Dynamic Programming

Dynamic Programming

- Dynamic Programming, like the divide-and-conquer method, solves problems by combining the solutions to sub-problems.
- Pure divide-and-conquer:
- divides problems into independent sub-problems,
- solves the sub-problem recursively, and then,
- combines their solutions to solve the original sub-problem.
- Dynamic programming in contrast is used when the sub-problems are not independent, that is subproblems share sub-problems.
- It is typically applied to optimization problems.

Example: Matrix Chain Multiplication

Matrix Multiplication

```
Matrix-Multiply(A,B)
then error "incompatible dimensions" else for \(i \leftarrow 1\) to rows[ \(A\) ]
do for \(j \leftarrow 1\) to columns[B]
do \(C[i, j] \leftarrow 0\)
for \(k \leftarrow 1\) to columns[A]
do \(C[i, j] \leftarrow C[i, j]+A[i, k] \cdot B[k, j]\)
return \(C\)
```

- Cost of multiplying $\mathrm{A}[\mathrm{p}][\mathrm{q}] \times \mathrm{B}[\mathrm{q}][\mathrm{r}]$ is p.q.r
- What is the cost of multiplying three matrices A , B, and C of sizes $10 \times 100,100 \times 5$, and 5×50 ?
- How to find the best way of multiplying?

Matrix Chain Multiplication

- Given a chain $\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}, . . \mathrm{A}_{\mathrm{n}}$ of n matrices, such than A_{i} has dimension $\mathrm{p}_{\mathrm{i}-1} \mathrm{x} \mathrm{p}_{\mathrm{i}}$, find the sequence of multiplication that will result in minimum number of scalar multiplication.
- Recursive Cost Function Catalan numbers:
$\left(A_{1} \cdot\left(A_{2} \cdot\left(A_{3} \cdot A_{4}\right)\right)\right)$
$\left(\left(A_{1} \cdot A_{2}\right) \cdot\left(A_{3} \cdot A_{4}\right)\right)$
$\left(\left(A_{1} \cdot\left(A_{2} \cdot A_{3}\right)\right) \cdot A_{4}\right)$

$\begin{aligned} & p(n)=\left\{\begin{array}{l} 1 \text { if } n=1 \\ \sum_{k=1}^{n-1} p(k) \cdot P(n-k), \text { if } \end{array}\right. \\ & P(n+1)=\Omega\left(\frac{4^{n}}{n^{\frac{3}{2}}}\right) \end{aligned}$	$n>1$

Observations

- Existence of Optimal Substructure: In an optimum sequence of decisions, each subsequence must also
 be optimum.
- $\left(A_{1} A_{2} A_{3}\right) \cdot\left(A_{4} \cdot A_{5} \cdot A_{6}\right)$
- Total cost is $\mathrm{C}(1 . .3)+\mathrm{C}(4 . .6)+$ cost of multiplying the two final matrices.
- Recursive Solution Possible: If $m[i, j]$ is the optimum cost of multiplying all matrices between $i^{\text {th }}$ and $j^{\text {th }}$ matrices $\ldots\left(A_{i} A_{i+1} \ldots . A_{j}\right)$..
- if $i==j$ then $m[i, j]=0$
- otherwise,
$m[i, j]=\min _{i \leq k \leq j}\left\{m[i, k]+m[k+1, j]+p_{i-1} \cdot p_{k} \cdot p_{j}\right\}$

DESIGN \& ANALYSIS OF ALGORITHM

- Existence of Overlapping Sub-problem: the same sub-sequence is part of many super sequences.
- For a string of limited size, the actual number of subproblems are quite small. $\mathrm{O}\left(\mathrm{n}^{2}\right)$ only!

Dynamic Programming Solution:

A Bottom up approach

- Compute the optimum cost for multiplying all matrix chains of size 2.
- Store them in a matrix m[i,j], when i-j spans two matrices.
- Use the above values to compute optimum cost for multiplying all matrix chains of size 3 .
- Then size 4 .. Up to size n.
$n \leftarrow$ length $[p]-1$
for $i \leftarrow 1$ to n
$\mathrm{d}_{9} m[i, i] \leftarrow 0$
for $l \leftarrow 2$ to n
do for $i \leftarrow 1$ to $n-l+1$
de $j \leftarrow i+l-1$
$m[i, j] \leftarrow \infty$
for $k \leftarrow i$ to $j-1$
do $q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$
if $q<m[i, j]$
then $m[i, j] \leftarrow q$
$s[i, j] \leftarrow k$
return m and s

DESIGN \&

Constructing the Optimal Solution

```
Matrix-Chain-Multiply(A,s,i,j)
1 if j>i
    then }X\leftarrow\mathrm{ Matrix-Chain-Multiply (A,s,i,s[i,j])
    Y\leftarrowMatrix-Charn-Mulitiply(A,s,s[i,j]}+1,j
        return Matrix-Multiply(X,Y)
    else return }\mp@subsup{A}{i}{
2 then \(X \leftarrow\) Matrix-Chain-Multiply \((A, s, i, s[i, j])\)
```


$3 \quad Y \leftarrow$ Matrix-Chain-Multiply $(A, s, s[i, j]+1, j)$

``` return Matrix-Multiply \((X, Y)\)
else return \(A_{i}\)
```

In the example of Figure 16.1, the call Matrix-Chain-Multiply $(A, s$,
$1,6)$ computes the matrix-chain product according to the parenthesization
$\left(\left(A_{1}\left(A_{2} A_{3}\right)\right)\left(\left(A_{4} A_{5}\right) A_{6}\right)\right)$.

DESIGN \&
ANALYSIS OF ALGORITHM

Complexity of Algorithm

Matrix-Chain-Order(p)
$1 n \leftarrow l e n g t h[p]-1$
2 for $i \leftarrow 1$ to n
3 ¢ө $m[i, i] \leftarrow 0$
4 for $l \leftarrow 2$ to n
5 do fop $k \leftarrow 1$ to $n-l+1$
$6 \quad$ de $j \leftarrow i+l-1$
$7 \quad m[i, j] \leftarrow \infty$
8 fot $k \leftarrow i$ to $j-1$
9 do $q \leftarrow m[i, k]+m[k+1, j]+p_{i-1} p_{k} p_{j}$
10 if $q<m[i, j]$
11 then $m[i, j] \leftarrow q$
$12 \mathrm{~s}[i, j] \leftarrow k$
13 return m and s

- Running time?
- Space?

Example: Optimal Polygon Triangulation

Polygon Triangulation

- We are given a convex polygon $\mathrm{P}=\left\langle\mathrm{v}_{0}, \mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}-1}\right\rangle$ and a weight function w defined on triangles formed by sides and chords of P . The problem is to find a triangulation that minimizes the sum of the weights of the triangles in the triangulation.

DESIGN 8 ANALYSIS OF ALGORITHM

Dynamic programming Solution

- For all degenerated polygon of size $2,\left\langle\mathrm{v}_{\mathrm{i}-1}, \mathrm{v}_{\mathrm{i}}\right\rangle \operatorname{cost}$ = zero.
- For all polygons of size 3 the cost is

$$
w\left(\Delta v_{i} v_{j} v_{k}\right)=\left|v_{i} v_{j}\right|+\left|v_{j} v_{k}\right|+\left|v_{k} v_{i}\right|
$$

- For all polygons of size 4 or more try all division point k and pick the best:

$$
t[i, j]=\min _{i \leq k \leq j-1}\left\{t[i, k]+t[k+1, j]+w\left(\Delta v_{i-1} v_{k} v_{j}\right)\right\}
$$

Final Exam

- 4 Questions Total:
- 1 True-False
- 1 Overall Concept
- 1 Tree \& Graph
- 1 String Matching \& Dynamic Programming
- Open Book 60 min.
- Project Due/Demo on "Exam Day"
- Quiz Today or extra 5\% goes to project?
- End Term (20\%)
- Last Assignment (~5\%)

