Sorting

Sorting

DESIGN \& ANALYSIS OF ALGORITHM

- A little old estimate said that more than half the time on many commercial computers was spent in sorting.
- Knuth's book lists about 25 sorting methods and claims they are only fraction of the algorithms that have been devised so far.
- Types of sorting:
- External vs. Internal

Sorting by Insertion

- Maintain two lists, one sorted, another unsorted.
- Initially the sorted list has size zero, unsorted list has all the original keys.
- One by one insert the keys from unsorted list to the right position in the sorted list.

Select 6 Names and play contiguous and linked list versions! (Volunteer needed!)

Sorting by Insertion (Example)
DESIGN \& ANALYSIS OF ALGORITHM
sorted

Insertion Sort (contiguous list)

```
void InsertionSort(List *list)
{
    Position fu; /*first unsorted entry position*/
    Position place; /*searches sorted part of list*/
    ListEntry current; /*holds entry temporarily*/
    for (fu = 1; fu < list->count; fu++)
        if(LT(list->entry[fu].key, list->entry[fu-1].key)) {
            current = list->entry[fu];
            for (place = fu - 1; place >= 0; place--) {
                list->entry[place+1]=list->entry[place];
                if (place==0||
                LE(list->entry[place-1].key, current.key))
                        break;
            }
            list->entry[place] = current
        }
}
```


Analysis

- ith entry requires anywhere between 0 to (i-1) iterations. On the average it requires

DESIGN \& ANALYSIS OF ALGORITHM

- $[0+1 \ldots .+(\mathrm{i}-1)] /(\mathrm{i}-1)=\mathrm{i} / 2$ iterations
- Each iteration has
- 1 comparison and
- 1 assignment
- Outside the loop there are
- 1 comparison and
- 2 assignments
- cost is Comp $=\frac{i}{2}+1$

Assignments $=\frac{i}{2}+2$

```
void InsertionSort(List *list)
    i
        Position fu; /*first unsorted entry position*/
        Position place; /*searches sorted part of list*/
        ListEntry current; /*holds entry temporarily*/
        for (fu = 1; fu < list->count; fu++)
            if(LT (list->entry[fu].key,list->entry[fu-1].key)) {
                current = list->entry[fu];
                for (place = fu - 1; place >= 0; place--) {
                list->entry[place+1]=list->entry[place] ;
                if (place==0||
        LE(list->entry[place-1].key,
            break
            }
        list->entry[place] = current;
            }
}

\section*{Analysis}
- ith entry requires anywhere between 0 to (i-1) iterations. On the average it requires
- \([0+1 \ldots+(\mathrm{i}-1)] /(\mathrm{i}-1)=\mathrm{i} / 2\) iterations
- Each iteration has
- 1 comparison and
- 1 assignment
- Outside the loop there are
- 1 comparison and
- 2 assignments
- cost is Comp \(=\frac{i}{2}+1\) Assignments \(=\frac{i}{2}+2\)
- \(\quad \mathrm{i}\) iterates from 2 to n :
- But before we proceed lets simplify using Big-O rules:
```

Comparisions $=\frac{i}{2}+O(1)$
Assignments $=\frac{i}{2}+O(1)$

```
- Total Cost:


DESIGN \& ANALYSIS OF ALGORITHM


\section*{Comments on Insertion Sort}
- Insertion sort is an excellent method to check if a sorted list is still sorted.
- It is also good if a list is nearly in order.
- The main disadvantage of insertion sort is that there are too many moves, even on sorted keys, if just one key is out of place.
- A data which needs to travel at far away location needs to go through many steps.
- One data moves just one position in one iteration.

\section*{Selection Sort}
- Selection sort one by one selects the max (or min) keys from the unsorted list and just appends them at the end of the sorted list.
- Consequently, there is no insertion cost.


\section*{Selection Sort (Contiguous list)}
```

void SelectionSort(List *list)
{
Position current; /*position of place being
correctly filled*/
Position max; /*position of largest remaining
key */
for (current = list->count - 1; current > 0;
current--) {
max = MaxKey(0, current, list);
Swap(max, current, list);
}
}

```

\section*{Selection Sort (Contiguous list)}

Position MaxKey (Position low, Position high, List *list)
DESIGN \&
\{
Position largest; /* position of largest key so far */
Position current; /* index for the contigous list */
largest = low;
for (current = low +1 ; current <= high; current++)
if (LT (list->entry[largest].key, list->entry[current].key)) largest \(=\) current;
return largest;
\}
void Swap (Position low, Position high, List *list)
1
ListEntry temp = list->entry[low];
list->entry[low] = list->entry[high];
list->entry[high] = temp;
\}

\section*{Analysis}
- Swap is called \(\mathrm{n}-1\) times
- each has 3 assignments
- MaxKey is called \(\mathrm{n}-1\) times. Length t of the sub list varies from n to 2 .
- Each requires t-1 comparisons.
- Total 3(n-1) assignments.
- Thus there are:
- Thus (n-1)+(n-2)+....+1
- \(=.5 \mathrm{n}(\mathrm{n}-1)\) comparisons.
\(=\frac{1}{2} n^{2}+O(n)\)

\section*{Comparison of Selection and Insertion Sort}

DESIGN \& ANALYSIS OF ALGORITHM
- Quiz:
- What is the best case for selection sort?
- What is the worst case for selection sort?
- Which method should we use
- For large n ?
- If we know, the list is almost sorted?
- Cost of assignment is large?

\section*{Shell Sort}
- The problem with insertion sort is that, if a data needs to move much long distance it have to go through many iterations.
- Solution is Shell Sort!
- Invested by D.L. Shell in 1959.



\section*{Shell Sort}
- How to select the increments?
- 5,3,,1 worked. Many other choices will work also.

DESIGN \& ANALYSIS OF ALGORITHM
- However, no study so far could conclusively prove one choice is better that the other.
- Only requirement is that last round should be of increment 1 (that's an pure insertion sort).
- Probably it in not a good idea to use increments in power's of 2 . Why?
- Analysis:
- exceedingly difficult
- for large n it appears the number of moves is in \({ }^{\mathrm{n} 1.25}\) to 1.6 \(n^{1.25}\).

\section*{Lower Bounds of Sorting}



LECT-06, S-23 ALGooS, javed@kent.edu Javed I.Khan@1999

\section*{Limits of Sorting Algorithms}
- If there are n numbers to sort how many possible outcomes?

Theorem 7.2 Any algorithm that sorts a list of \(n\) entries by use of key comparisons must, in its worst case, perform at least \(\lceil\lg n!\rceil\) comparisons of keys, and, in the average case, it must perform at least \(\lg n\) ! comparisons of keys.
- Sterling's approximation of n !:
\(\log e=1.442\)
\(\log n!\approx\left(n+\frac{1}{2}\right) \log n-(\log e) \cdot n+\log \sqrt{2 \pi}+\frac{\log e}{12 n}\)
\(\log n!\approx\left(n+\frac{1}{2}\right)(\log n-1.5)+2\)
\(=n \cdot \log n-1.44 n+O(\log n)\)```

