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String Matching

• T= text

• P=pattern

• n=text length

• m=pattern length.

• Z=alphabet size.
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Naïve Method
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Naïve Method

Complexity?
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Knuth-Morris-Pratt
Algorithm
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Idea of Jumping
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Jump Table
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KMP Algorithm
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Computing Jumps

• Jumps can be computed by preprocessing the pattern, by 
comparing the pattern with itself
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Complexity

• The running time for COMPUTE-PREFIX-
FUNCTION is:

– O(m)

• The total jump cannot exceed (m+n),= Thus 
complexity is O(m+n).
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State Machine
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FSM for Detecting String Which Ends with Even 1s
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State Transition Diagram for String Matching

Operation of FSM on string abababacaba
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Complexity

• Fastest Compute State Transition is:
– O(m z)

• Total WC running time is:
– O(n+mz)
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Boyer-Moore Algorithm
(1976)
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Boyer-Moore Algorithm

• Comparing from the Right to Left:
– in the pattern, each time, there is a mismatch, see 

how many position the pattern can be shifted left.

• More Look ahead in the Preprocessing
– bring into consideration the character that caused the 

mismatch while considering what to do next. 
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Example
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Complexity

• Boyer-Moore string search algorithm never 
uses more than M+N character 
comparisons, and uses about N/M steps of 
the alphabet is not small and the pattern is 
not long.
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Rabin-Karp Method
(1980) 
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Rabin-Karp Algorithm
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Computing Hash Value
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RK Algorithm

• Radix is d. The prime is q.
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Complexity

• In the worst case the running time is O((n-m+1) m). 
– (case T=an and P=am)

– Each evaluation after the first one is O(1) in text.

• Average Case Complexity
– Only one match in most cases O(1)

– Thus running time is O(n+m).


