
A Survey of Programmable Networks

Andrew T. CampbeU 1, Herman G. De Meer 2, Michael E. Kounavis 1,

Kazuho Mik 3, John B. Vicente 4, and Daniel ViUela 1

1Center for Telecommunications Research,
Columbia University

2 University of Hamburg, Germany
3 Hitachi Limited

4 Intel Corporation

genesis@comet.columbia.edu

Abstract
In this paper we present a programmable networking model that provides a common
framework for understanding the state-of-the-art in programmable networks. A number
of projects are reviewed and discussed against a set of programmable network
characteristics. We believe that a number of important innovations are creating a
paradigm shift in networking leading to higher levels of network programmability. These
innovations include the separation between transmission hardware and control software,
availability of open programmable network interfaces, accelerated virtualization of
networking infrastructure, rapid creation and deployment of new network services and
environments for resource partitioning and coexistence of multiple distinct network
architectures. We present a simple qualitative comparison of the surveyed work and
make a number of observations about the direction of the field.

INTRODUCTION
The ability to rapidly create, deploy and manage novel services in response to user demands is a key factor driving the
programmable networking research community. Results from this field of research are likely to have a broad impact on
customers, service providers and equipment vendors across a range of telecommunication sectors, including broadband,
mobile and IP networking. Competition between existing and future Internet Service Providers (ISPs) could solely hinge
on the speed at which one service provider can respond to new market demands over another. The introduction of new
services is a challenging task and calls for major advances in methodologies and toolkits for service creation and enabling
network technologies. A vast amount of service-specific computation, processing and switching must be handled and new
network programming environments have to be engineered to enable future networking infrastructures to be open,
extensible and programmable.

Before we can meet this challenge, we need to better understand the limitations of existing networks and the fundamentals
for making networks more programmable. There is growing consensus that these network fundamentals are strongly
associated with the deployment of new network programming environments, possibly based on "network-wide operating
system support", that explicitly recognize service creation, deployment and management in the network infrastructure. For
example a future programmable network operating system could be based on active network execution environments [42]
operating on node operating system [40] or open signaling network kernels [30] supporting the coexistence of multiple
control architectures [33]. Both of these proposals squarely address the same problem: how to open the network up and
accelerate its programmability in a controlled and secure manner for the deployment of new architectures, services and
protocols.

ACM SIGCOMM 7 Computer Communication Review

The separation of communications hardware (i.e., switching fabrics, routing engines) from control software is fundamental
to making the network more programmable. Such a separation is difficult to realize today. The reason for this is that
switches and routers are vertically integrated - akin to mainframes of the 70s. Typically, service providers do not have
access to switch/router control environments (e.g. Cisco's IOS operating system~, algorithms (e.g. routing protocols) or
states (e.g., routing tables, flow states). This makes the deployment of new network services, which may be many orders of
magnitude more flexible than proprietary control systems, impossible due to the closed nature of network nodes. The
question is, how do we go about 'opening up the boxes' for deployment of third party control software and services?

This paper examines the state of the art in programmable networks. In Section 2, we present and discuss two schools of
thought on programmable networks advocated by the Active Networks (AN) [20] and Open Signalling (Opensig) [39]
communities. The state-of-the-art in programmable networks is rather complex to analyze beyond historical differences.
Recently, a number of programmable network toolkits have been implemented. By reviewing each contribution in turn, we
arrive at a common set of features that govern the construction of these programmable networks. In Section 3, we present a
generalized model and common set of characteristics to better understand the contributions found in the literature.
Following this, in Section 4, we discuss a number of specific projects and characterize them in terms of a simple set of
characteristics. In Section 5, we present a simple qualitative comparison of the surveyed work and make a number of
observations about the direction of the field. We believe that a number of important innovations are creating a paradigm
shift in networking leading to higher levels of network programmability. This leads us to the conclusion that the ultimate
challenge facing the programmable networking community is the development of programmable virtual networking
environments.

METHODOLOGIES
There has been an increasing demand to add new services to networks or to custOmize existing network services to match
new application needs. Recent examples of this include the introduction of integrated and differentiated services to IP
networks offering enhanced IP QOS. The introduction of new services into existing networks is usually a manual, time
consuming and costly process. The goal of programmable networking is to simplify the deployment of new network
services, leading to networks that explicitly support the process of service creation and deployment. There is general
consensus that programmable network architectures can be customized, utilizing clearly defined open programmable
interfaces (i.e., network APIs) and a range of service composition methodologies and toolkits.

Two schools of thought have emerged on how to make networks programmable. The first school is spearheaded by the
Opensig community, which was established through a series of international workshops. The other school, established by
DARPA, constitutes a large number of diverse AN projects. The Opensig community argues that by modeling
communication hardware using a set of open programmable network interfaces, open access to switches and routers can be
provided, thereby enabling third party software providers to enter the market for telecommunications software. The
Opensig community argues that by "opening up" the switches in this manner, the development of new and distinct
architectures and services (e.g., virtual networking [34]) can be realized. Open signaling as the name suggests takes a
telecommunications approach to the problem of making the network programmable. Here, there is a clear distinction
between transport, control and management that underpin programmable networks and an emphasis on service creation
with QOS. Recently, the IEEE Project 1520 [9] on Programmable Interfaces for Networks is pursuing the Opensig
approach in an attempt to standardize programming interfaces for ATM switches, IP routers and mobile
telecommunications networks. Physical network devices are abstracted as distributed computing objects (e.g. virtual
switches [15], switchlets [33], and virtual base stations [6]) with well-defined open programmable interfaces. These open
interfaces allow service providers to manipulate the states of the network using middleware toolkits (e.g., CORBA) in
order to construct and manage new network services.

The AN community advocatesthe dynamic deployment of new services at runtime mainly within the confines of existing
IP networks. The level of dynamic runtime support for new services goes far beyond that proposed by the Opensig
community, especially when one considers the dispatch, execution and forwarding of packets based on the notion of
"active packets". In one extreme case of active networking, "capsules" [42] comprise executable programs, consisting of
code (for example Java code) and data. In active networks, code mobility represents the main vehicle for program delivery,
control and service construction. The granularity of control can range from the packet and flow levels through the
installation of completely new switchware [3]. The term 'granularity of control' [12] refers to the scope of switch/router
behavior that can be modified by a received packet. At one extreme, a single packet could boot a complete software

ACM SIGCOMM 8 Computer Communication Review

environment seen by all packets arriving at the node. At the other extreme, a single packet (e.g., a capsule) can modify the
behavior seen only by that packet. Active networks allow the customization of network services at packet transport
granularity, rather than through a programmable control plane. Active networks offer maximum flexibility in support of
service creation but with the cost of adding more complexity to the programming model. The AN approach is, however, an
order of magnitude more dynamic than Opensig's quasi-static network programming interfaces.

Both communities share the common goal to go beyond existing approaches and technologies for construction, deployment
and management of new services in telecommunication networks. Both movements include a broad spectrum of projects
with diverse architectural approaches. For example, few AN projects consider every packet to be an active capsule and
similarly few Opensig projects consider programmable network interfaces to be static. The Opensig approach, however,
clearly separates network control from information transport and is primarily focused on programmable switches that
provide some level of QOS support. In contrast, projects under the AN umbrella have historically been focused on IP
networks, where the control and data paths are combined.

PROGRAMMABLE NETWORKING MODEL
Communications and Computation
A programmable network is distinguished from any other networking environment by the fact that it can be programmed
from a minimal set of APIs from which one can ideally compose an infinite spectrum of higher level services. We present
a generalized model for programmable networks as a three-dimensional model illustrated in Figure 1. This model shows

the Internet reference model (viz. application, transport, network, link layers) augmented with transport 1, control and
management planes. The division between transport, control and management allows our model to be generally applicable
to telecommunications and Internet technologies. The notion of the separation between transport, control and management
is evident in architectures. In the case of Internet there is a single data path but clearly one can visualize transport (e.g.,
video packets), control (e.g., RSVP) and management (e.g., SMNP) mechanisms. In the case of telecommunication
networks there is typically support in the architecture for transport, control and management functions. This division is
motivated by the different ways these networking functions utilize the underlying hardware and by the distinct time scales
over which they operate. In both cases, the planes of our generalized model remain neutral supporting the design space of
different networking technologies.

application /
tayi~r ~ o~l.. ~

transport ~ .
l a ~ r . . ~ ~..{..~"

netffork ~
layer . .~
liqk r ,

lay.er /

Figure 1: Computation and Communication Models

The programmability of network services is achieved by introducing computation inside the network, beyond the extent of
the computation performed in existing routers and switches. To distinguish the notion of a "programmable network
architecture" from a "network architecture", we have extended the communication model and augmented it with a
computation model, explicitly acknowledging the programmability of network architectures. We can view the generalized
model for programmable networks as comprising conventional communication, encompassing the transport, control and
management planes, and computation as well, as illustrated in Figure 1. Collectively, the computation and communication
models make up a programmable network. The computation model provides programmable support across the transport,
control and management planes, allowing a network architect to program individual layers (viz. application, transport,

1 In this case planes collectively represent cross-layer services and protocols.

ACM SIGCOMM 9 Computer Communication Review

network and link layers) in these planes. Another view is that programmable support is delivered to the transport, control
and management planes through the computation model.

In Figure 2, an alternative view of the generalized model is shown. The key components of the computation model are

represented as a distributed network programming environment and a set of "node kernels ''2. Node kernels are node
operating systems realizing resource management. Node kernels have local significance only, that is, they manage single
node resources, potentially shared by multiple programmable network architectures. The network programming
environment provides middleware support to distributed network programming services. Figure 2 illustrates the separation
of switching hardware from programming and communication software. Two setS of interfaces are exposed. The first set of
interfaces represents the network programming interfaces between network programming environments and programmable
network architectures. The lower set of interfaces represents the node interfaces between node kernels and network
programming environments. We believe that there needs to be some agreement or standardization of these interfaces to
allow platform-independent network programming. This is likely to happen through a number of forums, e.g., IEEE
Programmable Interfaces for Networks [9], DARPA Active Networks [20], Multiservice Switching Forum [38], OPENSIG
[39] and IETF (e.g., the new work item on GSMP) or by the emerging new programmable network industries [48] [19].

""~mm~ca~on p rog rammab le ne twork archi tecture I
m.~...e.1 network

........................... ~ , I , ---,--- programming

ne twork p r o g r a m m i n g env i ronmen t interfaces
computation node

moael , l ' ~ interfaces

1 node kernel I node kernel
. I

Figure 2: Generalized Model .for Programmable Networks

Research on programmable networks is focused on all facets of this model. Different programming methodologies, levels
of programmability, and communication technologies have been investigated. Some projects, especially from the Opensig
community have placed more emphasis on API definitions. Others focus on issues related to code mobility or contribute to
the application domain. Dynamic "plug-ins" have been investigated for the construction or potential extension of new
protocols or applications. In what follows, we provide a more detailed overview of the components in our generalized
model. It is our belief that independent contributions to the field are beginning to converge and it is our intention to
indicate this convergence by way of survey.

Node Kernel

Many node vendors incorporate operating system support into their switches and routers to handle communication
functions of network nodes, e.g. CISCO routers use the I tS environment and ATML ATM switches use the ATMOS
micro-kernel. Typically, these node operating systems support a variety of communications activities, e.g., signaling,
control and management processes, inter-process communication, forwarding functions, and downloading of new boot
images. Currently, these node operating systems are closed to third party providers because of their proprietary nature, and
they are limited in their support for evolving network programming environments. While the idea of introducing
computation power into nodes is not new, there is a greater need for computation elements to abstract node functionality
and allow it to be open and programmable. The computation model, introduced in the previous section, enables the
programmability of the communication model and requires low-level programmable support for communication
abstractions (e.g., packets, flows, tunnels, virtual paths), dynamic resource partitioning and security considerations.

We describe this low-level programming environment that runs on switch/routers as the node kernel. The node kernel
represents the lowest level of programmability, providing a small set of node interfaces. These interfaces support the
manipulation of the node state (e.g., accessing and controlling the node resources) and the invocation of communication

2 We borrow the term node kemel from the work on NodeOS [40] and broadband kemels [30] by the active networking and Opensig communities,
respectively.

ACM SIGCOMM 10 Computer Communication Review

services (e.g. communication abstractions and security). The node kernel is responsible for sharing node computational
(e.g., sharing the CPU) and communication resources, (e.g., partitioning the capacity of a multiplexer), as well supporting
core security services. A node kernel may operate on any type of network node, end-system or device, for example, IP
router, ATM switch, or base station. It may also provide access to dedicated hardware offering fast packet processing
services to network programming environments. A node kernel has local significance only, providing the network
programming environment with a set of low-level programming interfaces, that are used by network architects to program
network architectures in a systematic manner.

Network Programming Environment
Network programming environments support the construction of networks, enabling the dynamic deployment of network
services and protocols. Network programming environments support different levels of programmability, programming
methodologies, networking technologies and application domains. Network programming environments operate over a set
of well-defined node kernel interfaces offering distributed toolkits for the realization of programmable network
architectures through the deployment of distributed service components. In this sense, one can view network-programming
environments as the "middleware glue" between executing network architectures and the node kernels themselves, as
illustrated in Figure 2. Network programming environments provide network architect/designers with the necessary
environment and tools for building distinct network architectures that run in a distributed fashion on multiple node kernels.
In this sense network programming environments support the programming of network architectures in the same way that
software development kits (SDKs) allow developers to build new applications that run on native operating systems.

This "middleware glue" can be constructed from scratch or be built on top of well-defined distributed object computing
environments. For example, the xbind [15] and mobiware [6] toolkits address programmability of broadband and mobile
networks, respectively, and are built using COBRA middleware technology. Other approaches use mobile code technology
and virtual machines to dynamically program the network. For example, the Active Network Transport System (ANTS)
incorporates capsule technology [45], leveraging the Java Virtual Machine for new protocol deployment. Both approaches
result in toolkits that execute on node kernels offering a high level of programmability for service creation and deployment
of distinct network architectures.

Network programming environments offer a set of open interfaces and services to network designers/architects to program
distinct network architectures. Network programming environments support the construction of network architectures
through service composition, service control, and resource and state management. Services offered by network
programming environments can range from simple Remote Procedure Calling (RPC) between distributed network objects
to sophisticated dynamic loading of mobile code and fast compilation of intermediate machine-independent representation.
Different types of network programming environments offer different levels of programmability to network architectures.
For example, mobile code technologies offer the most radical solution to the development of services in programmable
networks when compared to RPC-based object middleware. We identify the 'level of programmability' as an important
characteristic of programmable networks.

Programmable Network Architecture

The goal of network programming environments is to provide the necessary support to dynamically program new network
architectures. Network programming environments do not offer core network algorithms (e.g., routing, signaling) that
define and differentiate network architecture in the same way that operating systems do not embed application specific
algorithms in the kernel. Rather, a network programming environment offers a set of network programming interfaces for
constructing network architectures. Philosophically this is similar to constructing new applications using software
development kits. However in this case the application is the network architecture.

We broadly define network architecture as having the following attributes3:

• network services, which the network architecture realizes as a set of distributed network algorithms and offers to the
end systems:

• network algorithms, which includes transport, signaling/control and management mechanisms;

3 This is of course an over simplification of a complex system. Our goal here is to be illustrative in support of the generalized model and not definitive

regarding a def'mition of network architecture.

ACM SIGCOMM 11 Computer Communication Review

• multiple time scales, which impact and influence the design of the network algorithms; and

• network state management, which includes the state that the network algorithms operate on (e.g., switching, routing,
QOS state) to support consistent services.

Network programming environments offer creation and deployment tools and mechanisms that allow network architects to
program and build new network architectures. Programmable network architectures are realized through the deployment of
a set of network algorithms that take into account network state and reflect the, time scales over which these algorithms
operate. Network algorithms are potentially as diverse as the application base that exists in the end-systems today.
Programmable network architectures may range from simple best-effort forwarding architectures to complex mobile
protocols that respond dynamically to changes in wireless QOS and connectivity:. Given this diversity, it is necessary that
both network programming environments and node kernels are extensible and programmable to support a large variety of
programmable network architectures.

PROGRAMMABLE NETWORKS
Following on from the discussion of the generalized model for programmabl~ networks, we now survey a number of
programmable networking projects that have emerged in the literature. We attempt to identify essential contributions of the
various projects to the field in terms of a set of characteristics. The survey is not intended to represent an exhaustive review

of the field 4, Rather, we discuss a set of projects that are representative of each programmable network characteristic
introduced, focusing on the pertinent and novel features of each project and then, in Section 5, we compare them to the
generalized model introduced in the preceding section.

Characteristics
A number of research groups are actively designing and developing programmable network prototypes. Each group tends
to use its own terminology. However, on examination one can observe a common set of characteristics that govern the
construction of these programmable networks. We use these characteristics to better understand the field:

• networking technology, which implicitly limits the programmability that can be delivered to higher levels. For
example, some technologies are more QOS programmable (e.g., ATM), scalable (e.g., Internet) or limited in
bandwidth availability (e.g., mobile networks);

• level o f programmability, which indicates the method, granularity and time scale over which new services can be
introduced into the network infrastructure. This in turn is strongly related to language support, programming
methodology or middleware adopted. For example, distributed object technology can be based on RPC [46] or mobile
code [45] methodologies resulting in quasi-static or dynamically composed network programming interfaces;

• programmable communications abstractions, which indicate the level of virtualization and programmability of
networking infrastructure requiring different middleware and potentially network node support (e.g., switch/router,
base station). For example, programmable communications abstractions include virtual switches [30], switchlets [33],
active nodes [40], universal mobile channels [32] and virtual active networks [21]; and

• architectural domain, which indicates the targeted architectural or application domain (e.g., signaling, management,
transport). This potentially dictates certain design choices and impacts the construction of architectures, and services
offered, calling for a wide range of middleware support. Examples include, composing application services [4],
programmable QOS control [30] and network management [4 I]).

Networking Technology
A number of programmable network prototypes have been targeted to specific networking technologies. The motivation
behind these projects is to make the targeted networking technology more programmable in an attempt to overcome
particular deficiencies associated with supporting communication services.

4 F o r a survey on act ive ne tworks see [43].

ACM SIGCOMM 12 Computer Communication Review

IP networks: Smart Packets

The University of Kansas has developed smart packets, a code-based specialized packet concept implemented in a
programmable IP environment [29]. Smart packets represent elements of in-band or out-of-band mobile code based on Java
classes. Smart packets propagate state information in the form of serialized objects and carry identifiers for authentication
purposes. An active node architecture supports smart packets by exposing a set of resource abstractions and primitives
made accessible to smart packets. Active nodes incorporate:

• resource controllers, which provide interfaces to node resources;

• node managers, which impose static limits on resource usage; and

• state managers, which control the amount of information smart packets may leave behind at an active node.

The active node supports a feedback-scheduling algorithm to allow partitioning of CPU cycles among competing tasks and
a credit-based flow-control mechanism to regulate bandwidth usage. Each smart packet is allocated a single thread of CPU
and some amount of node resources. Active nodes also include router managers that support both default routing schemes
and alternative routing methods carried by smart packets. The smart packets testbed has been used to program enhanced
HTTP and SMTP services that show some performance benefits over conventional HTTP and SMTP by reducing excessive
ACK/NAK responses in the protocols. A beacon routing scheme supports the use of multiple routing algorithms within a
common physical IP network based on smart packets.

ATM Networks: xbind

ATM technology provides connection-oriented communications and has been tailored towards QOS provisioning of
multimedia networks. Although essential features of QOS provisioning, such as admission control and resource reservation,
are inherently supported by the ATM technology, its signaling component is unsuitable for practical usage due to its
significant complexity, xbind [15] overcomes these service creation limitations by separating control algorithms from the
telecommunications hardware. Emphasis is placed on the development of interfaces to provide open access to node
resources and functions, using virtual switch and virtual link abstractions. The interfaces are designed to support the
programmability of the management and control planes in ATM networks.

The xbind broadband kernel [47], which is based on the XRM model [15], incorporates three network models abstracting a
broadband network, multimedia network and service network. The multimedia network supports programmable network
management, network control, state management, connection management and media stream control. The xbind testbed
incorporates multivendor ATM switches using open signaling and service creation to support a variety of broadband
services, transport and signaling systems with QOS guarantees.

Mobile Networks: Mobiware

Mobiware [6] is a software-intensive open programmable mobile architecture extending the xbind model of
programmability to packet based mobile networks for the delivery of adaptive mobile services over time-varying wireless
links. Mobiware incorporates object-based, CORBA programmability for the control plane but also allows active transport
objects (i.e., code plug-ins) based on Java byte code to be loaded into the data path. At the transport layer, an active
transport environment injects algorithms into base stations providing value-added service support at strategic points inside
the network. At the network layer, a set of distributed objects that run on mobile devices, access points and mobile-capable
switches, interact with each other to support programmable handoff control and different styles of QO$ adaptation. The

M A C layer has also been made programmable.

The following mobile services have been programmed using the mobiware toolkit [37]:

• QOS-controlled handoff, which supports automatic media scaling and error control based on an adaptive-QOS API and
wireless channel conditions;

• mobile soft-state, which provides mobile devices with the capability to respond to time varying QOS through a
periodic reservation and renegotiation process; and

• flow bundling, which supports fast handoff in cellular access networks.

The mobiware testbed supports a variety of scalable audio and video services to mobile devices in addition to traditional
web based data services.

ACM SIGCOMM 13 Computer Communication Review

Level of Programmability
The level of programmability expresses the granularity at which new services can be introduced into the network
infrastructure. One can consider a spectrum of possible choices from highly dynamic to more conservative levels of
programmability. At one end of this spectrum, capsules [42] carry code and data enabling the uncoordinated deployment of
protocols. Capsules represent the most dynamic means of code and service deployment into the network. At the other end
of the spectrum there are more conservative approaches to network programmability based on quasi-static network
programming interfaces using RPCs between distributed controllers [46] to deploy new services. Between the two
extremes lie a number of other methodologies combining dynamic plug-ins, active messaging and RPC. Different
approaches have a direct bearing on the speed, flexibility, safety, security and performance at which new services can be
introduced into the infrastructure.

Capsules: ANTS

ANTS [45], developed at MIT, enables the uncoordinated deployment of multiple communication protocols in active
networks providing a set of core services including support for the transportation of mobile code, loading of code on
demand and caching techniques. These core services allow network architects to introduce or extend existing network
protocols. ANTS provides a network programming environment for building new capsule-based programmable network
architectures. Examples of such programmed network services include enhanced multicast services, mobile IP routing and
application-level filtering. The ANTS capsule-driven execution model provides a foundation for maximum network
programmability in comparison to other API approaches. Capsules serve as atomic units of network programmability
supporting processing and forwarding interfaces. Incorporated features include node access, capsule manipulation, control
operations and soft-state storage services on IP routers. Active nodes execute capsules and forwarding routines, maintain
local state and support code distribution services for automating the deployment of new services. The ANTS toolkit also
supports capsule processing quanta as a metric for node resource management.

Active Extensions: Switchware

Switchware [3], being developed at University of Pennsylvania, attempts to balance the flexibility of a programmable
network against the safety and security requirements needed in a shared infrastructure such as the Internet. The Switchware
toolkit allows the network architects to trade-off flexibility, safety, security, performance and usability when programming
secure network architectures. At the operating system level, an active IP-router component is responsible for providing a
secure foundation that guarantees system integrity. Active extensions can be dynamically loaded into secure active routers
through a set of security mechanisms that include encryption, authentication and program verification. The correct
behavior of active extensions can be verified off-line by applying 'heavyweight' methods, since the deployment of such
extensions is done over slow time scales.

Active extensions provide interfaces for more dynamic network programming using active packets. Active packets can
roam and customize the network in a similar way as capsules do. Active packets are written in functional languages (e.g.,
Caml and PLAN [28]) and carry lightweight programs that invoke node-resident service routines supported by active
extensions. There is much less requirement for testing and verification in the case of active packets than for active
extensions, given the confidence that lower level security checks have already been applied to active extensions. Active
packets cannot explicitly leave state behind at nodes and they can access state only through clearly defined interfaces
furnished by active extension software. Switchware applies heavyweight security checks on active extensions, which may
represent major releases of switch code, and more lightweight security checks on active packets. This approach allows the
network architect to balance security concerns against performance requirements. The security model of Switchware
considers public, authenticated and verified facilities.

Composition Languages: CANEs

Capsules, active messages and active extensions promote the creation of new Services through the composition of new
building blocks or by adding components to existing services. The CANEs project led by researchers at University of
Kentucky and Georgia Tech. aim to define and apply service composition rules as a general model for network
programmability [14]. A composition method is used to construct composite network services from components. A
composition method is specified as a programming language with enhanced language capabilities that operates on
components to construct programmable network services. Attributes of a good composition method include high
performance, scalability, security and ease of management. Features of well-structured composition methods combine:

ACM SIGCOMM 14 Computer Communication Review

• control on the sequence in which components are executed;

• control on shared data among components;

• binding times, which comprise composite creation and execution times;

• invocation methods, which are defined as events that cause a composite to be executed; and

• division of functionality among multiple components, which may either reside at an active node or be carried by
packets.

PLAN, ANTS and Netscript [21] (described in Section 4.4.2) are examples of composition methods. LIANE is proposed
within the CANEs project as a composition method that incorporates all the aforementioned features. The key idea of
LIANE is that services are composed from basic underlying programs that contain processing slots. Users insert programs
for customization in these slots. The CANEs definition of service composition encompasses the Opensig approach to
network programmability indicating how different approaches to programmable networking complement each other by
addressing the same goal from different perspectives.

Network APIs: xbind

The xbind broadband kernel is based on a binding architecture and a collection of node interfaces referred to as Binding
Interface Base (BIB) [2]. The BIB provides abstractions to the node state and network resources. Binding algorithms run
on top of the BIB and bind QOS requirements to network resources via abstractions. The BIB is designed to support
service creation through high-level programming languages. The interfaces are static while supporting universal
programmability. The quasi-static nature of the BIB interfaces, allow for complete testing and verification of the
correctness of new functions, on emulation platforms, before any service is deployed. The concept of active packets or
capsules containing both programs and user data is not considered in the xbind approach to programmability. Rather,
communication is performed using RPCs between distributed objects and controllers based on OMG's CORBA. The
approach taken by xbind promotes interoperability between multi-vendor switch market supporting resource sharing and
partitioning in a controlled manner.

Programmable Communications Abstractions
Abstractions and partitioning of resources are essential concepts in programmable networking. Programmable
communications abstractions may range from node resources to complete programmable virtual networks. Other
programmable communications abstractions include programmable virtual routers, virtual links and mobile channels.
Abstracting the network infrastructure through virtualization and making it programmable is a major contribution of the
field that encompasses a number of different projects.

Active Node Abstractions: NodeOS

Members of the DARPA active network program [20] are developing an architectural framework for active networking
[11]. A node operating system called NodeOS [40] represents the lowest level of the framework. NodeOS provides node
kernel interfaces at routers utilized by multiple execution environments, which support communication abstractions such as
threads, channels and flows. Development of an execution environment is a nontrivial task and it is anticipated [12] that
the total number of execution environments will not be large. Encapsulation techniques based on an active network
encapsulation protocol (ANEP) [5] support the deployment of multiple execution environments within a single active node.
ANEP defines an encapsulation format allowing packets to be routed through multiple execution environments coexisting
on the same physical nodes. Portability of execution environments across different types of physical nodes is accomplished
by the NodeOS, by exposing a common, standard interface. This interface defines four programmable node abstractions:
threads, memory, channels and flows. Threads, memory and channels abstract computation, storage, and communication
capacity used by execution environments, whereas flows abstract user data-paths with security, authentication and
admission control facilities. An execution environment uses the NodeOS interface to create threads and associate channels
with flows. The NodeOS supports QOS using scheduling mechanisms that regulate the access to node computation and
communication resources. The architectural framework for active networking is being implemented in the ABONE testbed
[1] allowing researchers to prototype new active architectures.

ACM SIGCOMM 15 Computer Communication Review

Virtual Active Networks: Netscript

The Netscript project [49] at Columbia University takes a functional langu~age-based approach to capture network
programmability using universal language abstractions. Netscript is a strongly typed language that creates universal
abstractions for programming network node functions. Unlike other active network projects that take a language-based
approach Netscript is being developed to support Virtual Active Networks as a programmable abstraction. Virtual Active
Network [21] abstractions can be systematically composed, provisioned and managed. In addition, Netscript automates
management through language extensions that generate MIBs. Netscript leverages earlier work on decentralized
management and agent technologies that automatically correlate and analyze i the behavior monitored by active MIB
elements. A distinguishing feature of Netscript is that it seeks to provide a universal language for active networks in a
manner that is analogous to postscript. Just as postscript captures the programmability of printer engines, Netscript captures
the programmability of network node functions. Netscript communication abstractions include collections of nodes and
virtual links that constitute virtual active networks.

Virtual ATM Networks: Tempest

The Tempest project at the University of Cambridge [34] has investigated the deployment of multiple coexisting control
architectures in broadband ATM environments. Novel technological approaches include the usage of software mobile
agents to customize network control and the consideration of control architectures dedicated to a single service. Tempest
supports two levels of programmability and abstraction. First, switchlets, which are logical network elements that result
from the partition of ATM switch resources, allow the introduction of alternative control architectures into an operational
network. Second, services can be refined by dynamically loading programs that customize existing control architectures.
Resources in an ATM network can be divided by using two software components: a switch control interface called ariel
and a resource divider called prospero. Prospero communicates with an ariel server on an ATM switch, partitions the
resources and exports a separate control interface for each switchlet created. A network builder creates, modifies and
maintains control architectures.

Architectural Domains

Most programmable network projects are related to the introduction of services into networks. However, most projects are
targeted to a particular architectural domain (e.g., QOS control, signaling, management, transport and applications). In
what follows we discuss three projects that address the application, resource management and network management
domains.

Application-Level: Active Services

In contrast to the main body of research in active networking, Amir et al. [4] call for the preservation of all routing and
forwarding semantics of the Internet architecture by restricting the computation model to the application layer. The Active
Services version 1 (AS 1) programmable service architecture enables clients to download and run service agents at strategic
locations inside the network. Service agents called "servents" are restricted from manipulating routing tables and
forwarding functions that would contravene the IP-layer integrity. The AS 1 architecture contains a number of architectural
components:

• a service environment, which defines a programming model and a set of intexfaces available to servents;

• a service-location facility, which allows clients to 'rendezvous' with the AS 1 environment by obtaining bootstrapping

and configuration mechanisms to instantiate servents5;

• a service management system, which allocates clusters of resources to servents using admission control and load
balancing of servents under high-load conditions;

• a service control system, which provides dynamic client control of servents once instantiated within an AS1
architecture;

5 Servants are launched into the network by an active service control protocol (ASCP), which includes an announce-listen protocol for servers to manage
session state consistency, soft-state to manage expiration due to timeouts and multicast damping to avoid flooding the environment with excessive
scrvents.

ACM SIGCOMM 16 Computer Communication Review

• a service attachment facility, which provides mechanisms for clients that can not interact directly with the AS1
environment through soft-state gateways; and

• a service composition mechanism, which allows clients to contact multiple service clusters and interconnect servents
running within and across clusters.

The AS 1 architecture is programmable at the application layer supporting a range of application domains. In [4], the MeGa
architecture is programmed using AS 1 to support an active media gateway service. In this case, servents provide support
for application-level rate control and transcoding techniques.

Resource Management: Darwin

The Darwin Project [17] at Carnegie Mellon University is developing a middleware environment for the next generation IP
networks with the goal of offering Internet users a platform for value-added and customizable services. The Darwin project
is focused toward customizable resource management that supports QOS. Architecturally, the Darwin framework includes
Xena, a service broker that maps user requirements to a set of local resources, resource managers that communicate with
Xena using the Beagle signaling protocol, and hierarchical scheduling disciplines based on service profiles. The Xena
architecture takes the view that the IP forwarding and routing functions should be left in tact and only allows restricted use
of active packet technology in the system.

Alongside the IP stack, Darwin introduces a control plane that builds on similar concepts such as those leveraged by
broadband kernels [30] and active services [4]. The Xena architecture is made programmable and incorporates active
technologies in a restricted fashion. A set of service delegates provides support for active packets. Delegates can be
dynamically injected into IP routers or servers to support application specific processing (e.g., sophisticated semantic
dropping) and value-added services (e.g., transcoders). A distinguishing feature of the Darwin architectural approach is
that mechanisms can be customized according to user specific service needs defined by space, organization and time
constraints. While these architectural mechanisms are most effective when they work in unison each mechanism can also
be combined with traditional QOS architecture components. For example, the Beagle signaling system could be
programmed to support RSVP signaling for resource reservation, while the Xena resource brokers and hierarchical
schedulers could support traffic control.

Network Management: Smart Packets

The Smart Packets Project [41] (not to be confused with University of Kansas smart packets) at BBN aims to improve the
performance of large and complex networks by leveraging active networking technology. Smart Packets are used to move
management decision making points closer to the nodes being managed, target specific aspects of the node for
management and abstract management concepts to language constructs. Management centers can send programs to
managed nodes. Thus the management process can be tailored to the specific interests of the management center reducing
the amount of back traffic and data requiring examination. A smart packet consists of a header and payload encapsulated
using ANEP [5]. Smart packets may carry programs to be executed, results from execution, informational messages or
reports on error conditions. Smart Packets are written in two programming languages:

• sprocket, which is a high-level C-like, language with security threatening constructs, and

• spanner, which is a low-level assembly-like language, that can result in tighter, optimized code.

Sprocket programs are compiled into spanner code, which in turn is assembled into a machine-independent binary
encoding placed into smart packets. Meaningful programs perform networking functions and MIB information retrieval.

DISCUSSION
We have introduced a set of characteristics and a generalized model for programmable networks to help understand and
differentiate the diverse set of programmable network projects discussed in this paper. In what follows we provide a brief
comparison of these projects and other work in the field.

ACM SIGCOMM 17 Computer Communication Review

Comparison
In this section we present a simple qualitative comparison of the programmable Inetworks surveyed in Section 4. Table 1
presents the comparison with respect to the characteristics and generalized model for programmable networks presented in
Section 3 and 4, respectively.

Open Programmable Interfaces
The use of open programmable network interfaces is evident in many programmable network projects discussed in this
survey. Open interfaces provide a foundation for service programming and the introduction of new network architectures.

The xbind broadband kernel supports a comprehensive Binding Interface Base using CORBA/IDL to abstract network
ATM devices, state and control. A number of other projects focussed on programming IP networks (e.g., ANTS,
Switchware, CANEs) promote the use of open APIs that abstract node primitives, enabling network programmability and
the composition of new services. Many network programming environmentS shown in Table 1 take fundamentally
different approaches to providing open interfaces for service composition. The programming methodology adopted (e.g.,
distributed object technology based on RPC, mobile code or hybrid approaches) has a significant impact on an
architecture's level of programmability; that is, the granularity, time scales and c~)mplexity incurred when introducing new
APIs and algorithms into the network.

Two counter proposals include the xbind and ANTS APIs. While the ANTS approach to the deployment of new APIs in
extremely flexible presenting a highly dynamic programming methodology it represents a complex programming model in
comparison to the simple RPC model. In contrast, the xbind binding interfaces and programming paradigm is based on a
set of CORBA IDL and RPC mechanisms. In comparison to capsule-based programmability the xbind approach is rather
static in nature and the programming model less complex. These approaches represent two extremes of network
programmability.

One could argue that quasi-static APIs based on RPC is a limited and restrictive approach. A counter argument is that the
process of introducing and managing APIs is less complex than the capsule-based programming paradigm, representing a
more manageable mechanism for service composition and service control. Similarly one could argue that active message
and capsule-based technologies are more 'open' because of the inherent flexibility of their network programming models
given that capsules can graft new APIs onto routers at runtime. The xbind approach lacks this dynamic nature at the cost of
a simplified programming environment. Other projects adopt hybrid approaches. For example the mobiware toolkit
combines the static APIs with the dynamic introduction of Java service plug-ins when needed [7]. A clear movement of the
field is to open up the networks and present APIs for programming new architectures, services and protocols. As we
discuss in the next section the field is arguing that the switches, routers and base stations should open up ultimately calling
for open APIs everywhere.

Virtualization and Resource Partitioning
Many projects use virtualization techniques to support the programmability of different types of communication
abstractions. The Tempest framework [33] presents a good example of the use of virtualization of the network
infrastructure. Low-level physical switch interfaces are abstracted creating setS of interfaces to switch partitions called
switchlets. Switchlets allow multiple control architectures to coexist and share the same physical switch resources (e.g.,
capacity, switching tables, name space, etc.). Typically, abstractions found in programmable networks are paired with safe
resource partitioning strategies that enable multiple services, protocols and different programmable networking
architectures to coexist. Virtualization of the network in this manner presents new levels of innovation in programmable
networks that have not been considered before. All types of network components can be virtualized and made
programmable from switches and links [15] to switchlets [33], active nodes [40], routelets [13] and virtual networks [21],
[34], [13].

The NodeOS interface [40] provides a similar abstraction to node resources. Tile use of open interfaces allows multiple
network programming environments (or execution environments using active networking terminology) to coexist within a
common physical node architecture. In this case, the ANEP [5] protocol provides encapsulation as a mechanism for
delivering packets to distinct execution environments.

ACM SIGCOMM 18 Computer Communication Review

Prolects

~1 +1 oC l l l r lS l lCS

-+o +

General ized Model fo r Prob~-=,,nlable Networks

Node Kernels
Network Programmable

Programming Network
Env i ronments Architectta'es

pmgramming metho~o/ogy ~ ~ ~

' ' ii' ii ~_= ~ E. ~. ~ ~

I¢I iv l l SII'VlClII composing
[4] application level apptica~on

services Interest se~ces dynamic Tcl/oTd

8mart Packets,
BBN [41] network

management

I B I:I I:I I

managed dynamic, Splockst &
kltsrnet nodes discrete Spanner X X X X X X X

Nstecrtpt [49] composing network dynamic,
services and VANs Interest VANS discrete NelScrlpt

ANT8 [45I composing network In~me~ dynamic.
se~ces ~ernet prot~:ols integrated JAVA

CANEs [14] composeble
composing sauces Inlernet senace6 dynamic LIANE

ISwltchWare [2] composing net~Ncd<
sewices

SmarlPacketI, U,
Kansas [29] composing network Intemel

sen4eeg Inlernet protocols dyllemic JAVA

Liquid Soltware
[27] investigating mobile

code technology ~ernet Q/heroic JAVA

ANN [22] composing ne~v~k
services

Interest
Internet protocols dynamic PLAN & Ceml

dynamic.
Internet network node discrete obiect code

X X X

X X X

X X

X X X

X X X X

X

X X X

X X

X X X

X X

X X X X

X X X X X

X

X X X

X

X

NodeO$ [40]
enablng network
progranrn~biity

xblnd [15] enabiin0
telecommunications
ser',~ce creation

DARtMN [17]

Internet network node X X X X X

multimedia
ATM networks Static CORBA,~OL X X X

tntegreted resource
management end
value added sen4ce~ ~ernet flows qussi.st'a(ic X X X X

X X

X X

X X

X X X

Moblware [6 I

Tempest 134]

uni~e~al
~reless QoS end mobile CORBA,'IDL &
mobile QoS control Mobile channels quasi-static JAVA X X X X

~ r k
snatYJng a~t~tletiye conVol
c0nttol architectures ATM architectures quasi-static CORBA,IDL X X

X-Bone [44] autom~ng the
deployment of IP
overlays

$upranet [231 vi~.~t Network
SaUces
Spa~ing ViSual

Genesis [13] ~letwork
Architectures

X X X

X X

X X

I~emet Pove~W X X X X

virtual
Internet Neiworks X X X X

Spawrlng
Intsrnet Networks dynamic Metsbu~DL X X X X X X X X X

X X

Table 1: Comparison of Programmable Networks

ACM SIGCOMM 19 Computer Communication Review

Using encapsulation in this manner allows for different overlay execution environments (e.g., ANTS, Switchware, or
Netscript) to execute on the same router using a single, common node kernel. The notion of virtualization is not a new
concept, however. Similar motivation in the Internet community has led to the advent of the Mbone. New directions in
the virtualization of the Internet have prompted the proposal for X-bone [44], shown in Table 1, which will provide a
network programming environment capable of dynamically deploying overlay networks. As Table 1 illustrates, other
projects such as Supranet [23] advocate tunneling and encapsulation techniques for the separation and privacy among
coexisting, collaborative environments.

Programmable Virtual Networking

The dynamic composition and deployment of new services can be extended to include the composition of complete
network architectures as virtual networks. The Netscript project [49] supports the notion of Virtual Active Networks
[21] over IP networks. Virtual network engines interconnect sets of virtual nodes and virtual links to form virtual
active networks. The Tempest framework [34] supports the notion of virtual networks using safe partitioning over
ATM hardware. Tempest offers two levels of programmability. First, network control architectures can be introduced
over long time scales through a 'heavyweight' deployment process. Second, 'lightweight' application-specific
customization of established control architectures take place over faster time scales. The abstraction of physical
switch partitions within the Tempest framework has led to the implementation of multiple coexisting control
architectures. The Tempest strategy aims to address QOS through connection-oriented ATM technology and
investigates physical resource sharing techniques between alternative control architectures. Both Darwin [17] and
Netscript [49] projects support the notion of sharing the underlying physical infrastructure in a customized way as
well. As discussed in the previous section, the NodeOS [40] project also provides facilities for coexisting execution
environments.

Spawning Networks
In [13] we describe spawning networks, a new class of programmable networks that automate the creation, deployment
and management of distinct network architectures "on-the-fly". The term "spawning" finds a parallel with an operating
system spawning a child process, typically operating over the same hardware. We envision programmable networks as
having the capability to spawn not processes but complex network architectures [31]. The enabling technology behind
spawning is the Genesis Kernel [13], a virtual network operating system that represents a next-generation approach to
the development of network programming environments.

A key capability of Genesis is its ability to support a virtual network life cycle process for the creation and deployment
of virtual networks through:

• profiling, which captures the "blueprint" of a virtual network architecture in terms of a comprehensive
profiling script;

• spawning, which executes the profiling script to set-up network topology, and address space and bind transport
control and management objects into the physical infrastructure; and

• management, which supports virtual network architecting and resource management.

Virtual networks, spawned by the Genesis Kernel operate in isolation with their traffic being carried securely and
independently from other networks. Furthermore, "child" networks, created through spawning by "parent" networks
inherit architectural components from their parent networks, including life cycle support. Thus a child virtual network
can be a parent (i.e., provider) to its own child networks, creating a notion of "nested virtual networks" within a virtual
network.

CONCLUSION

In this paper, we have discussed the state-of-the-art in programmable networks. We have presented a set of
characteristics and generalized model for programmable networks, which has allowed us to better understand the
relationship between the existing body of work on programmable networking. The generalized model comprises
communication and computation models. By "grafting" a computation model to the communication model a network
architecture can be made programmable. The generalized model includes node kernels to manage network node
resources, and network programming environments that provide tools for programming network architectures.

ACM SIGCOMM 20 Computer Communication Review

We believe that a number of important innovations are creating a paradigm shift in networking leading to higher levels
of network programmability. These are:

• separation of hardware from software;

• availability of open programmable interfaces;

• virtualization of the networking infrastructure;

• rapid creation and deployment of new network services; and

• safe resource partitioning and coexistence of distinct network architectures over the same physical networking
hardware.

Programmable networks provide a foundation for architecting, composing and deploying virtual network architectures
through the availability of open programmable interfaces, resource partitioning and the virtualization of the
networking infrastructure. We believe that a key challenge is the development of programmable virtual networking
environments based on these foundations.

A C K N O W L E D G E M E N T S
This work is supported in part by the National Science Foundation (NSF) under CAREER Award ANI-9876299 and
with support from COMET Group industrial sponsors. In particular, we would like to thank the Intel Corporation,
Hitachi Limited and Nortel Networks for supporting the Genesis Project. John B. Vicente (Intel Corp) would like to
thank the Intel Research Council for their support during his visit with the Center for Telecommunications Research,
Columbia University. Miki Kazuho (Hitachi, Ltd) would like to express his thanks to Hitachi Ltd for their support of
his work on Programmable Networks at Columbia University. Hermann G. De Meer is grateful to Deutsche
Forschungsgemeinschaft (DFG) for providing his fellowship and research grant Me 1703/2-1. Daniel A. Villela would
like to thank the National Council for Scientific and Technological Development (CNPq-Brazil) for sponsoring his
scholarship at Columbia University (ref. 200168/98-3).

R E F E R E N C E S
[1] ABONE, Active network Backbone, http://www.csl.sri.com/ancors/abone/

[2] Adam, C.M., Lazar, A.A., Lim, K.-S., and Marconcini, F., "The Binding Interface Base Specification Revision
2.0", OPENSIG Workshop on Open Signalling for ATM, lnternet and Mobile Networks, Cambridge, UK, April
1997.

Alexander, D.S., Arbaugh, W.A., Hicks, M.A., Kakkar P., Keromytis A., Moore J.T., Nettles S.M., and Smith
J.M., ''The SwitchWare Active Network Architecture", IEEE Network Special Issue on Active and Controllable
Networks, vol. 12 no. 3, 1998.

Amir E., McCanne S., and Katz R., "An Active Service Framework and its Application to real-time Multimedia
Transcoding", Proceedings ACM SIGCOMM' 98, Vancouver, Canada

Alexander D.S., Braden B., Gunter C.A., Jackson W.A., Keromytis A.D., Milden G.A., and Wetherall D.A.,
"Active Network Encapsulation Protocol (ANEP)", Active Networks Group Draft, July 1997

Angin, O., Campbell, A.T., Kounavis, M.E., and Liao, R.R.-F., "The Mobiware Toolkit: Programmable Support
for Adaptive Mobile Networking", IEEE Personal Communications Magazine, Special Issue on Adaptive Mobile
Systems, August 1998.

Balachandran, A., Campbell, A.T., and Kounavis, M.E, "Active Filters: Delivering Scalable Media to Mobile
Devices", Proc. Seventh International Workshop on Network and Operating System Support for Digital Audio
and Video, St Louis, May, 1997.

Bershad,B.N., et al., "Extensibility, Safety and Performance in the SPIN Operating System", Fifth ACM
Symposium on Operating Systems Principles, Copper Mountain, December 1995.

Biswas, J., et al., " The IEEE P1520 Standards Initiative for Programmable Network Interfaces" IEEE
Communications Magazine, Special Issue on Programmable Networks, October, 1998.

[3]

[4]

[5]

[61

[7]

[8]

[9]

ACM SIGCOMM 21 Computer Communication Review

[14]

[15]

[10] Braden,B., "Active Signaling Protocols", Active Networks Workshop, Tucson AZ, March 1998.
l

[11] Calvert, K. et al, "Architectural Framework for Active Networks", Active Networks Working Group Draft, July
1998.

[12] Calvert, K. et. al, "Directions in Active networks", IEEE Communications Magazine, Special Issue on
Programmable Networks, October 1998.

[13] Campbell A.T., De Meer H.G., Kounavis M.E., Miki K., Vicente J.B., and Villela D., '"l'he Genesis Kernel: A
Virtual Network Operating System for Spawning Network Architectures!', Second International Conference on
Open Architectures and Network Programming (OPENARCH), New York, 1999.

"CANEs: Composable Active Network Elements", http://www.cc.gatech.edu/projects/canes/

Chan, M.-C., Huard, J.-F., Lazar, A.A., and Lim, K.-S., "On Realizing a Broadband Kernel for Multimedia
Networks", 3rd COST 237 Workshop on Multimedia Telecommunications and Applications, Barcelona, Spain,
November 25-27, 1996.

[16] Chen and Jackson, Editorial, IEEE Network Magazine, Special Issue on Programmable and Active Networks,
May 1998

[17] Chandra, P. et al., "Darwin: Customizable Resource Management for Value-added Network Services", Sixth
IEEE International Conference on Network Protocols (ICNP'98), Austin, October 1998.

[18] Coulson, G., et al., "The Design of a QOS-Controlled ATM-Based Communications System in Chorus", IEEE
Journal of Selected Areas in Communications, vol. 13, no.4, May 1995.

[19] Cplane Inc., www.cplane.com

[20] DARPA Active Network Program, http://www.darpa.mil/ito/research/anets/projects.html, 1996.

[21] Da Silva, S., Florissi, D. and Yemini, Y., "NetScript: A Language-Based Approach to Active Networks",
Technical Report, Computer Science Dept., Columbia University January 27, 1998.

[22] Decasper, D., Parulkar, G., Plattner, B., "A Scalable, High Performance Active Network Node", IEEE Network,
January 1999.

[23] Delgrossi, L. and Ferrari D., "A Virtual Network Service for Integrated-Services Internetworks", 7th
International Workshop on Network and Operating System Support for Digital Audio and Video, St. Louis, May
1997.

[24] Engler, D.R., Kaashoek, M.F. and O'Toole ,J., "Exokernel: An Operating System Architecture for Application-
Level Resource Management", Fifth ACM Symposium on Operating Systems Principles, Copper Mountain,
December 1995.

[25] Feldmeier, D.C., at al. "Protocol Boosters", IEEE Journal on Selected Areas in Communications, Special Issue on
Protocol Architectures for the 21st Century, 1998.

[26] Ferguson, P. and Huston, G., "What is a VPN?", OPENSIG'98 Workshop on Open Signalling for ATM, Internet
and Mobile Networks, Toronto, October 1998.

[27] Hartman, J., et al., "Liquid Software: A New Paradigm for Networked Systems", Technical Report96-11, Dept.
of Computer Science, Univ. of Arizona, 1996.

[28] Hicks, M., et al., "PLAN: A Programming Language for Active Networks", Proc ICFP'98, 1998.

[29] Kulkarni, A.B. Minden G.J., Hill, R., Wijata, Y., Gopinath, A., Sheth, S., Wahhab, F., Pindi, H., and Nagarajan,
A., "Implementation of a Prototype Active Network", First International Conference on Open Architectures and
Network Programming (OPENARCH), San Francisco, 1998.

[30] Lazar, A.A.,"Programming Telecommunication Networks", IEEE Network, vol.ll, no.5, September/October
1997.

[31] Lazar, A.A., and A.T Campbell, "Spawning Network Architectures", Technical Report, Center for
Telecommunications Research, Columbia University, 1997.

ACM SIGCOMM 22 Computer Communication Review

[321

[33]

[34]

[351

[361

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[451

[46]

[47]

[48]

[49]

Liao, R.-F. and Campbell, A.T., "On Programmable Universal Mobile Channels in a Cellular Internet", 4th
ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM'98) , Dallas, October,
1998

Van der Merwe, J.E., and Leslie, I.M., "Switchlets and Dynamic Virtual ATM Networks", Proc Integrated
Network Management V, May 1997.

Van der Merwe, J.E., Rooney, S., Leslie, I.M. and Crosby, S.A., "The Tempest - A Practical Framework for
Network Programmability", IEEE Network, November 1997.

DARPA Active Network Mail List Archives, 1996. http://www.ittc.ukans.edu/Projects/Activenets

Montz, A.B., et al., "Scout: A Communications-Oriented Operating System", Technical Report 94-20, University
of Arizona, Dept. of Computer Science, June 1994.

Mobiware Toolkit vl.0 source code distribution http://www.comet.columbia.edu/mobiware

Multiservice Switching Forum (MSF), www.msforum.org

Open Signaling Working Group comet.columbia.edu/opensig/

Peterson L., "NodeOS Interface Specification", Technical Report, Active Networks NodeOS Working Group,
February 2, 1999

Schwartz, B., Jackson, W.A., Strayer W.T., Zhou, W., Rockwell, R.D., and Partridge, C., "Smart Packets for
Active Networks", Second International Conference on Open Architectures and Network Programming
(OPENARCH), New York, 1999.

Tennenhouse, D., and Wetherall, D., "Towards an Active Network Architecture", Proceedings, Multimedia
Computing and Networking, San Jose, CA, 1996.

Tennenhouse, D., et al., "A Survey of Active Network Research", IEEE Communications Magazine, January
1997.

Touch, J. and Hotz, S., "The X-Bone", Third Global lnternet Mini-Conference in conjunction with Globecom '98
Sydney, Australia, November 1998.

Wetherall, D., Guttag, J. and Tennenhouse, D., "ANTS: A Toolkit for Building and Dynamically Deploying
Network Protocols", Proc. IEEE OPENARCH'98, San Francisco, CA, April 1998.

Vinoski, S.,"CORBA: Integrating Diverse Applications Within Distributed Heterogeneous Envtronments , IEEE
Communications Magazine, Vol. 14, No. 2, February, 1997.

xbind code http://comet.columbia.edu/xbind

Xbind Inc., www.xbind.com

Yemini, Y., and Da Silva, S, "Towards Programmable Networks", IFIP/IEEE International Workshop on
Distributed Systems: Operations and Management, L'Aquila, Italy, October, 1996.

ACM SIGCOMM 23 Computer Communication Review

