Splay Tree

Splay Tree

A Self-adjusting Tree
— A Binary Search Tree
— Not sowell balanced explicitly.
Adjustments
— Everytimeanew nodeisinserted, it is positioned at
the root.
— Everytimeanodeis retrieved, it becomes theroat.
Performance
— A sequenceof m insertions or retrievals with splaying
abinary search treeof sizen will never need more

thanm (1+3log n) + log n upward moves of atarget
node.

DESIGN &
ANALYSISOF
ALGORITHM

LECT-11, S-2

ALGO0S, javed@kent.edu
Javed |. Khan@1999

|dea of Zig and Zag

* Right-Rotation = Zig
* Left Rotation = Zag

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-3
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Zig-Zag and Zig Zig

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-4
ALGO0S, javed@kent.edu

Javed |. Khan@1999

Basic Algorithm
DESIGN &
« Start from the root and keep on splitting the tree ALGORITHM.
applying zig/zag and eventually bringing the target
at theroot.
* Dividethetreeinthreeparts:
— Treetl: al thenodes confirmed greater than the key.
— Tree#3: al the nodes confirmed larger than the key.
— Three#2: if thekey isthereit must beinsidethistree
LECT-11, S-5
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Some Operations

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-6
LiNg RIGHT ALG00S, javed@kent.edu
Javed I. Khan@1999

Some Operations (continued..)

{
ROTATE RIGHT

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-7
ALGOOS, javed@kent.edu
Javed |. Khan@1999

Algorithm

ROTATE
LEFT

>

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-8
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Final Two Steps..
DESIGN &
ANALYSISOF
ALGORITHM
wake Bl and El
children's oF and {5
LECT-11, S-9
ALGOOS, javed@kent.edu
Javed |. Khan@1999

DESIGN &
ANALYSIS OF
ALGORITHM

Male, [Fland &4

cHilbReEN oF [A]

LECT-11, S-10
ALGO0S, javed@kent.edu
Javed |. Khan@1999

Sentinel Binary Tree

No Neal to Ched for
NULL Pointer. When
we are at “ Sentingl”
node, we know we are
at the leaf.

In Splay Treewe start
by copying the
“target” at the sentinel
node..

The two pointers of
the sentindl kegps
track of the low and
high sub-trees.

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-11
ALGOOS, javed@kent.edu
Javed |. Khan@1999

o

ireeNode =TreeSplay(TreeNode *root, KeyType target)

{
TreeNode *current; /= the current position in the tree
TreeNode =child; /= one of the children of current
TreeNode =lastsmall; I largest key known to be less than the target
TreeNode *firstlarge; /= smallest key known to be greater than the farget
extern TreeNode #sentinel;
sentinel->entry.key = target; /» Establish sentinel for searching.
lastsmall = firstlarge = sentinel;
for (current = root; NE(current->entry.key, target);)
if (LT(current->entry.key, target)) {
4 child = current->right;
A if (EQ(target, child->entry.key)) {

==Y current = LinkLeft(current, &lastsmally;

} else if (GT(target, child->entry.key)) {
current = RotateLeft(current);
current = LinkLeft(current, &lastsmalil);
}else {
current = LinkLeft(current, &lastsmall);
current = LinkRight(current, &firstiarge);

}

} else {
child = current->left;
if (EQ(target, child->entry.key)) {
current = LinkRight(current, &firstlarge);
} else if (T(target, child->entry.key)) {
current = RotateRight(current);
current = LinkRight(current, &firstlarge);
}else {
‘.y current = LinkRight(current, &firstlarge);
- current = LinkLeft(current, &lastsmall);

if (current == sentine!) {
printf("Target has been inserted as root of the tree.");
root = current = MakeNode(target, sentinel);

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-11, S-12
ALGO0S, javed@kent.edu

Javed |. Khan@1999

