
1

1

String Matching

LECT-15, S-2
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

String Matching

• T= text

• P=pattern

• n=text length

• m=pattern length.

• Z=alphabet size.



2

3

Naïve Method

LECT-15, S-4
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Naïve Method

Complexity?



3

5

Knuth-Morris-Pratt
Algorithm

LECT-15, S-6
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Idea of Jumping



4

LECT-15, S-7
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Jump Table

LECT-15, S-8
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

KMP Algorithm



5

LECT-15, S-9
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Computing Jumps

• Jumps can be computed by preprocessing the pattern, by 
comparing the pattern with itself

LECT-15, S-10
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Complexity

• The running time for COMPUTE-PREFIX-
FUNCTION is:

– O(m)

• The total jump cannot exceed (m+n),= Thus 
complexity is O(m+n).



6

11

State Machine

LECT-15, S-12
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

FSM for Detecting String Which Ends with Even 1s



7

LECT-15, S-13
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

State Transition Diagram for String Matching

Operation of FSM on string abababacaba

LECT-15, S-14
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Complexity

• Fastest Compute State Transition is:
– O(m z)

• Total WC running time is:
– O(n+mz)



8

15

Boyer-Moore Algorithm
(1976)

LECT-15, S-16
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Boyer-Moore Algorithm

• Comparing from the Right to Left:
– in the pattern, each time, there is a mismatch, see 

how many position the pattern can be shifted left.

• More Look ahead in the Preprocessing
– bring into consideration the character that caused the 

mismatch while considering what to do next. 



9

LECT-15, S-17
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Example

��������� 	�
������������� 	�
����������������� ����� ����� ��� ��!

���"� � �

���"� � �

� �"� � �

���"� � �

���"� � �

���"� � �

���"� � �

��� � � �

LECT-15, S-18
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Complexity

• Boyer-Moore string search algorithm never 
uses more than M+N character 
comparisons, and uses about N/M steps of 
the alphabet is not small and the pattern is 
not long.



10

19

Rabin-Karp Method
(1980) 

LECT-15, S-20
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Rabin-Karp Algorithm



11

LECT-15, S-21
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Computing Hash Value

LECT-15, S-22
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

RK Algorithm

• Radix is d. The prime is q.



12

LECT-15, S-23
ALG99F, javed@kent.edu

Javed I. Khan@1999

DESIGN & 
ANALYSIS OF 
ALGORITHM

Complexity

• In the worst case the running time is O((n-m+1) m). 
– (case T=an and P=am)

– Each evaluation after the first one is O(1) in text.

• Average Case Complexity
– Only one match in most cases O(1)

– Thus running time is O(n+m).


