Splay Tree

Splay Tree

A Self-adjusting Tree
— A Binary Search Tree
— Not sowell balanced explicitly.
Adjustments
— Everytimeanew nodeisinserted, it is positioned at
the root.
— Everytimeanodeis retrieved, it becomes theroat.
Performance
— A sequenceof m insertions or retrievals with splaying
abinary search treeof sizen will never need more

thanm (1+3log n) + log n upward moves of atarget
node.
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|dea of Zig and Zag

* Right-Rotation = Zig
* Left Rotation = Zag
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Zig-Zag and Zig Zig
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Basic Algorithm
DESIGN &
«  Start from the root and keep on splitting the tree ALGORITHM.
applying zig/zag and eventually bringing the target
at theroot.
* Dividethetreeinthreeparts:
— Treetl: al thenodes confirmed greater than the key.
— Tree#3: al the nodes confirmed larger than the key.
— Three#2: if thekey isthereit must beinsidethistree
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Some Operations
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Some Operations (continued..)

{
ROTATE RIGHT
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Algorithm

ROTATE
LEFT

>
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Final Two Steps..
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Sentinel Binary Tree

No Neal to Ched for
NULL Pointer. When
we are at “ Sentingl”
node, we know we are
at the leaf.

In Splay Treewe start
by copying the
“target” at the sentinel
node..

The two pointers of
the sentindl kegps
track of the low and
high sub-trees.
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ireeNode =TreeSplay(TreeNode *root, KeyType target)

{
TreeNode *current; /= the current position in the tree
TreeNode =child; /= one of the children of current
TreeNode =lastsmall; I largest key known to be less than the target
TreeNode *firstlarge; /= smallest key known to be greater than the farget
extern TreeNode #sentinel;
sentinel->entry.key = target; /» Establish sentinel for searching.
lastsmall = firstlarge = sentinel;
for (current = root; NE(current->entry.key, target); )
if (LT(current->entry.key, target)) {
4 child = current->right;
A if (EQ(target, child->entry.key)) {

==Y current = LinkLeft(current, &lastsmally;

} else if (GT(target, child->entry.key)) {
current = RotateLeft(current);
current = LinkLeft(current, &lastsmalil);
}else {
current = LinkLeft(current, &lastsmall);
current = LinkRight(current, &firstiarge);

}

} else {
child = current->left;
if (EQ(target, child->entry.key)) {
current = LinkRight(current, &firstlarge);
} else if (T(target, child->entry.key)) {
current = RotateRight(current);
current = LinkRight(current, &firstlarge);
}else {
‘.y current = LinkRight(current, &firstlarge);
- current = LinkLeft(current, &lastsmall);

if (current == sentine!) {
printf("Target has been inserted as root of the tree.");
root = current = MakeNode(target, sentinel);
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