Dynamic
Programming

Dynamic Programming

Dynamic Programming, like the divide-and-conquer
method, solves problems by combining the solutions
to sub-problems.

Pure divide-and-conquer:
— divides problems into independent sub-problems,
— solves the sub-problem recursively, and then,
— combines their solutions to solve the original sub-problem.

Dynamic programming in contrast is used when the
sub-problems are not independent, that is sub-
problems dhare sub-problems.

It istypically applied to optimization problems.
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Example:
Matrix Chain
Multiplication

Matrix Multiplication

MATRIX-MULTIPLY (A, B)
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3
4
5
6
7
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if columns[A] # rows[B]
then error “incompatible dimensions™
else for i — 1 to rows[A]
do for j — 1 to columns[B]
do C[i,j]—0
for &k — 1 to columns[ 4]
do C[i, j]1+ Cli, j]1+ A[i, k]- Blk, /]
return C

Cost of multiplying A[p][q] x B[q][r] isp.qr
What is the cost of multiplying threematrices A,
B, and C of sizes 10x100, 100x5and 5x507?

How to find the best way of multiplying?
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Matrix Chain Multiplicaion

Givenachain A, A, A, .. A, of nmatrices,
such than A; has dimension p ;X p;, find the
sequence of multiplication that will result in
minimum number of scaar multipli cation.

— Reaursive Cost Function Catalan numbers:
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Observations

Existence of Optimal Substructure: In an gptimum
sequence of dedsions, each subsequence must also
be optimum.
(ALAA3). (Ag As Ag)
— Total costis C(1..3) + C(4..6) + cost of multi plying the
two final matrices.

Reaursive Solution Possble: If m[i,j] isthe
optimum cost of multiplying all matrices between
i and " matrices ....(A; Ay - A ).

— if i==j then m[i,j]=0
— otherwise,
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Recursive Solution

RECURSIVE-MATRIX-CHAIN{p, i, j)
1 ifi=j

2 ‘then return 0

3 mli,j] oo

4 fork—itoj—1

5 do g «— RECURSIVE-MATRIX-CHAIN(p, I, k)
+ RECURSIVE-MATRIX-CHAIN(p, k + 1, ) + pic1pi P
6 if ¢ < m[i, j]
7 then m[i, j] — ¢
8 return mi, j]

* Running timeis exponential O(2")!
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Observation-2

4.4 2.2

» Existence of Overlapping Sub-problem: the same
sub-sequence is part of many super sequences.

» For astring of limited size, the actual number of
subproblems are quite small. O(n?) only!
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Dynamic Programming Solution:
A Bottom up approach

e Compute the optimum cost for
multiplying all matrix chains of size 2.

o Storethem inamatrix m[i,j], when i-j
Spans two matrices.

» Usethe aove values to compute
optimum cost for multiplying all matrix
chains of size 3.

* Thensize4..Uptosizen.

DESIGN &
ANALYSIS OF
ALGORITHM

LECT-16, S-9
ALGOOS, javed@kent.edu

Javed |. Khan@1999

Algorithm

MATRIX-CHAIN-ORDER({p)

n — lengthfp] — 1
fori—1ton

Cde m[i,i]<0
fot [ « 2 ton
do far/i — Lton—I+1
do j—i+i-1

mlf, j] +— o0
fark —itoj—1
do g — m[i, K]+ mlk+ 1,1+ pi—1pep;
if g < m[i,J]
then m[i, j]1 — g
s[z',j]j —k
return m and s
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mailrnx

dimension
W= 3

=t

3
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Constructing the Optimal Solution

MATRIX-CHAIN-MULTIPLY (4, S, i, )

1 ifj>i

2 then X «— MATRIX-CHAIN-MULTIPLY(A4,s, 1, s[1, j])

3 Y — MATRIX-CHAIN-MULTIPLY(A, 5, s[1, 71+ 1, /)
4 return MATRIX-MULTIPLY (X, Y)

5 else return A4;

In the example of Figure 16.1, the call MATRIX-CHAIN-MULTIPLY (4, S,
1, 6) computes the matrix-chain product according to the parenthesization

((41(A4243))((AsAs) 46)) - (16.3)
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Complexity of Algorithm

MATRIX-CHAIN-ORDER(p)
n « length[p] — 1
fori—1ton
Cde m[i,i] <0
for/ —2ton
do far/i = Lton—1+]1
do j—i+l-1

mlf, j]+ o0
fofk—itoj—1
do g « m[i,k]+ mk + 1, j] + pi—1peb;
if ¢ < m[i, j]
then mi, j] — q
sti fl—k

return m and §

Running time?
Spa®?
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Example:
Optimal Polygon
Triangulation

15

Polygon Trianguation

We ae given aconvex pdygon P=<v,,v,,...v ;>
and aweight functionw defined on triangles
formed by sides and chords of P. The problem is
to find atriangulation that minimizes the sum of
the weights of the triangles in the triangulation.
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Observations
DESIGN &
«  Optimum substructure: ALGORITHM.
*  Overlapping subproblems:
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Dynamic programming Solution

DESIGN &
»  For all degenerated polygon of size 2,<v, ;, ;> cost ALGORITHM.
= zexo,

» For all polygons of size 3 the cost is

* For all polygons of size 4 or moretry all division
point k and pick the best:
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Final Exam

e 4 Questions Total:
— 1True-False
— 1 Overal Concept
— 1Tree& Graph
— 1 String Matching & Dynamic Programming

e OpenBook 60 min.

* Project Due/Demo on “Exam Day”
— Quiz Today or extra 5% goes to project?
— EndTerm (20%)
— Last Assignment (~5%)
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