Graphs

Definitions

- A graph G consists of a set V, whose members are called the vertices of G, together with a set E of pairs of distinct vertices from V.
- The pairs in E are called the edges of G.
- If the pairs are unordered, G is called an undirected graph.
- If the pairs are ordered, G is called a directed graph (or digraph).
- Two vertices in an undirected graph are called adjacent if there is an edge from the first to the second.

Definitions: Paths \& Links

- A path is a sequence of distinct vertices, each adjacent to the next.
- A cycle is a path containing at least three vertices such that the last vertex on the path is adjacent to the first.
- A graph is called connectedif there is a path from any vertex to any other vertex.
- A free tree is defined as a connected undirected graph with no cycles.
- In a directed graph a path or a cycle means always moving in the direction indicated by the arrows. Such a path (cycle) is called a directedpath (cycle).

Definitions: Connected components

- A directed graph is called strongly connected if there is a directed path from any vertex to any other vertex.
- If we suppress the direction of the edges and the resulting undirected graph is connected, we call the directed graph weakly connected.
- The valence (or degree) of a vertex is the number of edges on which it lies, hence also the number of vertices adjacent to it.

DESIGN \& ANALYSIS OF ALGORITHM

Representation

Definition Agraph G consists of a set V, called the vertices
DESIGN \& ANALYSIS OF ALGORITHM
of G, and, for all $v \in V$, a subset A_{v} of V, called the set of vertices adjacent to v.

Directed graph

Graph Traversal

Depth First Search

/* DepthFirst: depth-first traversal of a graph.
Pre: The graph G has been created.
Post: The function Visit has been performed at each vertex of G in depth-first order
Uses: Function Traverse produces the recursive depth-first order. *
DESIGN \& void DepthFirst(Graph G, void (*Visit)(Vertex))

Boolean visited[MAXVERTEX];
Vertex v;
for (all v in G)
visited[v] = FALSE;
for (all v in G)
if (!visited[v])
Traverse(v, Visit)
\}
void Traverse(Vertex v, void (*Visit)(Vertex))
\{
Vertex w;
visited[v] = TRUE;
Visit(v);
for (all w adjacent to v)
if (!visited[w])
Traverse(w, Visit);
\}

Breadth First Search

```
void BreadthFirst(Graph G, void (*Visit)(Vertex))
    Queue Q; /* QueueEntry defined to be Vertex. */
    Boolean visited[MAXVERTEX];
    Vertex v, w;
    for (all v in G)
        visited[v] = FALSE;
    CreateQueue(Q);
    for (all v in G)
        if (!visited[v]) {
            Append(v, Q);
            do {
                    Serve(v,Q);
                    if (!visited[v]) {
                    visited[v] = TRUE;
                    Visit(v);
                }
                    for (all w adjacent to v)
                    if (!visited[w])
                    Append(w, Q);
            } while (!QueueEmpty(Q));
        }
Boolean visited[MAXVERTEX];
Vertex v, w;
for (all v in G )
visited[v] = FALSE;
CreateQueue(Q);
for (all vin G)
if (!visited[v]) \{
Append(v, Q);
do \{
Serve(v, Q);
visited[v] = TRUE,
Visit(v)
\}
for (all w adjacent to v)
if (!visited[w])
while (!QueueEmpty(Q));
\}
```


Topological Sorting

Let G be a directed graph with no cycles. A topological order for G is a sequential listing of all the vertices in G such that, for all vertices $v, w \in G$, if there is an edge from v to w, then v precedes w in the sequential listing.

LECT-13, S-17 ALG99F, javed@kent.edu Javed I. Khan@1999

Topological Sorting

Idea: Depth-First

- By Depth-first traversal find the last node which has no successor.
- Place it in the last order.
- By recursion, when the routine returns, put its immediate successors into topological order.
- Use a variable 'place' to indicate the rank in the topological order.

Code

DESIGN \&
void DepthTopSort(Graph *G, Toporder T) ANALYSIS OF \{

Vertex v; /* next vertex whose successors are to be ordered*/
int place /* next position in the topological order to be filled*/
for ($\mathrm{v}=0$; v < G->n; v++)
visited[v] = FALSE;
place $=$ G->n-1;
for ($\mathrm{v}=0 ; \mathrm{v}$ < G->n; v++)
if (!visited[v])
RecDepthSort(G, v, \&place, T);
\}

Vertex curvertex; /* vertex adjacent to v */
DESIGN \&
Edge *curedge; /* traverses list of vertices adjacent to v */
visited[v] = TRUE;
curedge = G->firstedge[v]; /* Find the first vertex succeeding v. */
while (curedge) \{
curvertex = curedge->endpoint; /* curvertex is adjacent to v. */
if (!visited[curvertex])
RecDepthSort(G, curvertex, place, T); /* Order the successors of curvertex. */
curedge $=$ curedge->nextedge; /* Go on to the next immediate successor of/ v. */
\}
T[*place] = v; /* Put v itself into the topological order. */ (*place)--;
\}

Since each of the nodes and links are visited only once the complexity is $\mathrm{O}(\mathrm{n}+\mathrm{e})$

Topological Sort: Breadth-First

- Setup an array "predecessorcount[]' to keep a count of immediate predecessors to a node.
- The first vertices has zero count.
- Put these vertices with zero count into a queue.
- Visit each of them in the queue.
- When visit them
- remove them from the queue,
- assign the next place in the sorted list,
- reduce the predecessor count of each of their successors by one.
- If any of its successor's count becomes zero, put it in the queue.

