Divide & Conquer
Sort

Divide and Conquer

void Sort(List *list)

.
1

if (list has length >= 1)
{

Partition list into lowlist, highlist;

Sort(lowlist),
Sort(highlist);
Combine(lowlist, highlist);

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-06, S-2

ALGO0S, javed@kent.edu
Javed |. Khan@1999

Merge Sort Example

DESIGN &
ANALYSIS OF

Mergesor‘[: ALGORITHM

We chop the list into two sublists of sizes as nearly equal as
possible and then sort them separately. Afterward, we care-
fully merge the two sorted sublists into a single sorted list.

void Sort(List *list)

{
if (list has length >= 1)
{

Partition list into lowlist, highlist;

Sort(lowlist);
 Let'sSort: Son(rahis!

Note: When we cannot divide into two equal list we

will make the first onelarge. LECT-06, S-3

ALGOOS, javed@kent.edu
Javed |. Khan@1999

Recursion Treeof Merge Sort

DESIGN &
ANALYSIS OF
ALGORITHM

Finish

26 33 35 29 1

LECT-06, S-4
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Quick Sort Example

Quicksort: DESIGN &
ANALYSISOF
We first choose some key from the list for which, we hope, ALGORITHM

about half the keys will come before and half after. Call this
key the pivot. Then we partition the items so that all those
with keys less than the pivot come in one sublist, and all those
with greater keys come in another. Then we sort the two
reduced lists separately, put the sublists together, and the
whole list will be in order.

void Sort(List *list)
¢

if (list has length >= 1)
{
Par t into lowlist, highlist;

e Let’'sSort:

26 33 3529 19 1222

st, highlist)

Note: Let us pick thefirst element on thelist as the pivot. LECT-06, S-5

ALGOOS, javed@kent.edu
Javed |. Khan@1999

DESIGN &
Sort (26, 33, 35, 29, 12, 22) ANALYSISOF
ALGORITHM
Partition into (19, 12, 22) and 33, 35, 29); pivot = 26
Sort (19, 12, 22)
Partition into (12) and (22); pivot = 19
Sort (12)
Sort (22)
Combine into (12, 19, 22)
Sort (33, 35, 29)
Partition into (29) and (35); pivot = 33
Sort (29)
Sort (35)
Combine into (29, 33, 35)
Combine into (12, 19, 22, 26, 29, 33 35)
LECT-06, S-6
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Recursion Tree of Quick Sort

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-06, S-7
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Another Example with QS

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-06, S-8
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Main for Merge Sort

void MergeSort(List *list)
{

Li st secondhal f; /* holds the second half of the list after

di vision */

if (ListSize(list) > 1) { /* Is there a need to sort? */
Divide(list, &econdhalf); /* Divide the list in half. */
MergeSort (list); /* Sort the first half. */
Mer geSor t (&econdhal) ; /* Sort the second half. */
Merge(list, &secondhalf, list); /* Merge the two sorted

sublists. */

}

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-9
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Divide (Linked List)

void Divide(List *list, List *secondhal f)

Li st Node *current, *m dpoint;

if ((mdpoint = list->head) == NULL)
secondhal f - >head = NULL;
el se {

for (current = mdpoint->next; current;
current = current->next;
if (current) {
m dpoi nt = mi dpoi nt - >next ;
current = current->next;

}

secondhal f - >head = m dpoi nt - >next ;
m dpoi nt->next = NULL;

)

! !

midpoint current

{

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-10
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Merging Two Sorted List

Initial situation:

O C e C SO S N
ooy L[

After merging:

LB TP A P[P
G~ N

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-11
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Code for Merge (Linked List)

void Merge(List *first, List *second, List *out)

Li st Node *pl, *p2; /* pointers to traverse first and second lists */
Li st Node *lastsorted; /* always points to | ast node of sorted list */

if (!first->head)
*out = *second;

el se if (!second->head)
*out = *first;

el se {
pl first->head; /* First find the head of the nerged list. */
p2 second- >head;

if (LE(pl->entry.key, p2->entry.key)) {
*out = *first;
pl = pl->next;

} else {

*out = *second;

p2 = p2->next;

lastsorted = out->head; /* lastsorted gives last entry of merged list. */
while (pl && p2)
if (LE(pl->entry.key, p2->entry.key)) {
| astsorted->next = pil;
lastsorted = pl;
pl = pl->next;
} else {
| astsorted->next = p2;
lastsorted = p2;
p2 = p2->next;

if (pl) /* Attach the remaining list. */
| astsorted->next = pi;

el se
| astsorted->next = p2;

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-12
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Quick Sort for Contiguous List

voi d RecQui ckSort (List *list, Position |ow, Position
hi gh)
{

Position pivotpos; /* position of the pivot
after partitioning */

if (low < high) {

pivotpos = Partition(list, low high);
RecQui ckSort (list, low, pivotpos - 1);
RecQui ckSort (list, pivotpos + 1, high);

pivotpos

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-13
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Partitioning in Quick Sort

Goal (postcondition):

‘ = p ‘ L ‘ =p ‘
low pivaotpos high
Loop invariant:
= =P =0 ?
low pivotpos i

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-14

ALGO0S, javed@kent.edu
Javed |. Khan@1999

Partitioning in Quick Sort

Restore the invariant:

Swap

i . .
p <p ! zp <p ?

]

pivotpos i
i _ i
p <p i zp i ?
pivotpos i
Final position:

7] P L] =p |

f “ T

low pivotpos

i

high

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-15
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Partition (code)

Position Partition(List *list, Position |ow, Position high)

{
Li stEntry pivot;
Position i, lastsnall, pivotpos;
Swap(low, (low + high) / 2, list);
pivot= list->entry[low];
pi vot pos = | ow,
for (i =low+ 1, i <= high; i++)
if (LT(list->entry[i].key, pivot.key)) {
Swap(++pi vot pos, i, list);
| astsmal | ++;
}/* Move large entry to right and snall to left.
Swap(l ow, pivotpos, list);
return pivotpos;
}

*/

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-16
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Analysis of
Quick & Merge Sort

17

Ned Volunteg!

DESIGN &
» To keep various performances of various ALGORITHM,
algorithms.

» Insertion Sort: Worst Case asignments?
» Seledion Sort: Worst case comparisons?

Need Volunteer!
Selection Insertion (average)
Assignments of entries 3.0n + O(1) 0.25n 4+ O(n)
Comparisons of keys 0.5n% + O(n) 0.25n% + O(n)

Worst case of Selection Sort istwice as bad than aver age case.

LECT-06, S-18
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Few Results!

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-06, S-19
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Harmonic Numbers

DESIGN &
ANALYSIS OF
ALGORITHM

n+.
J'ldx =In(n+.5)-In.5=
5 X

=In2{og, n+O(1

Need Volunteer!

| ALGO0S, javed@kent.edu

Javed |. Khan@1999

10

Analysis of Merge Sort

Merging two lists of size k requires at most (k-1) ALGORITHM.

comparisons. There ae:

Note this is worst case at exact count!

Exercise E2 outlines a method which shows

average caseis:

DESIGN &

Need Volunteers again!

LECT-06, S-21
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Merge Sort: - -+
the ulti mate sorting method? pEsion e
Average Performance:
QUIZ: Can we
improve finding
the middle?
The lowest boundof any comp. sorting
algorithm we have derived:
Itisindeed, for linked list in random
initial order, it is difficult to surpass
aLobtS gt

11

Worst Case Analysis of Quick Sort

Count of Comparisons and Swaps

Comparison and Swap counts will be different.
Comparison Count: Worst Case:

DESIGN &
ANALYSISOF
ALGORITHM

Need another WC
Volunteer again!

LECT-06, S-23
ALGO0S, javed@kent.edu

Javed |. Khan@1999

WC Analysis of Quick Sort (cort..)

Swap Count: Worst Case:

— partition function performs one swap inside the loop when
the key is gnaller than the pivot.

— It performs two swaps outside the loop =1.5n°
— Inworst caseit will perform (n-1)+2=n+1 swaps.

The partition function is called oy when n>1, and

S(2)=3

DESIGN &
ANALYSISOF
ALGORITHM

Need another
WC Volunteer again!

Number of assignments are three times the number of
swaps!

LECT-06, S-24
ALGO0S, javed@kent.edu
Javed |. Khan@1999

12

Average case Analysis of Quick Sort
* Counting Swaps:
— Thepivot sdedion will partition thelist into two parts. The

partition can be anywhere between p=1toninthelist. For n>1:

— Todetermine the average ase we will alow all possibiliti es of
p=1to nandtake an average over the sum of all:

An equation of this form is called a recurrence relation
because it expresses the answer to a problem in terms of
earlier, smaller cases of the same problem.

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-25
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Solving Recurrence

* From therecurrence we @n write:

* with multiplying n and n-1 respedively and
subtrading:

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-26

ALGO0S, javed@kent.edu
Javed |. Khan@1999

13

Solving Recurrence (contd..)

DESIGN &
ANALYSISOF
ALGORITHM

From the recurrence we an write;

=2nlogn+0O(n)
with multiplying n and n-1 respedively and
subtrading:

Need another
AC Volunteer again!

Each swap nedds at least 3 assignments AlSooe, immsaieen

Javed |. Khan@1999

Average case Analysis of Quick Sort

DESIGN &

ANALYSISOF

* Counting Comparisons: ALGORITHM
— Thepartition of alist will make exactly n-1 comparisons:

— Solution can be derived in the exactly same way!

* | have not decided, whether | will make it a part of
midterm or a future quiz, but | will advise youto try
it out for every step tonight! And the final step will
look this:

LECT-06, S-28
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Average Case Comparisons

Average Case Volunteer s Wakeup!

The average cae for quick sort on contiguous list
is one of the most efficient among the known
algorithms.

It requires just 39% more comparisons than
mergesort (or best possble case).

It requires about 100% more assgnments than
mergesort (in good architecture only 39% more).

— Considering a 2n space @ntiguous implementation of
the merging algorithm for merge sort.

DESIGN &
ANALYSISOF
ALGORITHM

QUIZ: How
can weensure
that a sorting
problem
always
appearsasan
aver age case
toaquick
sort?

LECT-06, S-29
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Suggestionfor Midterm

It will be very important to know the result of the
analyses.

Prepare atable for Worst Case, Average Case, and
Best Case for number of comparisons and number
of assignments for all the algorithmswe ae
covering.

You dav't haveto know all the derivations of the
bodk.

Lean the general principal behind the proofs.

but you should go through all the proofs derived in
the class

Onewill appea in the Midterm!

DESIGN &
ANALYSISOF
ALGORITHM

LECT-06, S-30
ALGO0S, javed@kent.edu
Javed |. Khan@1999

15

Example Template

DESIGN &

A classof students have been given ANALYSISOF
. . ALGORITHM
the task of developing a solution for
an algorithm to count the number of ot
snow flakes looking through the e
window. Here ae the runningtime o
of the solutions. b
500
0 T
0 2 4 6 8 10 12 14
—1—1logn n nlogn —n"2 —n"3 —2"
Quiz Box LECT-06, 5-31
ALGO0S, javed@kent.edu
Javed |. Khan@1999

