
1

1

Random Variable &
Binomial Distribution

LECT-08, S-2
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Random Variable
• A random variable is a function from a finite or

countably infinite sample space S to the real
numbers. It associates a real number with each
possible outcome of an experiment.

• Generally we associate a probabili ty value with each
possible outcome of X. The function describing the
distribution is called probabili ty distribution
function.

• Example (Binomial Distribution):
– We are tossing a coin.

– We score xi=1 for head and 0 for tail .

– Each time the probabilit y of head is p.

– If we toss n times, what is the probabilit y the score X=
x1+x2+x3+xn will be exactly 2, 3, ..k or n?

),,(

}Pr{

pknf

kX

=
=

2

LECT-08, S-3
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Binomial Distribution

• We are tossing a coin n times. Each time the
probabili ty of head is p. What is the probabili ty
that X, exactly has the value k?

– the ways of picking k heads

– the probabili ty of occurring each

– Binomial probabilit y distribution is written as:

– The name “binomial” comes from the fact the terms of
the expansion of

– A relation:

k

n

knk pp −−)1(

knk pp
k

n
pnkbkX −−

===)1(),;(}Pr{

1,)(=++ qpwhenqp n

1)()1(),;(
10

=+=−

= ∑∑

=

−

=

n
n

k

knk
n

k

qppp
k

n
pnkb

LECT-08, S-4
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Expectation & Variance of X

• Expectation:

• Variance:

nppnkkbXE
n

k

== ∑
=0

),:(][

npqXEXEXVar =−=]])[[(][2

3

LECT-08, S-5
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Expectation of X (derivation)

• Expectation:

∑

∑

∑

∑∑

∑

′

=′

′

=′

′−′′

=

−−

=

−

=

=

=

=′′=

′−′′
′

=

−−
−=

−
=

=

=

n

k

n

k

knk

n

k

knk

n

k

knk
n

k

knk

n

k

nppnkbnp

qp
knk

n
np

qp
knk

n
np

qp
knk

n
kqp

k

n
k

pnkkbXE

0

0

1

1

11

0

),:(

.
)!(!

!
.

.
)!()!1(

!1
.

.
)!(!

!
..

),:(][

LECT-08, S-6
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

2222

1

2

2
321

2

2

)1(
2

][].[
2

2][

])..[(][

nppnnpp
nn

np

XEXE
n

XE

XXXXEXE

ii

n

i

i

n

−+=−+=

+=

++++=

∑
=

npqpnp

npnpnpnp

XEXEXE

XEXEXVar

=−=
−−+=

−=
−=

)1(

)()(

][].[][

]])[[(][

222

2

2

Variance of X (derivation)

4

7

Counting Sort

LECT-08, S-8
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Idea

• The range of possible keys are known

• all the key are integers in the range 1 to k.

• They can be sorted in O(n) time!

• Find out the final position of each key.

• Move them there.

• Since, there might be some duplication do some
extra tricks..

5

LECT-08, S-9
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Example (range 1-6)

LECT-08, S-10
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Code

L1-2:Initialization

L10-11: Update
next’s position

6

LECT-08, S-11
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Complexity

• Analysis:
– K = possible types of keys

– n= number of keys

– L:1-2: Initialization O(k)

– L:3-4: Counting O(n)

– L:6-7: Position offset O(k)

– L:9-11: Moves O(n)

• Overall time complexity O(n+k)

• A Definition: Stabili ty of a Sorting Algorithm
– Counting sort is stable.

– Quick sort is not.

12

Radix Sort

7

LECT-08, S-13
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Idea

• Have a number of buckets.

• Sort one alphabet at a time.

• Stack them up.

• Sort next key!

LECT-08, S-14
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Example

8

LECT-08, S-15
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Linked Radix Sort

LECT-08, S-16
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

The Main Function

void RadixSort(List *list)
{
 int i, j;
 Node *x;
 Queue queues[MAXQUEUEARRAY];

 for (i = 0; i < MAXQUEUEARRAY; i++)
 CreateQueue(&queues[i]);
 for (j = KEYSIZE - 2; j >= 0; j--) {
 while(!ListEmpty(list)) {
 DeleteList(0, &x, list);
 AppendNode(x, &queues[QueuePosition(x-
>entry[j])]);
 }
 Rethread(list, queues);
 }
}

9

LECT-08, S-17
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

/ * QueuePosi ti on: d et er min e t he q ueue p os i t i on (0 t hro ugh 27)
 f or a char ac t er .* /
i nt QueuePosi ti on(char c)
{
 i f (c == ' ')
 r et urn 0 ;
 el se i f (i sal pha(c))
 r et urn t ol ower (c) - ' a' + 1;
 el se
 r et urn 2 7;
}

/ * Rethr ead: r et hre ad a li s t f ro m an ar r ay of
queues . * /
void Ret hre ad(Lis t * l ist , Queue queue s[])
{
 i nt i ;
 N ode *x ;
 f or (i = 0 ; i < MAXQUEUEARRAY; i ++)
 whil e(! QueueEmpt y(&queues[i])) {
 Serv eNode(&x, &qu eues[i]);
 I nse r tLi st (Li st Size (li s t) , x , l i st) ;
 }
}

LECT-08, S-18
ALG00F, javed@kent.edu

Javed I. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Complexity

• N is the number of keys

• k is the max length of the key.

• Time complexity is O(nk).

• The best- Merge Sort was n log n!

• If k is large, but only few key are long
Merge sort will be better.

• Is Radix Sort Stable?
– So long as the single alphabet sort is.

Any difference
between a

comparison in
quick sort and a
comparison in

radix sort?

