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Merge Sort Example

• Let’s Sort:

26 33 35 29 19 12 22
Note: When we cannot divide into two equal list we 
will make the first one large.
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Recursion Tree of Merge Sort
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Quick Sort Example

• Let’s Sort:

26 33 35 29 19 12 22

Note: Let us pick the first element on the list as the pivot.
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Execution Trace of Quick Sort
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Recursion Tree of Quick Sort
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Another Example with QS
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Main for Merge Sort

void MergeSort(List *list)
{
    List secondhalf;    /* holds the second half of the list after
division */

    if (ListSize(list) > 1) {       /* Is there a need to sort? */
        Divide(list, &secondhalf);  /* Divide the list in half. */
        MergeSort(list);            /* Sort the first half.     */
        MergeSort(&secondhalf);     /* Sort the second half.    */
        Merge(list, &secondhalf, list); /* Merge the two sorted
sublists. */
    }
}
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Divide (Linked List)

void Divide(List *list, List *secondhalf)
{
    ListNode *current, *midpoint;

    if ((midpoint = list->head) == NULL)
        secondhalf->head = NULL;
    else {
        for (current = midpoint->next; current; ) {
            current = current->next;
            if (current) {
                midpoint = midpoint->next;
                current = current->next;
            }
        }
        secondhalf->head = midpoint->next;
        midpoint->next = NULL;
    }
}

midpoint current
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Merging Two Sorted List
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Code for Merge (Linked List)
void Merge(List *first, List *second, List *out)
{
    ListNode *p1, *p2;  /* pointers to traverse first and second lists */
    ListNode *lastsorted;   /* always points to last node of sorted list */

    if (!first->head)
        *out = *second;
    else if (!second->head)
        *out = *first;
    else {
        p1 = first->head;   /* First find the head of the merged list. */
        p2 = second->head;
        if (LE(p1->entry.key, p2->entry.key)) {
            *out = *first;
            p1 = p1->next;
        } else {
            *out = *second;
            p2 = p2->next;
        }
        lastsorted = out->head; /* lastsorted gives last entry of merged list. */
        while (p1 && p2)
            if (LE(p1->entry.key, p2->entry.key)) {
                lastsorted->next = p1;
                lastsorted = p1;
                p1 = p1->next;
            } else {
                lastsorted->next = p2;
                lastsorted = p2;
                p2 = p2->next;
            }
        if (p1)                 /* Attach the remaining list. */
            lastsorted->next = p1;
        else
            lastsorted->next = p2;
    }
}
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Quick Sort for Contiguous List

void RecQuickSort(List *list, Position low, Position
high)
{
    Position pivotpos;      /* position of the pivot
after partitioning */

    if (low < high) {
        pivotpos = Partition(list, low, high);
        RecQuickSort(list, low, pivotpos - 1);
        RecQuickSort(list, pivotpos + 1, high);
    }
}

pivotpos
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Partitioning in Quick Sort
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Partitioning in Quick Sort
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Partition (code)

Position Partition(List *list, Position low, Position high)
{
    ListEntry pivot;
    Position i, lastsmall, pivotpos;

    Swap(low, (low + high) / 2, list);
    pivot= list->entry[low];
    pivotpos = low;
    for (i = low + 1; i <= high; i++)
        if (LT(list->entry[i].key, pivot.key)) {
            Swap(++pivotpos, i, list);

lastsmall++;
   }/* Move large entry to right and small to left. */

    Swap(low, pivotpos, list);
    return pivotpos;
}
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Need Volunteer!

• To keep various performances of various 
algorithms.

• Insertion Sort: Worst Case assignments? 

• Selection Sort: Worst case comparisons?

Worst case of Selection Sort is twice as bad than average case.

Need Volunteer!
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Few Results!
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Harmonic Numbers

When n is large .7 disappears!
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Analysis of Merge Sort

• Merging  two lists of size k requires at most (k-1) 
comparisons. There are:

• Note this is worst caseat exact count!

• Exercise E2 outlines a method which shows 
average  case is:
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Merge Sort: 
the ultimate sorting method?

• Average Performance:

• The lowest bound of any comp. sorting 
algorithm we have derived:

• It is indeed, for linked list in random 
initial order, it is diff icult to surpass.
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QUIZ: Can we 
improve finding 

the middle?
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Worst Case Analysis of Quick Sort

• Count of Comparisons and Swaps

• Comparison and Swap counts will be different.

• Comparison Count: Worst Case:
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WC Analysis of Quick Sort (cont..)

• Swap Count: Worst Case:
– partition function performs one swap inside the loop when 

the key is smaller than the pivot.

– It performs two swaps outside the loop

– In worst case it will perform (n-1)+2=n+1 swaps.

• The partition function is called only when n>1, and 
S(2)=3 

• Number of assignments are three times the number of 
swaps!
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Average case Analysis of Quick Sort
• Counting Swaps:

– The pivot selection will partition the list into two parts. The 
partition can be anywhere between p=1 to n in the list. For n>1:

– To determine the average case we will allow all possibiliti es of
p=1 to n and take an average over the sum of all:
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Solving Recurrence

• From the recurrence we can write:

• with multiplying n and n-1 respectively and 
subtracting:
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Solving Recurrence (contd..)

• From the recurrence we can write:

• with multiplying n and n-1 respectively and 
subtracting:

• Each swap needs at least 3 assignments
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Average case Analysis of Quick Sort

• Counting Comparisons:
– The partition of a list will make exactly n-1 comparisons:

– Solution can be derived in the exactly same way!
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• I have not decided, whether I will make it a part of 
midterm or a future quiz, but I will advise you to try 
it out for every step tonight! And the final step wil l 
look this:
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Average Case Comparisons

• The average case for quick sort on contiguous list 
is one of the most eff icient among the known 
algorithms.

• It  requires  just 39% more comparisons than 
mergesort (or best possible case).

• It requires about 100% more assignments than 
mergesort (in good architecture only 39% more).

– Considering a 2n space contiguous implementation of 
the merging algorithm for merge sort.

Average Case Volunteers Wakeup!

QUIZ: How 
can we ensure 
that a sorting 
problem 
always 
appears as an 
average case 
to a quick 
sort?
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Suggestion for Midterm

• It will be very important to know the result of the 
analyses. 

• Prepare a table for Worst Case, Average Case, and 
Best Case for number of comparisons and  number 
of assignments for all the algorithms we are 
covering.

• You don’ t have to know all the derivations of the 
book.

• Learn the general principal behind the proofs.

• but you should go through all the proofs derived in 
the class. 

• One wil l appear in the Midterm!
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Example Template

• A class of students have been given 
the task of developing a solution for 
an algorithm to count the number of 
snow flakes looking through the 
window. Here are the running time 
of the solutions.
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