our browser. 

 
Notice, that a 87% reduction in required bandwidth is highly 
significant when operating our browser in a wireless environment. 
To see this significance, consider that in terms of transmission time 
over wireless links, an average size page (over the 10 tasks) would 
take seven seconds for the ALL method on one popular wireless 
network. Sending all of the HTML as well would take 24 seconds 
over the same network. If images and style sheets were added in 
addition, transmission of an average page would take up 77 seconds! 

Compared to a browser that sends the full page, our browser’s 
bandwidth parsimony would therefore amount to an 11-fold 
improvement. Even a browser that discarded images and style 
sheets, but transmitted all of the HTML tags would require three 
times more bandwidth than our solution. The computation time for 
transforming the original Web pages on the fast proxy is negligible, 
compared to the transmission time. 

5. RELATED WORK 
Our Power Browser draws on two research traditions. The first is the 
search for improving user interaction with text by designing non-
linear approaches to text displays and document models. Projects in 
the second tradition have examined design choices for displays on 
small devices. 

One body of work in the first tradition has explored effective ways 
of displaying documents and search results through the use of 
structured browsing systems. See for example [6, 9, 22]. The long-
standing Hypertext community [8] has focused on tree structures for 
interacting with multiple documents [10] and large table of contents 
[7]. The Cha-Cha system allows users to open and collapse search 
results. In this sense that system is similar to our displaying 
individual Web pages as nested structures. But Cha-Cha applies this 
concept over multiple pages, and the display is pre-computed. The 
part of our Power Browser that we introduced in this paper focuses 
on a single Web page, and all displays are dynamically computed. 

Similarly, Holophrasting interfaces [25] have aimed to provide 
visualization of textual information spaces by providing contextual 
overviews that allow users to conceal or reveal the display of textual 
regions. We use the Holophrasting principle for our STUs. But 
rather than progressively disclosing a fixed body of text, some of the 
methods we explored here apply Holophrasting to transformations 
of the text, such as summaries or keywords. 

Numerous approaches to browsing the Web on small devices have 
been proposed in work of the second abovementioned tradition.  
Digestor [2] provides access to the World-Wide Web on small-
screen devices. That system re-authors documents through a series 
of transformations and links the resulting individual pieces. Our 
technique is more in the tradition of Fisheye Views [12], where a 
large body of information is displayed in progressively greater 
detail, with surrounding context always visible to some extent. 

Ocelot [1] is a system for summarizing Web pages. Ocelot 
synthesizes summaries, rather than extracting representative 
sentences from text. The system’s final result is a static summary. 
Ocelot does not provide progressive disclosure where users can drill 
into parts of the summary, as we do in the Power Browser.  Another 
system, WebToc [18], uses a hierarchical table of contents browser; 
that browser, however, covers entire sites, and does not drill into 
individual pages. 

Similar to our Partition Manager, the system described in [15] 
applies page partitioning to Web pages. The purpose of that 
system’s partitioning efforts, however, is to convert the resulting 
fragments to fit the ‘decks’ and ‘cards’ metaphor of WAP devices. 

6. CONCLUSION 
As small devices with wireless access to the World-Wide Web 
proliferate, effective techniques to browse Web pages on small 
screens become increasingly vital. In this paper, we developed a new 
approach to summarize and browse Web pages on small devices.  

Table 3. Bandwidth Requirements for 
Different Browsing Alternatives 

Task 
Page Size 

(Total 
Bytes) 

Page Size 
(HTML 
Bytes) 

Packet 
Size 

(ALL) 

Size Savings 
(Compared to 

Full Page) 

1 51,813 18,421 1193 97.7% 

2 45,994 18,309 4,969 89.2% 

3 66,956 12,781 9,762 85.4% 

4 17,484 11,854 3,736 78.7% 

5 55,494 21,276 10,913 80.3% 

6 23,971 6,583 1,079 95.5% 

7 75,291 35,862 5,877 92.2% 

8 44,255 9,394 1,771 96.0% 

9 19,953 7,151 3,042 84.8% 

10 114,678 17,892 4,342 96.2% 
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We described several techniques for summarizing Web pages, and 
for progressively disclosing the summaries. Our user experiments 
showed that a combination of keyword extraction and text 
summarization gives the best performance for discovery tasks on 
Web pages. For instance, compared to a scheme that does no 
summarization, we found that for some tasks our best scheme cut 
the completion time by a factor of 3 or 4. 
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