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Abstract 
In this paper we present a programmable networking model that provides a common 
framework for understanding the state-of-the-art in programmable networks. A number 
of projects are reviewed and discussed against a set of programmable network 
characteristics. We believe that a number of important innovations are creating a 
paradigm shift in networking leading to higher levels of network programmability. These 
innovations include the separation between transmission hardware and control software, 
availability of open programmable network interfaces, accelerated virtualization of 
networking infrastructure, rapid creation and deployment of new network services and 
environments for resource partitioning and coexistence of multiple distinct network 
architectures. We present a simple qualitative comparison of the surveyed work and 
make a number of observations about the direction of the field. 

INTRODUCTION 
The ability to rapidly create, deploy and manage novel services in response to user demands is a key factor driving the 
programmable networking research community. Results from this field of research are likely to have a broad impact on 
customers, service providers and equipment vendors across a range of telecommunication sectors, including broadband, 
mobile and IP networking. Competition between existing and future Internet Service Providers (ISPs) could solely hinge 
on the speed at which one service provider can respond to new market demands over another. The introduction of new 
services is a challenging task and calls for major advances in methodologies and toolkits for service creation and enabling 
network technologies. A vast amount of service-specific computation, processing and switching must be handled and new 
network programming environments have to be engineered to enable future networking infrastructures to be open, 
extensible and programmable. 

Before we can meet this challenge, we need to better understand the limitations of existing networks and the fundamentals 
for making networks more programmable. There is growing consensus that these network fundamentals are strongly 
associated with the deployment of new network programming environments, possibly based on "network-wide operating 
system support", that explicitly recognize service creation, deployment and management in the network infrastructure. For 
example a future programmable network operating system could be based on active network execution environments [42] 
operating on node operating system [40] or open signaling network kernels [30] supporting the coexistence of multiple 
control architectures [33]. Both of these proposals squarely address the same problem: how to open the network up and 
accelerate its programmability in a controlled and secure manner for the deployment of new architectures, services and 
protocols. 
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The separation of communications hardware (i.e., switching fabrics, routing engines) from control software is fundamental 
to making the network more programmable. Such a separation is difficult to realize today. The reason for this is that 
switches and routers are vertically integrated - akin to mainframes of the 70s. Typically, service providers do not have 
access to switch/router control environments (e.g. Cisco's IOS operating system~, algorithms (e.g. routing protocols) or 
states (e.g., routing tables, flow states). This makes the deployment of new network services, which may be many orders of 
magnitude more flexible than proprietary control systems, impossible due to the closed nature of network nodes. The 
question is, how do we go about 'opening up the boxes' for deployment of third party control software and services? 

This paper examines the state of the art in programmable networks. In Section 2, we present and discuss two schools of 
thought on programmable networks advocated by the Active Networks (AN) [20] and Open Signalling (Opensig) [39] 
communities. The state-of-the-art in programmable networks is rather complex to analyze beyond historical differences. 
Recently, a number of programmable network toolkits have been implemented. By reviewing each contribution in turn, we 
arrive at a common set of features that govern the construction of these programmable networks. In Section 3, we present a 
generalized model and common set of characteristics to better understand the contributions found in the literature. 
Following this, in Section 4, we discuss a number of specific projects and characterize them in terms of a simple set of 
characteristics. In Section 5, we present a simple qualitative comparison of the surveyed work and make a number of 
observations about the direction of the field. We believe that a number of important innovations are creating a paradigm 
shift in networking leading to higher levels of network programmability. This leads us to the conclusion that the ultimate 
challenge facing the programmable networking community is the development of programmable virtual networking 
environments. 

METHODOLOGIES 
There has been an increasing demand to add new services to networks or to custOmize existing network services to match 
new application needs. Recent examples of this include the introduction of integrated and differentiated services to IP 
networks offering enhanced IP QOS. The introduction of new services into existing networks is usually a manual, time 
consuming and costly process. The goal of programmable networking is to simplify the deployment of new network 
services, leading to networks that explicitly support the process of service creation and deployment. There is general 
consensus that programmable network architectures can be customized, utilizing clearly defined open programmable 
interfaces (i.e., network APIs) and a range of service composition methodologies and toolkits. 

Two schools of thought have emerged on how to make networks programmable. The first school is spearheaded by the 
Opensig community, which was established through a series of international workshops. The other school, established by 
DARPA, constitutes a large number of diverse AN projects. The Opensig community argues that by modeling 
communication hardware using a set of open programmable network interfaces, open access to switches and routers can be 
provided, thereby enabling third party software providers to enter the market for telecommunications software. The 
Opensig community argues that by "opening up" the switches in this manner, the development of new and distinct 
architectures and services (e.g., virtual networking [34]) can be realized. Open signaling as the name suggests takes a 
telecommunications approach to the problem of making the network programmable. Here, there is a clear distinction 
between transport, control and management that underpin programmable networks and an emphasis on service creation 
with QOS. Recently, the IEEE Project 1520 [9] on Programmable Interfaces for Networks is pursuing the Opensig 
approach in an attempt to standardize programming interfaces for ATM switches, IP routers and mobile 
telecommunications networks. Physical network devices are abstracted as distributed computing objects (e.g. virtual 
switches [15], switchlets [33], and virtual base stations [6]) with well-defined open programmable interfaces. These open 
interfaces allow service providers to manipulate the states of the network using middleware toolkits (e.g., CORBA) in 
order to construct and manage new network services. 

The AN community advocatesthe dynamic deployment of new services at runtime mainly within the confines of existing 
IP networks. The level of dynamic runtime support for new services goes far beyond that proposed by the Opensig 
community, especially when one considers the dispatch, execution and forwarding of packets based on the notion of 
"active packets". In one extreme case of active networking, "capsules" [42] comprise executable programs, consisting of 
code (for example Java code) and data. In active networks, code mobility represents the main vehicle for program delivery, 
control and service construction. The granularity of control can range from the packet and flow levels through the 
installation of completely new switchware [3]. The term 'granularity of control' [12] refers to the scope of switch/router 
behavior that can be modified by a received packet. At one extreme, a single packet could boot a complete software 
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environment seen by all packets arriving at the node. At the other extreme, a single packet (e.g., a capsule) can modify the 
behavior seen only by that packet. Active networks allow the customization of network services at packet transport 
granularity, rather than through a programmable control plane. Active networks offer maximum flexibility in support of 
service creation but with the cost of adding more complexity to the programming model. The AN approach is, however, an 
order of magnitude more dynamic than Opensig's quasi-static network programming interfaces. 

Both communities share the common goal to go beyond existing approaches and technologies for construction, deployment 
and management of new services in telecommunication networks. Both movements include a broad spectrum of projects 
with diverse architectural approaches. For example, few AN projects consider every packet to be an active capsule and 
similarly few Opensig projects consider programmable network interfaces to be static. The Opensig approach, however, 
clearly separates network control from information transport and is primarily focused on programmable switches that 
provide some level of QOS support. In contrast, projects under the AN umbrella have historically been focused on IP 
networks, where the control and data paths are combined. 

PROGRAMMABLE NETWORKING MODEL 
Communications and Computation 
A programmable network is distinguished from any other networking environment by the fact that it can be programmed 
from a minimal set of APIs from which one can ideally compose an infinite spectrum of higher level services. We present 
a generalized model for programmable networks as a three-dimensional model illustrated in Figure 1. This model shows 

the Internet reference model (viz. application, transport, network, link layers) augmented with transport 1, control and 
management planes. The division between transport, control and management allows our model to be generally applicable 
to telecommunications and Internet technologies. The notion of the separation between transport, control and management 
is evident in architectures. In the case of Internet there is a single data path but clearly one can visualize transport (e.g., 
video packets), control (e.g., RSVP) and management (e.g., SMNP) mechanisms. In the case of telecommunication 
networks there is typically support in the architecture for transport, control and management functions. This division is 
motivated by the different ways these networking functions utilize the underlying hardware and by the distinct time scales 
over which they operate. In both cases, the planes of our generalized model remain neutral supporting the design space of 
different networking technologies. 

application / 
tayi~r ~ o~l.. ~ 

transport ~ . 
l a ~ r  . . ~  ~..{..~" 

netffork ~ 
layer . .~ 
liqk r ,  

lay.er / 

Figure 1: Computation and Communication Models 

The programmability of network services is achieved by introducing computation inside the network, beyond the extent of 
the computation performed in existing routers and switches. To distinguish the notion of a "programmable network 
architecture" from a "network architecture", we have extended the communication model and augmented it with a 
computation model, explicitly acknowledging the programmability of network architectures. We can view the generalized 
model for programmable networks as comprising conventional communication, encompassing the transport, control and 
management planes, and computation as well, as illustrated in Figure 1. Collectively, the computation and communication 
models make up a programmable network. The computation model provides programmable support across the transport, 
control and management planes, allowing a network architect to program individual layers (viz. application, transport, 

1 In this case planes collectively represent cross-layer services and protocols. 
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network and link layers) in these planes. Another view is that programmable support is delivered to the transport, control 
and management planes through the computation model. 

In Figure 2, an alternative view of the generalized model is shown. The key components of the computation model are 

represented as a distributed network programming environment and a set of "node kernels ''2. Node kernels are node 
operating systems realizing resource management. Node kernels have local significance only, that is, they manage single 
node resources, potentially shared by multiple programmable network architectures. The network programming 
environment provides middleware support to distributed network programming services. Figure 2 illustrates the separation 
of switching hardware from programming and communication software. Two setS of interfaces are exposed. The first set of 
interfaces represents the network programming interfaces between network programming environments and programmable 
network architectures. The lower set of interfaces represents the node interfaces between node kernels and network 
programming environments. We believe that there needs to be some agreement or standardization of these interfaces to 
allow platform-independent network programming. This is likely to happen through a number of forums, e.g., IEEE 
Programmable Interfaces for Networks [9], DARPA Active Networks [20], Multiservice Switching Forum [38], OPENSIG 
[39] and IETF (e.g., the new work item on GSMP) or by the emerging new programmable network industries [48] [19]. 

""~mm~ca~on p rog rammab le  ne twork  archi tecture  I 
m.~...e.1 network 

........................... ~ , I , ---,--- programming 

ne twork  p r o g r a m m i n g  env i ronmen t  interfaces 
computation node 

moael , l ' ~ interfaces 

1 node kernel I node kernel 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I 

Figure 2: Generalized Model .for Programmable Networks 

Research on programmable networks is focused on all facets of this model. Different programming methodologies, levels 
of programmability, and communication technologies have been investigated. Some projects, especially from the Opensig 
community have placed more emphasis on API definitions. Others focus on issues related to code mobility or contribute to 
the application domain. Dynamic "plug-ins" have been investigated for the construction or potential extension of new 
protocols or applications. In what follows, we provide a more detailed overview of the components in our generalized 
model. It is our belief that independent contributions to the field are beginning to converge and it is our intention to 
indicate this convergence by way of survey. 

Node Kernel 

Many node vendors incorporate operating system support into their switches and routers to handle communication 
functions of network nodes, e.g. CISCO routers use the I tS  environment and ATML ATM switches use the ATMOS 
micro-kernel. Typically, these node operating systems support a variety of communications activities, e.g., signaling, 
control and management processes, inter-process communication, forwarding functions, and downloading of new boot 
images. Currently, these node operating systems are closed to third party providers because of their proprietary nature, and 
they are limited in their support for evolving network programming environments. While the idea of introducing 
computation power into nodes is not new, there is a greater need for computation elements to abstract node functionality 
and allow it to be open and programmable. The computation model, introduced in the previous section, enables the 
programmability of the communication model and requires low-level programmable support for communication 
abstractions (e.g., packets, flows, tunnels, virtual paths), dynamic resource partitioning and security considerations. 

We describe this low-level programming environment that runs on switch/routers as the node kernel. The node kernel 
represents the lowest level of programmability, providing a small set of node interfaces. These interfaces support the 
manipulation of the node state (e.g., accessing and controlling the node resources) and the invocation of communication 

2 We borrow the term node kemel from the work on NodeOS [40] and broadband kemels [30] by the active networking and Opensig communities, 
respectively. 
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services (e.g. communication abstractions and security). The node kernel is responsible for sharing node computational 
(e.g., sharing the CPU) and communication resources, (e.g., partitioning the capacity of a multiplexer), as well supporting 
core security services. A node kernel may operate on any type of network node, end-system or device, for example, IP 
router, ATM switch, or base station. It may also provide access to dedicated hardware offering fast packet processing 
services to network programming environments. A node kernel has local significance only, providing the network 
programming environment with a set of low-level programming interfaces, that are used by network architects to program 
network architectures in a systematic manner. 

Network Programming Environment 
Network programming environments support the construction of networks, enabling the dynamic deployment of network 
services and protocols. Network programming environments support different levels of programmability, programming 
methodologies, networking technologies and application domains. Network programming environments operate over a set 
of well-defined node kernel interfaces offering distributed toolkits for the realization of programmable network 
architectures through the deployment of distributed service components. In this sense, one can view network-programming 
environments as the "middleware glue" between executing network architectures and the node kernels themselves, as 
illustrated in Figure 2. Network programming environments provide network architect/designers with the necessary 
environment and tools for building distinct network architectures that run in a distributed fashion on multiple node kernels. 
In this sense network programming environments support the programming of network architectures in the same way that 
software development kits (SDKs) allow developers to build new applications that run on native operating systems. 

This "middleware glue" can be constructed from scratch or be built on top of well-defined distributed object computing 
environments. For example, the xbind [15] and mobiware [6] toolkits address programmability of broadband and mobile 
networks, respectively, and are built using COBRA middleware technology. Other approaches use mobile code technology 
and virtual machines to dynamically program the network. For example, the Active Network Transport System (ANTS) 
incorporates capsule technology [45], leveraging the Java Virtual Machine for new protocol deployment. Both approaches 
result in toolkits that execute on node kernels offering a high level of programmability for service creation and deployment 
of distinct network architectures. 

Network programming environments offer a set of open interfaces and services to network designers/architects to program 
distinct network architectures. Network programming environments support the construction of network architectures 
through service composition, service control, and resource and state management. Services offered by network 
programming environments can range from simple Remote Procedure Calling (RPC) between distributed network objects 
to sophisticated dynamic loading of mobile code and fast compilation of intermediate machine-independent representation. 
Different types of network programming environments offer different levels of programmability to network architectures. 
For example, mobile code technologies offer the most radical solution to the development of services in programmable 
networks when compared to RPC-based object middleware. We identify the 'level of programmability' as an important 
characteristic of programmable networks. 

Programmable Network Architecture 

The goal of network programming environments is to provide the necessary support to dynamically program new network 
architectures. Network programming environments do not offer core network algorithms (e.g., routing, signaling) that 
define and differentiate network architecture in the same way that operating systems do not embed application specific 
algorithms in the kernel. Rather, a network programming environment offers a set of network programming interfaces for 
constructing network architectures. Philosophically this is similar to constructing new applications using software 
development kits. However in this case the application is the network architecture. 

We broadly define network architecture as having the following attributes3: 

• network services, which the network architecture realizes as a set of distributed network algorithms and offers to the 
end systems: 

• network algorithms, which includes transport, signaling/control and management mechanisms; 

3 This is of course an over simplification of a complex system. Our goal here is to be illustrative in support of the generalized model and not definitive 

regarding a def'mition of network architecture. 
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• multiple time scales, which impact and influence the design of the network algorithms; and 

• network state management, which includes the state that the network algorithms operate on (e.g., switching, routing, 
QOS state) to support consistent services. 

Network programming environments offer creation and deployment tools and mechanisms that allow network architects to 
program and build new network architectures. Programmable network architectures are realized through the deployment of 
a set of network algorithms that take into account network state and reflect the, time scales over which these algorithms 
operate. Network algorithms are potentially as diverse as the application base that exists in the end-systems today. 
Programmable network architectures may range from simple best-effort forwarding architectures to complex mobile 
protocols that respond dynamically to changes in wireless QOS and connectivity:. Given this diversity, it is necessary that 
both network programming environments and node kernels are extensible and programmable to support a large variety of 
programmable network architectures. 

PROGRAMMABLE NETWORKS 
Following on from the discussion of the generalized model for programmabl~ networks, we now survey a number of 
programmable networking projects that have emerged in the literature. We attempt to identify essential contributions of the 
various projects to the field in terms of a set of characteristics. The survey is not intended to represent an exhaustive review 

of the field 4, Rather, we discuss a set of projects that are representative of each programmable network characteristic 
introduced, focusing on the pertinent and novel features of each project and then, in Section 5, we compare them to the 
generalized model introduced in the preceding section. 

Characteristics 
A number of research groups are actively designing and developing programmable network prototypes. Each group tends 
to use its own terminology. However, on examination one can observe a common set of characteristics that govern the 
construction of these programmable networks. We use these characteristics to better understand the field: 

• networking technology, which implicitly limits the programmability that can be delivered to higher levels. For 
example, some technologies are more QOS programmable (e.g., ATM), scalable (e.g., Internet) or limited in 
bandwidth availability (e.g., mobile networks); 

• level o f  programmability, which indicates the method, granularity and time scale over which new services can be 
introduced into the network infrastructure. This in turn is strongly related to language support, programming 
methodology or middleware adopted. For example, distributed object technology can be based on RPC [46] or mobile 
code [45] methodologies resulting in quasi-static or dynamically composed network programming interfaces; 

• programmable communications abstractions, which indicate the level of virtualization and programmability of 
networking infrastructure requiring different middleware and potentially network node support (e.g., switch/router, 
base station). For example, programmable communications abstractions include virtual switches [30], switchlets [33], 
active nodes [40], universal mobile channels [32] and virtual active networks [21]; and 

• architectural domain, which indicates the targeted architectural or application domain (e.g., signaling, management, 
transport). This potentially dictates certain design choices and impacts the construction of architectures, and services 
offered, calling for a wide range of middleware support. Examples include, composing application services [4], 
programmable QOS control [30] and network management [4 I]). 

Networking Technology 
A number of programmable network prototypes have been targeted to specific networking technologies. The motivation 
behind these projects is to make the targeted networking technology more programmable in an attempt to overcome 
particular deficiencies associated with supporting communication services. 

4 F o r  a survey on  act ive  ne tworks  see [43].  
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IP networks: Smart Packets 

The University of Kansas has developed smart packets, a code-based specialized packet concept implemented in a 
programmable IP environment [29]. Smart packets represent elements of in-band or out-of-band mobile code based on Java 
classes. Smart packets propagate state information in the form of serialized objects and carry identifiers for authentication 
purposes. An active node architecture supports smart packets by exposing a set of resource abstractions and primitives 
made accessible to smart packets. Active nodes incorporate: 

• resource controllers, which provide interfaces to node resources; 

• node managers, which impose static limits on resource usage; and 

• state managers, which control the amount of information smart packets may leave behind at an active node. 

The active node supports a feedback-scheduling algorithm to allow partitioning of CPU cycles among competing tasks and 
a credit-based flow-control mechanism to regulate bandwidth usage. Each smart packet is allocated a single thread of CPU 
and some amount of node resources. Active nodes also include router managers that support both default routing schemes 
and alternative routing methods carried by smart packets. The smart packets testbed has been used to program enhanced 
HTTP and SMTP services that show some performance benefits over conventional HTTP and SMTP by reducing excessive 
ACK/NAK responses in the protocols. A beacon routing scheme supports the use of multiple routing algorithms within a 
common physical IP network based on smart packets. 

ATM Networks: xbind 

ATM technology provides connection-oriented communications and has been tailored towards QOS provisioning of 
multimedia networks. Although essential features of QOS provisioning, such as admission control and resource reservation, 
are inherently supported by the ATM technology, its signaling component is unsuitable for practical usage due to its 
significant complexity, xbind [15] overcomes these service creation limitations by separating control algorithms from the 
telecommunications hardware. Emphasis is placed on the development of interfaces to provide open access to node 
resources and functions, using virtual switch and virtual link abstractions. The interfaces are designed to support the 
programmability of the management and control planes in ATM networks. 

The xbind broadband kernel [47], which is based on the XRM model [15], incorporates three network models abstracting a 
broadband network, multimedia network and service network. The multimedia network supports programmable network 
management, network control, state management, connection management and media stream control. The xbind testbed 
incorporates multivendor ATM switches using open signaling and service creation to support a variety of broadband 
services, transport and signaling systems with QOS guarantees. 

Mobile Networks: Mobiware 

Mobiware [6] is a software-intensive open programmable mobile architecture extending the xbind model of 
programmability to packet based mobile networks for the delivery of adaptive mobile services over time-varying wireless 
links. Mobiware incorporates object-based, CORBA programmability for the control plane but also allows active transport 
objects (i.e., code plug-ins) based on Java byte code to be loaded into the data path. At the transport layer, an active 
transport environment injects algorithms into base stations providing value-added service support at strategic points inside 
the network. At the network layer, a set of distributed objects that run on mobile devices, access points and mobile-capable 
switches, interact with each other to support programmable handoff control and different styles of QO$ adaptation. The 

M A C  layer has also been made programmable. 

The following mobile services have been programmed using the mobiware toolkit [37]: 

• QOS-controlled handoff, which supports automatic media scaling and error control based on an adaptive-QOS API and 
wireless channel conditions; 

• mobile soft-state, which provides mobile devices with the capability to respond to time varying QOS through a 
periodic reservation and renegotiation process; and 

• flow bundling, which supports fast handoff in cellular access networks. 

The mobiware testbed supports a variety of scalable audio and video services to mobile devices in addition to traditional 
web based data services. 
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Level of Programmability 
The level of programmability expresses the granularity at which new services can be introduced into the network 
infrastructure. One can consider a spectrum of possible choices from highly dynamic to more conservative levels of 
programmability. At one end of this spectrum, capsules [42] carry code and data enabling the uncoordinated deployment of 
protocols. Capsules represent the most dynamic means of code and service deployment into the network. At the other end 
of the spectrum there are more conservative approaches to network programmability based on quasi-static network 
programming interfaces using RPCs between distributed controllers [46] to deploy new services. Between the two 
extremes lie a number of other methodologies combining dynamic plug-ins, active messaging and RPC. Different 
approaches have a direct bearing on the speed, flexibility, safety, security and performance at which new services can be 
introduced into the infrastructure. 

Capsules: ANTS 

ANTS [45], developed at MIT, enables the uncoordinated deployment of multiple communication protocols in active 
networks providing a set of core services including support for the transportation of mobile code, loading of code on 
demand and caching techniques. These core services allow network architects to introduce or extend existing network 
protocols. ANTS provides a network programming environment for building new capsule-based programmable network 
architectures. Examples of such programmed network services include enhanced multicast services, mobile IP routing and 
application-level filtering. The ANTS capsule-driven execution model provides a foundation for maximum network 
programmability in comparison to other API approaches. Capsules serve as atomic units of network programmability 
supporting processing and forwarding interfaces. Incorporated features include node access, capsule manipulation, control 
operations and soft-state storage services on IP routers. Active nodes execute capsules and forwarding routines, maintain 
local state and support code distribution services for automating the deployment of new services. The ANTS toolkit also 
supports capsule processing quanta as a metric for node resource management. 

Active Extensions: Switchware 

Switchware [3], being developed at University of Pennsylvania, attempts to balance the flexibility of a programmable 
network against the safety and security requirements needed in a shared infrastructure such as the Internet. The Switchware 
toolkit allows the network architects to trade-off flexibility, safety, security, performance and usability when programming 
secure network architectures. At the operating system level, an active IP-router component is responsible for providing a 
secure foundation that guarantees system integrity. Active extensions can be dynamically loaded into secure active routers 
through a set of security mechanisms that include encryption, authentication and program verification. The correct 
behavior of active extensions can be verified off-line by applying 'heavyweight' methods, since the deployment of such 
extensions is done over slow time scales. 

Active extensions provide interfaces for more dynamic network programming using active packets. Active packets can 
roam and customize the network in a similar way as capsules do. Active packets are written in functional languages (e.g., 
Caml and PLAN [28]) and carry lightweight programs that invoke node-resident service routines supported by active 
extensions. There is much less requirement for testing and verification in the case of active packets than for active 
extensions, given the confidence that lower level security checks have already been applied to active extensions. Active 
packets cannot explicitly leave state behind at nodes and they can access state only through clearly defined interfaces 
furnished by active extension software. Switchware applies heavyweight security checks on active extensions, which may 
represent major releases of switch code, and more lightweight security checks on active packets. This approach allows the 
network architect to balance security concerns against performance requirements. The security model of Switchware 
considers public, authenticated and verified facilities. 

Composition Languages: CANEs 

Capsules, active messages and active extensions promote the creation of new Services through the composition of new 
building blocks or by adding components to existing services. The CANEs project led by researchers at University of 
Kentucky and Georgia Tech. aim to define and apply service composition rules as a general model for network 
programmability [14]. A composition method is used to construct composite network services from components. A 
composition method is specified as a programming language with enhanced language capabilities that operates on 
components to construct programmable network services. Attributes of a good composition method include high 
performance, scalability, security and ease of management. Features of well-structured composition methods combine: 
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• control on the sequence in which components are executed; 

• control on shared data among components; 

• binding times, which comprise composite creation and execution times; 

• invocation methods, which are defined as events that cause a composite to be executed; and 

• division of functionality among multiple components, which may either reside at an active node or be carried by 
packets. 

PLAN, ANTS and Netscript [21] (described in Section 4.4.2) are examples of composition methods. LIANE is proposed 
within the CANEs project as a composition method that incorporates all the aforementioned features. The key idea of 
LIANE is that services are composed from basic underlying programs that contain processing slots. Users insert programs 
for customization in these slots. The CANEs definition of service composition encompasses the Opensig approach to 
network programmability indicating how different approaches to programmable networking complement each other by 
addressing the same goal from different perspectives. 

Network APIs: xbind 

The xbind broadband kernel is based on a binding architecture and a collection of node interfaces referred to as Binding 
Interface Base (BIB) [2]. The BIB provides abstractions to the node state and network resources. Binding algorithms run 
on top of the BIB and bind QOS requirements to network resources via abstractions. The BIB is designed to support 
service creation through high-level programming languages. The interfaces are static while supporting universal 
programmability. The quasi-static nature of the BIB interfaces, allow for complete testing and verification of the 
correctness of new functions, on emulation platforms, before any service is deployed. The concept of active packets or 
capsules containing both programs and user data is not considered in the xbind approach to programmability. Rather, 
communication is performed using RPCs between distributed objects and controllers based on OMG's CORBA. The 
approach taken by xbind promotes interoperability between multi-vendor switch market supporting resource sharing and 
partitioning in a controlled manner. 

Programmable Communications Abstractions 
Abstractions and partitioning of resources are essential concepts in programmable networking. Programmable 
communications abstractions may range from node resources to complete programmable virtual networks. Other 
programmable communications abstractions include programmable virtual routers, virtual links and mobile channels. 
Abstracting the network infrastructure through virtualization and making it programmable is a major contribution of the 
field that encompasses a number of different projects. 

Active Node Abstractions: NodeOS 

Members of the DARPA active network program [20] are developing an architectural framework for active networking 
[11]. A node operating system called NodeOS [40] represents the lowest level of the framework. NodeOS provides node 
kernel interfaces at routers utilized by multiple execution environments, which support communication abstractions such as 
threads, channels and flows. Development of an execution environment is a nontrivial task and it is anticipated [12] that 
the total number of execution environments will not be large. Encapsulation techniques based on an active network 
encapsulation protocol (ANEP) [5] support the deployment of multiple execution environments within a single active node. 
ANEP defines an encapsulation format allowing packets to be routed through multiple execution environments coexisting 
on the same physical nodes. Portability of execution environments across different types of physical nodes is accomplished 
by the NodeOS, by exposing a common, standard interface. This interface defines four programmable node abstractions: 
threads, memory, channels and flows. Threads, memory and channels abstract computation, storage, and communication 
capacity used by execution environments, whereas flows abstract user data-paths with security, authentication and 
admission control facilities. An execution environment uses the NodeOS interface to create threads and associate channels 
with flows. The NodeOS supports QOS using scheduling mechanisms that regulate the access to node computation and 
communication resources. The architectural framework for active networking is being implemented in the ABONE testbed 
[1] allowing researchers to prototype new active architectures. 
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Virtual Active Networks: Netscript 

The Netscript project [49] at Columbia University takes a functional langu~age-based approach to capture network 
programmability using universal language abstractions. Netscript is a strongly typed language that creates universal 
abstractions for programming network node functions. Unlike other active network projects that take a language-based 
approach Netscript is being developed to support Virtual Active Networks as a programmable abstraction. Virtual Active 
Network [21] abstractions can be systematically composed, provisioned and managed. In addition, Netscript automates 
management through language extensions that generate MIBs. Netscript leverages earlier work on decentralized 
management and agent technologies that automatically correlate and analyze i the behavior monitored by active MIB 
elements. A distinguishing feature of Netscript is that it seeks to provide a universal language for active networks in a 
manner that is analogous to postscript. Just as postscript captures the programmability of printer engines, Netscript captures 
the programmability of network node functions. Netscript communication abstractions include collections of nodes and 
virtual links that constitute virtual active networks. 

Virtual ATM Networks: Tempest 

The Tempest project at the University of Cambridge [34] has investigated the deployment of multiple coexisting control 
architectures in broadband ATM environments. Novel technological approaches include the usage of software mobile 
agents to customize network control and the consideration of control architectures dedicated to a single service. Tempest 
supports two levels of programmability and abstraction. First, switchlets, which are logical network elements that result 
from the partition of ATM switch resources, allow the introduction of alternative control architectures into an operational 
network. Second, services can be refined by dynamically loading programs that customize existing control architectures. 
Resources in an ATM network can be divided by using two software components: a switch control interface called ariel 
and a resource divider called prospero. Prospero communicates with an ariel server on an ATM switch, partitions the 
resources and exports a separate control interface for each switchlet created. A network builder creates, modifies and 
maintains control architectures. 

Architectural Domains 

Most programmable network projects are related to the introduction of services into networks. However, most projects are 
targeted to a particular architectural domain (e.g., QOS control, signaling, management, transport and applications). In 
what follows we discuss three projects that address the application, resource management and network management 
domains. 

Application-Level: Active Services 

In contrast to the main body of research in active networking, Amir et al. [4] call for the preservation of all routing and 
forwarding semantics of the Internet architecture by restricting the computation model to the application layer. The Active 
Services version 1 (AS 1) programmable service architecture enables clients to download and run service agents at strategic 
locations inside the network. Service agents called "servents" are restricted from manipulating routing tables and 
forwarding functions that would contravene the IP-layer integrity. The AS 1 architecture contains a number of architectural 
components: 

• a service environment, which defines a programming model and a set of intexfaces available to servents; 

• a service-location facility, which allows clients to 'rendezvous' with the AS 1 environment by obtaining bootstrapping 

and configuration mechanisms to instantiate servents5; 

• a service management system, which allocates clusters of resources to servents using admission control and load 
balancing of servents under high-load conditions; 

• a service control system, which provides dynamic client control of servents once instantiated within an AS1 
architecture; 

5 Servants are launched into the network by an active service control protocol (ASCP), which includes an announce-listen protocol for servers to manage 
session state consistency, soft-state to manage expiration due to timeouts and multicast damping to avoid flooding the environment with excessive 
scrvents. 
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• a service attachment facility, which provides mechanisms for clients that can not interact directly with the AS1 
environment through soft-state gateways; and 

• a service composition mechanism, which allows clients to contact multiple service clusters and interconnect servents 
running within and across clusters. 

The AS 1 architecture is programmable at the application layer supporting a range of application domains. In [4], the MeGa 
architecture is programmed using AS 1 to support an active media gateway service. In this case, servents provide support 
for application-level rate control and transcoding techniques. 

Resource Management: Darwin 

The Darwin Project [17] at Carnegie Mellon University is developing a middleware environment for the next generation IP 
networks with the goal of offering Internet users a platform for value-added and customizable services. The Darwin project 
is focused toward customizable resource management that supports QOS. Architecturally, the Darwin framework includes 
Xena, a service broker that maps user requirements to a set of local resources, resource managers that communicate with 
Xena using the Beagle signaling protocol, and hierarchical scheduling disciplines based on service profiles. The Xena 
architecture takes the view that the IP forwarding and routing functions should be left in tact and only allows restricted use 
of active packet technology in the system. 

Alongside the IP stack, Darwin introduces a control plane that builds on similar concepts such as those leveraged by 
broadband kernels [30] and active services [4]. The Xena architecture is made programmable and incorporates active 
technologies in a restricted fashion. A set of service delegates provides support for active packets. Delegates can be 
dynamically injected into IP routers or servers to support application specific processing (e.g., sophisticated semantic 
dropping) and value-added services (e.g., transcoders). A distinguishing feature of the Darwin architectural approach is 
that mechanisms can be customized according to user specific service needs defined by space, organization and time 
constraints. While these architectural mechanisms are most effective when they work in unison each mechanism can also 
be combined with traditional QOS architecture components. For example, the Beagle signaling system could be 
programmed to support RSVP signaling for resource reservation, while the Xena resource brokers and hierarchical 
schedulers could support traffic control. 

Network Management: Smart Packets 

The Smart Packets Project [41] (not to be confused with University of Kansas smart packets) at BBN aims to improve the 
performance of large and complex networks by leveraging active networking technology. Smart Packets are used to move 
management decision making points closer to the nodes being managed, target specific aspects of the node for 
management and abstract management concepts to language constructs. Management centers can send programs to 
managed nodes. Thus the management process can be tailored to the specific interests of the management center reducing 
the amount of back traffic and data requiring examination. A smart packet consists of a header and payload encapsulated 
using ANEP [5]. Smart packets may carry programs to be executed, results from execution, informational messages or 
reports on error conditions. Smart Packets are written in two programming languages: 

• sprocket, which is a high-level C-like, language with security threatening constructs, and 

• spanner, which is a low-level assembly-like language, that can result in tighter, optimized code. 

Sprocket programs are compiled into spanner code, which in turn is assembled into a machine-independent binary 
encoding placed into smart packets. Meaningful programs perform networking functions and MIB information retrieval. 

DISCUSSION 
We have introduced a set of characteristics and a generalized model for programmable networks to help understand and 
differentiate the diverse set of programmable network projects discussed in this paper. In what follows we provide a brief 
comparison of these projects and other work in the field. 
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Comparison 
In this section we present a simple qualitative comparison of the programmable Inetworks surveyed in Section 4. Table 1 
presents the comparison with respect to the characteristics and generalized model for programmable networks presented in 
Section 3 and 4, respectively. 

Open Programmable Interfaces 
The use of open programmable network interfaces is evident in many programmable network projects discussed in this 
survey. Open interfaces provide a foundation for service programming and the introduction of new network architectures. 

The xbind broadband kernel supports a comprehensive Binding Interface Base using CORBA/IDL to abstract network 
ATM devices, state and control. A number of other projects focussed on programming IP networks (e.g., ANTS, 
Switchware, CANEs) promote the use of open APIs that abstract node primitives, enabling network programmability and 
the composition of new services. Many network programming environmentS shown in Table 1 take fundamentally 
different approaches to providing open interfaces for service composition. The programming methodology adopted (e.g., 
distributed object technology based on RPC, mobile code or hybrid approaches) has a significant impact on an 
architecture's level of programmability; that is, the granularity, time scales and c~)mplexity incurred when introducing new 
APIs and algorithms into the network. 

Two counter proposals include the xbind and ANTS APIs. While the ANTS approach to the deployment of new APIs in 
extremely flexible presenting a highly dynamic programming methodology it represents a complex programming model in 
comparison to the simple RPC model. In contrast, the xbind binding interfaces and programming paradigm is based on a 
set of CORBA IDL and RPC mechanisms. In comparison to capsule-based programmability the xbind approach is rather 
static in nature and the programming model less complex. These approaches represent two extremes of network 
programmability. 

One could argue that quasi-static APIs based on RPC is a limited and restrictive approach. A counter argument is that the 
process of introducing and managing APIs is less complex than the capsule-based programming paradigm, representing a 
more manageable mechanism for service composition and service control. Similarly one could argue that active message 
and capsule-based technologies are more 'open' because of the inherent flexibility of their network programming models 
given that capsules can graft new APIs onto routers at runtime. The xbind approach lacks this dynamic nature at the cost of 
a simplified programming environment. Other projects adopt hybrid approaches. For example the mobiware toolkit 
combines the static APIs with the dynamic introduction of Java service plug-ins when needed [7]. A clear movement of the 
field is to open up the networks and present APIs for programming new architectures, services and protocols. As we 
discuss in the next section the field is arguing that the switches, routers and base stations should open up ultimately calling 
for open APIs everywhere. 

Virtualization and Resource Partitioning 
Many projects use virtualization techniques to support the programmability of different types of communication 
abstractions. The Tempest framework [33] presents a good example of the use of virtualization of the network 
infrastructure. Low-level physical switch interfaces are abstracted creating setS of interfaces to switch partitions called 
switchlets. Switchlets allow multiple control architectures to coexist and share the same physical switch resources (e.g., 
capacity, switching tables, name space, etc.). Typically, abstractions found in programmable networks are paired with safe 
resource partitioning strategies that enable multiple services, protocols and different programmable networking 
architectures to coexist. Virtualization of the network in this manner presents new levels of innovation in programmable 
networks that have not been considered before. All types of network components can be virtualized and made 
programmable from switches and links [15] to switchlets [33], active nodes [40], routelets [13] and virtual networks [21], 
[34], [13]. 

The NodeOS interface [40] provides a similar abstraction to node resources. Tile use of open interfaces allows multiple 
network programming environments (or execution environments using active networking terminology) to coexist within a 
common physical node architecture. In this case, the ANEP [5] protocol provides encapsulation as a mechanism for 
delivering packets to distinct execution environments. 
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Using encapsulation in this manner allows for different overlay execution environments (e.g., ANTS, Switchware, or 
Netscript) to execute on the same router using a single, common node kernel. The notion of virtualization is not a new 
concept, however. Similar motivation in the Internet community has led to the advent of the Mbone. New directions in 
the virtualization of the Internet have prompted the proposal for X-bone [44], shown in Table 1, which will provide a 
network programming environment capable of dynamically deploying overlay networks. As Table 1 illustrates, other 
projects such as Supranet [23] advocate tunneling and encapsulation techniques for the separation and privacy among 
coexisting, collaborative environments. 

Programmable Virtual Networking 

The dynamic composition and deployment of new services can be extended to include the composition of complete 
network architectures as virtual networks. The Netscript project [49] supports the notion of Virtual Active Networks 
[21] over IP networks. Virtual network engines interconnect sets of virtual nodes and virtual links to form virtual 
active networks. The Tempest framework [34] supports the notion of virtual networks using safe partitioning over 
ATM hardware. Tempest offers two levels of programmability. First, network control architectures can be introduced 
over long time scales through a 'heavyweight' deployment process. Second, 'lightweight' application-specific 
customization of established control architectures take place over faster time scales. The abstraction of physical 
switch partitions within the Tempest framework has led to the implementation of multiple coexisting control 
architectures. The Tempest strategy aims to address QOS through connection-oriented ATM technology and 
investigates physical resource sharing techniques between alternative control architectures. Both Darwin [17] and 
Netscript [49] projects support the notion of sharing the underlying physical infrastructure in a customized way as 
well. As discussed in the previous section, the NodeOS [40] project also provides facilities for coexisting execution 
environments. 

Spawning Networks 
In [13] we describe spawning networks, a new class of programmable networks that automate the creation, deployment 
and management of distinct network architectures "on-the-fly". The term "spawning" finds a parallel with an operating 
system spawning a child process, typically operating over the same hardware. We envision programmable networks as 
having the capability to spawn not processes but complex network architectures [31]. The enabling technology behind 
spawning is the Genesis Kernel [13], a virtual network operating system that represents a next-generation approach to 
the development of network programming environments. 

A key capability of Genesis is its ability to support a virtual network life cycle process for the creation and deployment 
of virtual networks through: 

• profiling, which captures the "blueprint" of a virtual network architecture in terms of a comprehensive 
profiling script; 

• spawning, which executes the profiling script to set-up network topology, and address space and bind transport 
control and management objects into the physical infrastructure; and 

• management, which supports virtual network architecting and resource management. 

Virtual networks, spawned by the Genesis Kernel operate in isolation with their traffic being carried securely and 
independently from other networks. Furthermore, "child" networks, created through spawning by "parent" networks 
inherit architectural components from their parent networks, including life cycle support. Thus a child virtual network 
can be a parent (i.e., provider) to its own child networks, creating a notion of "nested virtual networks" within a virtual 
network. 

CONCLUSION 

In this paper, we have discussed the state-of-the-art in programmable networks. We have presented a set of 
characteristics and generalized model for programmable networks, which has allowed us to better understand the 
relationship between the existing body of work on programmable networking. The generalized model comprises 
communication and computation models. By "grafting" a computation model to the communication model a network 
architecture can be made programmable. The generalized model includes node kernels to manage network node 
resources, and network programming environments that provide tools for programming network architectures. 
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We believe that a number of important innovations are creating a paradigm shift in networking leading to higher levels 
of network programmability. These are: 

• separation of hardware from software; 

• availability of open programmable interfaces; 

• virtualization of the networking infrastructure; 

• rapid creation and deployment of new network services; and 

• safe resource partitioning and coexistence of distinct network architectures over the same physical networking 
hardware. 

Programmable networks provide a foundation for architecting, composing and deploying virtual network architectures 
through the availability of open programmable interfaces, resource partitioning and the virtualization of the 
networking infrastructure. We believe that a key challenge is the development of programmable virtual networking 
environments based on these foundations. 
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