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Random Variable
• A random variable is a function from a finite or 

countably infinite sample space S to the real 
numbers. It associates a real number with each 
possible outcome of an experiment. 

• Generally we associate a probabili ty value with each 
possible outcome of X. The function describing the 
distribution is called probabili ty distribution 
function.

• Example (Binomial Distribution):
– We are tossing a coin. 

– We score xi=1 for head and 0 for tail .  

– Each time the probabilit y of head is p. 

– If we toss n times, what is the probabilit y the score X= 
x1+x2+x3+xn will be exactly 2, 3, ..k or n?
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Binomial Distribution

• We are tossing a coin n times. Each time the 
probabili ty of head is p. What is the probabili ty 
that X, exactly has the value k?

– the ways of picking k heads

– the probabili ty of occurring each

– Binomial probabilit y distribution is written as:

– The name “binomial” comes from the fact the terms of 
the expansion of 

– A relation: 
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Expectation & Variance of X

• Expectation:

• Variance:
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Expectation of X (derivation)

• Expectation:
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Variance of X (derivation)
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Idea

• The range of possible keys are known 

• all the key are integers in the range 1 to k.

• They can be sorted in O(n) time!

• Find out the final position of each key. 

• Move them there.

• Since, there might be some duplication do some 
extra tricks..
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Example (range 1-6)
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Code

L1-2:Initialization

L10-11: Update 
next’s position
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Complexity

• Analysis:
– K = possible types of keys 

– n= number of keys

– L:1-2: Initialization O(k)

– L:3-4: Counting O(n)

– L:6-7: Position offset O(k)

– L:9-11: Moves O(n)

• Overall time complexity O(n+k)

• A Definition: Stabili ty of a Sorting Algorithm
– Counting sort is stable.

– Quick sort is not.

12

Radix Sort
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Idea

• Have a number of buckets.

• Sort one alphabet at a time.

• Stack them up.

• Sort next key!
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Example
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Linked Radix Sort
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The Main Function

void RadixSort(List *list)
{
    int     i, j;
    Node    *x;
    Queue   queues[MAXQUEUEARRAY];

    for (i = 0; i < MAXQUEUEARRAY; i++)
        CreateQueue(&queues[i]);
    for (j = KEYSIZE - 2; j >= 0; j--) {
        while(!ListEmpty(list)) {
            DeleteList(0, &x, list);
            AppendNode(x, &queues[QueuePosition(x-
>entry[j])]);
        }
        Rethread(list, queues);
    }
}
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/ * QueuePosi ti on:  d et er min e t he q ueue p os i t i on (0 t hro ugh 27)
    f or a  char ac t er .* /
i nt QueuePosi ti on( char c )
{
    i f ( c == '  ' )
        r et urn 0 ;
    el se i f ( i sal pha( c ))
        r et urn t ol ower ( c ) - ' a' +  1;
    el se
        r et urn 2 7;
}

/ * Rethr ead:  r et hre ad a  li s t f ro m an ar r ay of
queues . * /
void Ret hre ad( Lis t * l ist , Queue queue s[] )
{
    i nt     i ;
    N ode    *x ;
    f or ( i =  0 ; i <  MAXQUEUEARRAY; i ++)
        whil e(! QueueEmpt y( &queues[ i ] )) {
            Serv eNode( &x, &qu eues[ i ] );
            I nse r tLi st ( Li st Size ( li s t) , x , l i st) ;
        }
}
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Complexity

• N is the number of keys

• k is the max length of the key.

• Time complexity is O(nk).

• The best- Merge Sort was n log n!

• If  k is large, but only few key are long 
Merge sort will be better. 

• Is Radix Sort Stable?
– So long as the single alphabet sort is.

Any difference 
between a 

comparison in 
quick sort and a 
comparison in 

radix sort?


