# Minimum Spanning Tree 

## Minimum Spanning Tree

- $\mathrm{G}=(\mathrm{V}, \mathrm{E})$ is an undirected graph, where V is a set of nodes and E is a set of possible interconnections

DESIGN \& ANALYSIS OF ALGORITHM between pairs of nodes.

- For each edge (u,v) in E, we have a weight W(u,v).
- Find an acyclic subset T of E, that connects all the vertices and whose total weight is minimum.




## Kruskal's Algorithm



DESIGN \& ANALYSIS OF ALGORITHM

- Consider v isolated trees in the forest. Each initially with only one node.
- Pick the shortest path that connects two trees in the forest.
- In other words, select a least-cost edge that does not result in a cycle when added to a set of already selected edges.



Example: Continued..


DESIGN \&
ANALYSIS OF ALGORITHM


## Proof of Correctness of an Algorithm

## Correctness of Krsukal's Algorithm

- Let T be the tree found by Kruskal's algorithm.
- Let U be the actual minimum spanning tree.
- We will prove cost of $T=$ cost of $U$.
- Do you agree?
- T and U and all spanning trees must have exactly V-1 edges.
- If, $k(k>0)$ number of edges in $U$ are not in $T$, then exactly $k$ number of edges in $T$ must not be in $U$.
- We will one by one substitute a unique edge of U by unique edge of T to prove that the cost does not change.


## Correctness of Kruskal's Algorithm (contd..)

- Let e be the least-cost edge in T that is not in U .
- Add e to U.
- It must create a cycle.
- There must be an edge f in this cycle which was not in T.
- Take it out. The new spanning tree has cost
$\mathrm{V}=\mathrm{U}+\{\mathrm{e}\}-\{\mathrm{f}\}$
- Can $\{\mathrm{e}\}<\{\mathrm{f}\}$ ?
- No because, then $U$ cannot be minimum spanning tree.
- Can $\{\mathrm{e}\}>\{\mathrm{f}\}$ ?
- No because, then f will be included by Kruskal's greedy scheme before e. That did not happen!
- Therefore $\{\mathrm{e}\}=\{\mathrm{f}\}$
- Therefore $\mathrm{T}=\mathrm{U}$



## Complexity of Kruskal's Algorithm



- 1-3: Initialization $\mathrm{O}(\mathrm{v})$
- 4: sorting $O(E \log E)$
- 5: E iterations.
- 6: Each FIND-SET is $\mathrm{O}(\log \mathrm{E})$ total cost= 2E.O(log E)
- 7: 2E
- 8: UNION is at most V-1
- Overall complexity is $\mathrm{O}(\mathrm{V}+\mathrm{E} \log \mathrm{E})$

DESIGN \&
ANALYSIS OF ALGORITHM
for each vertex $v \in V[G]$
sort the edges of $E$ by nondecreasing weight $w$
for each edge $(u, v) \in E$, in order by nondecreasing weight
then $A \leftarrow A \cup\{(u, v)\}$
Union $(u, v)$
return $A$

## Prim's Algorithm



DESIGN \& ANALYSIS OF

- Like Kruskal's, but, start with any node.
- Extend the tree to the closest node!





## Complexity of Prim's Algorithm



- 1-5: Initialization $\mathrm{O}(\mathrm{v})$
* 6: Loop executes V times.
- 7: Each EXTRACT-MIN is $\mathrm{O}(\log \mathrm{V})$. Total $\mathrm{O}(\mathrm{V} \log \mathrm{V})$.
- 8: Loop 8-11 executes E times.
- 9: membership can be tested in constant time.
- 11: v have to be deleted from Q (not shown): $\mathrm{O}(\log \mathrm{V})$
- Total: $\mathrm{O}(\mathrm{V} \log \mathrm{V}+\mathrm{E} \log \mathrm{V})$


## Shortest Path

## Shortest Path

Given a directed graph in which each edge has a nonnegative weight or cost, find a path of least total weight from a given vertex, called the source, to every other vertex in the graph.


- Other Variants:
- Single Destination shortest-path problem.
- Single-pair shortest path problem.
- All pairs shortest-paths problem.


## Greedy Method <br> (Dijkstra's Algorithm)

DESIGN \&
ANALYSIS OF ALGORITHM Javed I. Khan@1999


- We keep a set $S$ of vertices whose closest distances to the source, Vertex 0 , are known and add one vertex to $S$ at each stage.
- We maintain a table $D$ that gives, for each vertex $v$, the distance from 0 to $v$ along a path all of whose vertices are in $S$, except possibly the last one.
- To determine what vertex to add to $S$ at each step, we apply the greedy criterion of choosing the vertex $v$ with the smallest distance recorded in the table $D$, such that $v$ is not already in $S$.



## Algorithm

- 1. INITIALIZE_SINGLE-SOURCE(G,s)
- $2 . \mathrm{S}=$ EMPTY.
- 3. $\mathrm{Q}=\mathrm{V}[\mathrm{G}]$
- 4. While Q not EMPTY
- 5. $u=$ EXTRACT-MIN $(\mathrm{Q})$
- 6. Add u in S
- 7. For each vertex vadjacent to $u$
- 8. Do Update cost
- if $D[v]>d[u]+w[u, v]$
- then $\mathrm{D}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- GoFrom[v]=u


## Proof of Correctness



- Let us assume the path through another node x , which is not yet included in $S$ to $v$ is closer.
- Then $\mathrm{D}[\mathrm{x}]$ must be smaller than $\mathrm{D}[\mathrm{v}]$, but in that case x should already be included in S !


## Complexity

- Each EXTRACT-MIN takes $\mathrm{O}(\mathrm{V})$.
- Each time at least one vertex will be added
- Therefore it can take at most V iterations.
- Step 5 is $\mathrm{O}\left(\mathrm{v}^{2}\right)$
- On the other hand, in steps 4-8 each path will be processed only once.
- Thus the complexity is $\mathrm{O}\left(\mathrm{V}^{2}+\mathrm{E}\right)$.
- 1. INITIALIZE_SINGLE-SOURCE(G,s)
- $\quad 2 . \mathrm{S}=$ EMPTY.
- 3. $\mathrm{Q}=\mathrm{V}[\mathrm{G}]$
- 4. While Q not EMPTY
- 5. $\mathrm{u}=$ EXTRACT-MIN(Q)
- 6. Add u in S
- 7. For each vertex $v$ adjacent to $u$
- 8. Do Update cost
if $\mathrm{D}[\mathrm{v}]>\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- then $\mathrm{D}[\mathrm{v}]=\mathrm{d}[\mathrm{u}]+\mathrm{w}[\mathrm{u}, \mathrm{v}]$
- GoFrom[v]=u


## Bellman-Ford Algorithm



DESIGN \& ANALYSIS OF ALGORITHM

- It can solve the shortest-path problem, even if there are negative weighted links.
- What if there is a negative weighted cycle?
- Its complexity is O (V.E)

