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Abstract

Temporal video segmentation is the "rst step towards automatic annotation of digital video for browsing and retrieval.
This article gives an overview of existing techniques for video segmentation that operate on both uncompressed and
compressed video stream. The performance, relative merits and limitations of each of the approaches are comprehens-
ively discussed and contrasted. The gradual development of the techniques and how the uncompressed domain methods
were tailored and applied into compressed domain are considered. In addition to the algorithms for shot boundaries
detection, the related topic of camera operation recognition is also reviewed. ( 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

Recent advances in multimedia compression
technology, coupled with the signi"cant increase in
computer performance and the growth of Internet,
have led to the widespread use and availability of
digital video. Applications such as digital libraries,
distance learning, video-on-demand, digital video
broadcast, interactive TV, multimedia information
systems generate and use large collections of video
data. This has created a need for tools that can
e$ciently index, search, browse and retrieve rel-
evant material. Consequently, several content-

based retrieval systems for organizing and manag-
ing video databases have been recently proposed
[8,26,34].

As shown in Fig. 1, temporal video segmentation
is the "rst step towards automatic annotation of
digital video sequences. Its goal is to divide the
video stream into a set of meaningful and manage-
able segments (shots) that are used as basic elements
for indexing. Each shot is then represented by se-
lecting key frames and indexed by extracting spatial
and temporal features. The retrieval is based on the
similarity between the feature vector of the query
and already stored video features.

A shot is de"ned as an unbroken sequence of
frames taken from one camera. There are two basic
types of shot transitions: abrupt and gradual.
Abrupt transitions (cuts) are simpler, they occur in
a single frame when stopping and restarting the
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Fig. 2. Dissolve, cut.

Fig. 1. Content-based retrieval of video databases.

camera. Although many kinds of cinematic e!ects
could be applied to arti"cially combine two shots,
and thus to create gradual transitions, most often
fades and dissolves are used. A fade out is a slow
decrease in brightness resulting in a black frame;
a fade in is a gradual increase in intensity starting
from a black image. Dissolves show one image super-
imposed on the other as the frames of the "rst shot
get dimmer and those of the second one get brighter.
Fig. 2 shows an example of dissolve and cut. Fade
out followed by fade in is presented in Fig. 3.

Gradual transitions are more di$cult to detect
than cuts. They must be distinguished from camera
operations (Fig. 4) and object movement that ex-
hibit temporal variances of the same order and
cause false positives. It is particularly di$cult to
detect dissolves between sequences involving inten-
sive motion [14,44,47].

Camera operation recognition is an important
issue also for another reason. As camera operations
usually explicitly re#ect how the attention of the
viewer should be directed, the clues obtained are
useful for key frame selection. For example, when
a camera pans over a scene, the entire video se-
quence belongs to one shot but the content of the
scene could change substantially, thus suggesting
the use of more than one key frame. Also, when the
camera zooms, the images at the beginning and end
of the zoom may be considered as representative of
the entire shot. Furthermore, recognizing camera
operations allows the construction of salient video
stills [38] } static images that e$ciently represent
video content.

Algorithms for shot boundaries detection were
already discussed in several review papers. Ananger
and Little [4] presented a survey in video indexing,
including some techniques for temporal video seg-
mentation mainly in uncompressed domain. Idris
and Panchanathan [15] surveyed methods for con-
tent-based indexing in image and video databases
focusing on feature extraction. A review of video
parsing is presented but it mainly includes methods
that operate on uncompressed domain and detect
cuts. The goal of this paper is to provide a compre-
hensive taxonomy and critical survey of the existing
approaches for temporal video segmentation in both
uncompressed and compressed video. The perfor-
mance, relative merits and shortcomings of each
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Fig. 3. Fade out followed by fade in.

Fig. 4. Basic camera operations: "xed, zooming (focal length
change of a stationary camera), panning/tilting (camera rotation
around its horizontal/vertical axis), tracking/booming (horizon-
tal/vertical transverse movement) and dollying (horizontal lat-
eral movement).

approach are discussed in detail. A special attention
is given to the gradual development and improve-
ment of the techniques, their relationships and simil-
arities, in particular how the uncompressed domain
methods were tailored and imported into the com-
pressed domain. In addition to the algorithms for

shot boundaries detection, the related topic of cam-
era operation recognition is also discussed.

The paper is organized as follows. In the next
section we review shot boundaries detection tech-
niques starting with approaches in uncompressed
domain and then moving to compressed domain
via an introduction to MPEG fundamentals. An
overview of methods for camera operation recogni-
tion is presented in Section 3. Finally, a summary
with future directions concludes the paper.

2. Temporal video segmentation

More than eight years of temporal video segmen-
tation research have resulted in a great variety of
algorithms. Early work focus on cut detection,
while more recent techniques deal with the harder
problem } gradual transitions detection.

2.1. Temporal video segmentation in
uncompressed domain

The majority of algorithms process uncom-
pressed video. Usually, a similarity measure
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between successive images is de"ned. When two
images are su$ciently dissimilar, there may be
a cut. Gradual transitions are found by using
cumulative di!erence measures and more sophisti-
cated thresholding schemes.

Based on the metrics used to detect the di!erence
between successive frames, the algorithms can be
divided broadly into three categories: pixel, block-
based and histogram comparisons.

2.1.1. Pixel comparison
Pair-wise pixel comparison (also called template

matching) evaluates the di!erences in intensity or
color values of corresponding pixels in two success-
ive frames.

The simplest way is to calculate the absolute sum
of pixel di!erences and compare it against a thre-
shold [18]:
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for gray level images,
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for color images, (1)

where i and i#1 are two successive frames
with dimension X]>, P

i
(x, y) is the intensity

value of the pixel at the coordinates (x, y) in frame i,
c is index for the color components (e.g.
c3MR, G, BN in case of RGB color system) and
P
i
(x, y, c) is the color component of the pixel at

(x, y) in frame i.
A cut is detected if the di!erence D(i, i#1) is

above a prespeci"ed threshold ¹. The main dis-
advantage of this method is that it is not able to
distinguish between a large change in a small area
and a small change in a large area. For example,
cuts are misdetected when a small part of the frame
undergoes a large, rapid change. Therefore,
methods based on simple pixel comparison are
sensitive to object and camera movements.

A possible improvement is to count the number
of pixels that change in value more than some
threshold and to compare the total against a sec-

ond threshold [25,45]:
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If the percentage of changed pixels D(i, i#1) is
greater than a threshold ¹

2
, a cut is detected.

Although some irrelevant frame di!erences are
"ltered out, these approaches are still sensitive to
object and camera movements. For example, if
camera pans, a large number of pixels can be
judged as changed, even though there is actually
a shift with a few pixels. It is possible to reduce this
e!ect to a certain extent by the application of
a smoothing "lter: before the comparison each
pixel is replaced by the mean value of its neighbors.

2.1.2. Block-based comparison
In contrast to template matching that is based on

global image characteristic (pixel by pixel di!er-
ences), block-based approaches use local character-
istic to increase the robustness to camera and
object movement. Each frame i is divided into
b blocks that are compared with their correspond-
ing blocks in i#1. Typically, the di!erence be-
tween i and i#1 is measured by
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b
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c
k
DP(i, i#1, k), (3)

where c
k
is a predetermined coe$cient for the block

k and DP(i, i#1, k) is a partial match value be-
tween the kth blocks in i and i#1 frames.

In [17] corresponding blocks are compared us-
ing a likelihood ratio
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where p
k,i

, p
k,i`1

are the mean intensity values for
the two corresponding blocks k in the consecutive
frames i and i#1, and p

k,i
, p

k,i`1
are their vari-

ances, respectively. Then, the number of blocks
for which the likelihood ratio is greater than
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Fig. 5. Net comparison algorithm: base windows B
ij
.

a threshold ¹
1

is counted,

DP(i, i#1, k)"G
1 if j

k
'¹

1
,

0 otherwise.
(5)

A cut is declared when the number of changed
blocks is large enough, i.e. D(i, i#1) is greater than
a given threshold ¹

2
and c

k
"1 for all k.

Compared to template matching, this method is
more tolerant to slow and small object motion from
frame to frame. On the other hand, it is slower due
to the complexity of the statistical formulas. Addi-
tional potential disadvantage is that no change will
be detected in the case of two corresponding blocks
that are di!erent but have the same density func-
tion. Such situations, however, are very unlikely.

Another block-based technique is proposed by
Shahraray [32]. The frame is divided into 12 non-
overlapping blocks. For each of them the best
match is found in the respective neighborhoods in
the previous image based on image intensity values.
A non-linear order statistics "lter is used to com-
bine the match values, i.e. the weight of a match
value in Eq. (3) will depend on its order in the
match value list. Thus, the e!ect of camera and
object movements is further suppressed. The
author claims that such similarity measure of two
images is more consistent with human judgement.
Both cuts and gradual transitions are detected.
Cuts are found using thresholds like in the other
approaches that are discussed while gradual
transitions are detected by identifying sustained
low-level increase in match values.

Xiong et al. [41] describe a method they call net
comparison, which attempts to detect cuts inspect-
ing only part of the image. It is shown that the error
will be low enough if less than half of so called base
windows (non-overlapping square blocks, Fig. 5)
are checked. Under an assumption about the lar-
gest movement between two images, the size of the

windows can be chosen large enough to be indi!er-
ent to a non-break change and small enough to
contain the spatial information as much as pos-
sible. Base windows are compared using the di!er-
ence between the mean values of their gray-level or
color values. If this di!erence is larger than a thre-
shold, the region is considered changed. When the
number of changed windows is greater than an-
other threshold, a cut is declared. The experiments
demonstrated that the approach is faster and more
accurate than pixel pair-wise, likelihood and local
histogram methods. In their subsequent paper [40],
the idea of video subsampling into space is further
extended to subsampling in both space and time.
The new Step-variable algorithm detects both
abrupt and gradual transition comparing frames
i and j, where j"i#myStep. If no signi"cant
change is found between them, the move is with half
step forward and the next comparison is between
i#myStep/2 and j#myStep/2. Otherwise, binary
search is used to locate the change. If i and j are
successive and their di!erence is bigger than a thre-
shold, cut is declared. Otherwise, edge di!erences
between the two frames are compared against an-
other threshold to check for gradual transition.
Obviously, the performance depends on the proper
setting of myStep: large steps are e$cient but in-
crease the number of false alarms, too small steps
may result in missing gradual transition. In addi-
tion, the approach is very sensitive to object and
camera motion.

2.1.3. Histogram comparison
A step further towards reducing sensitivity to

camera and object movements can be done by
comparing the histograms of successive images.
The idea behind histogram-based approaches is
that two frames with unchanging background and
unchanging (although moving) objects will have
little di!erence in their histograms. In addition,
histograms are invariant to image rotation and
change slowly under the variations of viewing angle
and scale [35]. As a disadvantage one can note that
two images with similar histograms may have com-
pletely di!erent content. However, the probability
for such events is low enough, moreover techniques
for dealing with this problem have already been
proposed in [28].
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A gray level (color) histogram of a frame i is an
n-dimensional vector H

i
( j), j"1,2, n, where n is

the number of gray levels (colors) and H( j) is the
number of pixels from the frame i with gray level
(color) j.

2.1.3.1. Global histogram comparison. The simplest
approach uses an adaptation of the metrics from
Eq. (1): instead of intensity values, gray level histo-
grams are compared [25,39,45]. A cut is declared if
the absolute sum of histogram di!erences between
two successive frames D(i, i#1) is greater than
a threshold ¹,

D(i, i#1)"
n
+
j/1

DH
i
( j)!H

i`1
( j)D , (6)

where H
i
( j) is the histogram value for the gray level

j in the frame i, j is the gray value and n is the total
number of gray levels.

Another simple and very e!ective approach is to
compare color histograms. Zhang et al. [45] apply
Eq. (6) where j, instead of gray levels, denotes a code
value derived from the three color intensities of
a pixel. In order to reduce the bin number (3 colors
]8 bits create histograms with 224 bins), only the
upper two bits of each color intensity are used to
compose the color code. The comparison of the
resulting 64 bins has been shown to give su$cient
accuracy.

To enhance the di!erence between two frames
across a cut, several authors [25] propose the use of
the s2 test to compare the (color) histograms H

i
( j)

and H
i`1

( j) of the two successive frames i and
i#1,

D(i, i#1)"
n
+
j/1
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i
( j)!H

i`1
( j)D2

H
i`1

( j)
. (7)

When the di!erence is larger than a given threshold
¹, a cut is declared. However, experimental results
reported in [45] show that s2 test not only enhan-
ces the di!erence between two frames across a cut
but also increases the di!erence due to camera and
object movements. Hence, the overall performance
is not necessarily better than the linear histogram
comparison represented in Eq. (6). In addition,
s2 statistics requires more computational time.

Gargi et al. [12] evaluate the performance of
three histogram based methods using six di!erent
color coordinate systems: RGB, HS<, >IQ,
¸HaHbH, ¸HuHvH and Munsell. The RGB histogram
of a frame is computed as three sets of 256 bins. The
other "ve histograms are represented as a 2-dimen-
sional distribution over the two non-intensity
based dimensions of the color spaces, namely:
H and S for the HS<, I and Q for the >IQ, aH and
bH for the ¸HaHbH, uH and vH for the ¸HuHvH and hue
and chroma components for the Munsell space.
The number of bins is 1600 (40]40) for the
¸HaHbH, ¸HuHvH and >IQ histograms and 1800 (60
hues]30 saturations/chromas) for the HS< and
Munsell space histograms. The di!erence functions
used to compare histograms of two consecutive
frames are de"ned as follows:
f bin-to-bin di!erences as in Eq. (6)
f histogram intersection:
D(i, i#1)"1!Intersection(H

i
, H

i`1
)

"1!
+n

j/1
min(H

i
( j)!H

i`1
( j))

+n
j/1

max(H
i
( j)!H

i`1
( j))

. (8)

Note that for two identical histograms the intersec-
tion is 1 and the di!erence 0 while for two frames
which do not share even a single pixel of the same
color (bin), the di!erence is 1.
f weighted bin di!erences

D(i, i#1)"
n
+
j/1

+
k|N(k)

=(k) ) (H
i
( j)!H

i
(k)), (9)

where N(k) is a neighborhood of bin j and=(k) is
the weight value assigned to that neighbor. A 3]3
or 3 neighborhoods are used in the case of 2-
dimensional and 1-dimensional histograms, respec-
tively.

It is found that in terms of overall classi"cation
accuracy >IQ, ¸HaHbH and Munsell color coordi-
nate spaces perform well, followed by HSV, ¸HuHvH
and RGB. In terms of computational cost of con-
version from RGB, the HS< and >IQ are the least
expensive, followed by ¸HaHbH, ¸HuHvH and the
Munsell space.

So far only histogram comparison techniques for
cut detection have been presented. They are based
on the fact that there is a big di!erence between the
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Fig. 6. Twin comparison: (a) consecutive and (b) accumulated
histogram di!erences.

frames across a cut that results in a high peak in the
histogram comparison and can be easily detected
using one threshold. However, such one-threshold
based approaches are not suitable to detect gradual
transitions. Although during a gradual transition
the frame to frame di!erences are usually higher
than those within a shot, they are much smaller
than the di!erences in the case of cut and cannot be
detected with the same threshold. On the other
hand, object and camera motions might entail big-
ger di!erences than the gradual transition. Hence,
lowering the threshold will increase the number
of false positives. Below we review a simple and
e!ective two-thresholds technique for gradual
transition recognition.

The twin-comparison method [45] takes into ac-
count the cumulative di!erences between frames of
the gradual transition. In the "rst pass a high thre-
shold ¹

)
is used to detect cuts as shown in Fig. 6(a).

In the second pass a lower threshold ¹
-

is em-
ployed to detect the potential starting frame F

4
of

a gradual transition. F
4

is then compared to sub-
sequent frames (Fig. 6(b)). This is called an accumu-
lated comparison as during a gradual transition
this di!erence value increases. The end frame F

%
of

the transition is detected when the di!erence be-
tween consecutive frames decreases to less than ¹

-
,

while the accumulated comparison has increased to
a value higher than ¹

)
. If the consecutive di!erence

falls below ¹
-

before the accumulated di!erence
exceeds ¹

)
, then the potential start frame F

4
is

dropped and the search continues for other gradual
transitions. It was found, however, that there are
some gradual transitions during which the con-
secutive di!erence falls below the lower threshold.
This problem can be easily solved by setting a toler-

ance value that allows a certain number of con-
secutive frames with low di!erence values before
rejecting the transition candidate. As it can be seen,
the twin-comparison detects both abrupt and grad-
ual transitions at the same time. Boreczky and
Rowe [6] compared several temporal video seg-
mentation techniques on real video sequences and
found that twin comparison is a simple algorithm
that works very well.

2.1.3.2. Local histogram comparison. As it was al-
ready discussed, histogram-based approaches are
simple and more robust to object and camera
movements but they ignore the spatial information
and, therefore, fail when two di!erent images have
similar histograms. On the other hand, block-based
comparison methods make use of spatial informa-
tion. They typically perform better than pair-wise
pixel comparison but are still sensitive to camera
and object motion and are also computationally
expensive. By integrating the two paradigms, false
alarms due to camera and object movement can be
reduced while enough spatial information is re-
tained to produce more accurate results.

The frame-to-frame di!erence of frame i and
frame i#1 is computed as

D(i, i#1)"
b
+
k/1

DP(i, i#1, k),
(10)

DP(i, i#1, k)"
n
+
j

DH
i
( j, k)!H

i`1
( j, k)D,

where H
i
( j, k) denotes the histogram value at gray

level j for the region (block) k and b is the total
number of the blocks.

For example, Nagasaka and Tanaka [25] com-
pare several statistics based on gray-level and color
pixel di!erences and histogram comparisons. The
best results were obtained by breaking the image
into 16 equal-sized regions, using s2 test on color
histograms for these regions and discarding the
largest di!erences to reduce the e!ects of noise,
object and camera movements.

Another approach based on local histogram
comparison is proposed by Swanberg et al. [36].
The partial di!erence DP(i, i#1, k) is measured by
comparing the color RGB histograms of the blocks
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using the following equation:

DP(i, i#1, k)" +
c|MR,B,GN

n
+
l/1

(Hc
i
(l)!Hc

i`1
(l))2

Hc
i
(l)!Hc

i`1
(l)

. (11)

Then, Eq. (3) is applied where c
k
is 1/b for all k. Lee

and Ip [22] introduce a selective HSV histogram
comparison algorithm. In order to reduce the
frame-to-frame di!erences caused by change in
intensity or shade, image blocks are compared in
HS< (hue, saturation, value) color space. It is the
use of hue that makes the algorithm insensitive to
such changes since hue is independent of saturation
and intensity. However, as hue is unstable when the
saturation or the value are very low, selective com-
parison is proposed. If a pixel contains rich color
information (i.e. a high < and a high S), it is classi-
"ed into a discrete color based on its hue (Hue),
otherwise on its intensity value (Gray). The selec-
tive histograms H)6%

i
(h, k), H'3!:

i
(g, k) and the

frame-to-frame di!erence for the block k with di-
mensionality X]> are formulated as follows:
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0 otherwise,
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1 if (S

i
(x, y, g))¹

s
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(x, y, g))¹l ),

0 otherwise,
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+
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i
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(h, k)D

#

M
+
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(g, k)!H'3!:
i`1

(g, k)D , (12)

where h and g are indexes for the hue and gray
levels, respectively; ¹

s
and ¹

v
are thresholds and

x, y are pixel coordinates.
To further improve the algorithm by increasing

the di!erences across a cut, local histogram com-
parison is performed. It is shown that the algorithm
outperforms both histogram (gray level global and

local) and pixel di!erences based approaches. How-
ever, none of the algorithms gives satisfactory
performance on very dark video images.

2.1.4. Clustering-based temporal video
segmentation

The approaches discussed so far rely on suitable
thresholding of similarities between successive
frames. However, the thresholds are typically high-
ly sensitive to the type of input video. This draw-
back is overcome in [13] by the application of
unsupervised clustering algorithm. More speci"-
cally, the temporal video segmentation is viewed as
a 2-class clustering problem (`scene changea and
`no scene changea) and the well-known K-means
algorithm [27] is used to cluster frame dissimilar-
ities. Then the frames from the cluster `scene
changea which are temporary adjacent are labeled
as belonging to a gradual transition and the other
frames from this cluster are considered as cuts. Two
similarity measures based on color histograms were
used: s2 statistics and the histogram di!erence
de"ned in Eq. (6), both in RGB and >;< color
spaces. The experiments show that the s2->;<
detects the larger number of correct transitions but
the histogram di!erence->;< is the best choice in
terms of overall performance (i.e. number of false
alarms and correct detections). As a limitation we
can note that the approach is not able to recognize
the type of the gradual transitions. The main ad-
vantage of the clustering-based segmentation is
that it is a generic techniques that not only elimin-
ates the need for threshold setting but also allows
multiple features to be used simultaneously to im-
prove the performance. For example, in their sub-
sequent work Ferman and Tekalp [10] incorporate
two features in the clustering method: histogram
di!erence and pair-wise pixel comparison. It was
found that when "ltered these features supplement
one another, which results in both high recall and
precision. A technique for clustering-based tem-
poral segmentation on-the-#y was introduced
as well.

2.1.5. Feature based temporal video segmentation
An interesting approach for temporal video seg-

mentation based on features is described by Zabih
et al. [44]. It involves analyzing intensity edges
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between consecutive frames. During a cut or a dis-
solve, new intensity edges appear far from the loca-
tions of the old edges. Similarly, old edges
disappear far from the location of new edges. Thus,
by counting the entering and exiting edge pixels,
cuts, fades and dissolves are detected and classi"ed.
To obtain better results in case of object and cam-
era movements, an algorithm for motion compen-
sation is also included. It "rst estimates the global
motion between frames that is then used to align
the frames before detecting entering and exiting
edge pixels. However, this technique is not able to
handle multiple rapidly moving objects. As the
authors have pointed out, another weakness of the
approach are the false positives due to the limita-
tions of the edge detection method. In particular,
rapid changes in the overall shot brightness, and
very dark or very light frames, may cause false
positives.

2.1.6. Model driven temporal video segmentation
The video segmentation techniques presented so

far are sometimes referred to as data driven,
bottom}up approaches [14]. They address the prob-
lem from data analysis point of view. It is also
possible to apply top}down algorithms that are
based on mathematical models of video data. Such
approaches allow a systematic analysis of the prob-
lem and the use of several domain-speci"c con-
straints that might improve the e$ciency.

Hampapur et al. [14] present a shot boundaries
identi"cation approach based on the mathematical
model of the video production process. This model
was used as a basis for the classi"cation of the video
edit types (cuts, fades, dissolves).

For example, fades and dissolves are chromatic
edits and can be modeled as

S(x, y, t)"S
1
(x, y, t)(1! t

l1
)#S

2
(x, y, t)(1! t

l2
) ,

(13)

where S
1
(x, y, t) and S

2
(x, y, t) are two shots that

are being edited, S(x, y, t) is the edited shot and
l
1
, l

2
are the number of frames for each shot during

the edit.
The taxonomy along with the models are then

used to identify features that correspond to the
di!erent classes of shot boundaries. Finally, feature

vectors are fed into a system for frames classi"ca-
tion and temporal video segmentation. The ap-
proach is sensitive to camera and object motion.

Another model-based technique, called di!eren-
tial model of motion picture, is proposed by Aig-
rain and Joly [1]. It is based on the probabilistic
distribution of di!erences in pixel values between
two successive frames and combines the following
factors: (1) a small amplitude additive zero-centered
Gaussian noise that models camera, "lm, digitizer
and other noises; (2) an intrashot change model for
pixel change probability distribution resulting from
object and camera motion, angle, focus and light
change; (3) a shot transition model for the di!erent
types of abrupt and gradual transitions. The histo-
gram of absolute values of pixel di!erences is com-
puted and the number of pixels that change in value
within a certain range determined by the models
is counted. Then shot transitions are detected by
examining the resulting integer sequences. Experi-
ments show 94}100% accuracy for cuts and 80%
for gradual transitions detection.

Yu et al. [43] present an approach for gradual
transitions detection based on a model of intensity
changes during fade out, fade in and dissolve. At
the "rst pass, cuts are detected using histogram
comparison. The gradual transitions are then de-
tected by examining the frames between the cuts
using the proposed model of their characteristics.
For example, it was found that the number of edge
pixels have a local minimum during a gradual
transition. However, as this feature exhibits the
same behavior in case of zoom and pan, additional
characteristics of the fades and dissolves need to be
used for their detection. During a fade, the begin-
ning and end image is a constant image. Hence the
number of edge pixels will be close to zero. Further-
more, the number of edge pixels gradually increases
going away from the minimum in either side. In
order to distinguish dissolves, the so called double
chromatic di!erence curve is examined. It is based
on the idea that the frames of a dissolve can be
recovered using the beginning and end frames. The
approach has low computational requirements
but works under the assumption of small object
movement.

Boreczky and Wilcox [7] use hidden Markov
models (HMM) for temporal video segmentation.
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Table 1
Six groups of approaches for temporal video segmentation in
compressed domain based on the information used

Group

Information used 1 2 3 4 5 6

DCT coe$cients @ @
DC terms @ @
MB coding mode @ @ @ @
MVs @ @ @
Bit-rate @

Separate states are used to model shot, cut, fade,
dissolve, pan and zoom. The arcs between states
model the allowable progressions of states. For
example, from the shot state it is possible to go to
any of the transition states, but from a transition
state it is only possible to return to a shot state.
Similarly, the pan and zoom states can only be
reached from the shot state, since they are subsets
of the shot. The arcs from a state to itself model the
length of time the video is in that particular state.
Three di!erent types of features (image, audio and
motion) are used: (1) a standard gray-level histo-
gram distance between two adjacent frames; (2) an
audio distance based on the acoustic di!erence in
intervals just before and just after the frames and
(3) an estimate of object motion between the two
frames. The parameters of the HMM, namely the
transition probabilities associated with the arcs and
the probability distributions of the features asso-
ciated with the states, are learned by training with
the Baum}Welch algorithm. Training data consists
of features vectors computed for a collection of
video and labeled as one of the following classes:
shot, cut, fade, dissolve, pan and zoom. Once the
parameters are trained, segmenting the video is
performed using the Viterbi algorithm, a standard
technique for recognition in HMM.

Thus, thresholds are not required as the para-
meters are learned automatically. Another advant-
age of the approach is that HMM framework
allows any number of features to be included in
a feature vector. The algorithm was tested on di!er-
ent video databases and has been shown to im-
prove the accuracy of the temporal video
segmentation in comparison to the standard thre-
shold-based approaches.

2.2. Temporal video segmentation in MPEG
compressed domain

The previous approaches for video segmentation
process uncompressed video. As nowadays video is
increasingly stored and moved in compressed for-
mat (e.g. MPEG), it is highly desirable to develop
methods that can operate directly on the encoded
stream. Working in the compressed domain o!ers
the following advantages. First, by not having
to perform decoding/re-encoding, computational

complexity is reduced and savings on decom-
pression time and decompression storage are ob-
tained. Second, operations are faster due to the
lower data rate of compressed video. Last but not
least, the encoded video stream already contains
a rich set of pre-computed features, such as motion
vectors (MVs) and block averages, that are suitable
for temporal video segmentation.

Several algorithms for temporal video segmenta-
tion in the compressed domain have been reported.
According to the type of information used (see
Table 1), they can be divided into six non-overlap-
ping groups } segmentation based on (1) DCT
coe$cients; (2) DC terms; (3) DC terms, macro-
block (MB) coding mode and MVs; (4) DCT coe$-
cients, MB coding mode and MVs; (5) MB coding
mode and MVs and (6) MB coding mode and
bit-rate information. Before reviewing each of
them, we present a brief description of the funda-
mentals of MPEG compression standard.

2.2.1. MPEG stream
The Moving Picture Expert Group (MPEG)

standard is the most widely accepted international
standard for digital video compression. It uses two
basic techniques: MB-based motion compensation
to reduce temporal redundancy and transform
domain block-based compression to capture spa-
tial redundancy. An MPEG stream consists of
three types of pictures } I, P and B } which are
combined in a repetitive pattern called group of
picture (GOP). Fig. 7 shows a typical GOP and the
predictive relationships between the di!erent types
of frames.
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Fig. 8. Intra coding.

Fig. 7. Typical GOP and predictive relationships between I,
P and B pictures.

Intra (I) frames provide random access points
into the compressed data and are coded using only
information present in the picture itself by Discrete
Cosine Transform (DCT), Quantization (Q), Run
Length Encoding (RLE), and Hu!man entropy
coding, see Fig. 8. The "rst DCT coe$cient is called
DC term and is 8 times the average intensity of the
respective block.

P (predicted) frames are coded with forward
motion compensation using the nearest previous
reference (I or P) pictures. Bi-directional (B) pic-
tures are also motion compensated, this time with
respect to both past and future reference frames. In
the case of motion compensation, for each
16]16 MB of the current frame the encoder
"nds the best matching block in the respective
reference frame(s), calculates and DCT-encodes
the residual error and also transmits one or two
MVs, see Figs. 9 and 10. During the encoding
process a test is made on each MB of P and B frame
to see if it is more expensive to use motion compen-
sation or intra coding. The latter occurs when the

current frame does not have much in common with
the reference frame(s). As a result each MB of
a P frame could be coded either intra or forward
while for each MB of a B frame there are four
possibilities: intra, forward, backward or interpo-
lated. For more information about MPEG see
[16].

2.2.2. Temporal video segmentation based
on DCT coezcients

The pioneering work on video parsing directly in
compressed domain is conducted by Arman et al.
[5] who proposed a technique for cut detection
based on the DCT coe$cients of I frames. For each
frame a subset of the DCT coe$cients of a subset of
the blocks is selected in order to construct a vector
<
i
"Mc

1
, c

2
, c

3
, 2N. <

i
represents the frame i from

the video sequence in the DCT space. The nor-
malized inner product is then used to "nd the
di!erence between frames i and i#u,

D(i, i#u)"
<

i
)<

i`r
D<

i
DD<

i`r D
. (14)

A cut is detected if 1!DD(i, i#u)D'¹
1
, where

¹
1

is a threshold. In order to reduce false positives
due to camera and object motion, video cuts are
examined more closely using a second threshold
¹

2
(0(¹

1
(¹

2
(1). If ¹

1
(1!DD(i, i#u)D(

¹
2
, the two frames are decompressed and exam-

ined by comparing their color histograms.
Zhang et al. [46] apply a pair-wise comparison

technique to the DCT coe$cients of correspond-
ing blocks of video frames. The di!erence metric
is similar to pixel comparisons [25,45], see
Section 2.1.1. More speci"cally, the di!erence of
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Fig. 9. Forward prediction for P frames.

Fig. 10. Interpolated prediction for B frames.

block l from two frames which are u frames apart is
given by

DP(i, i#u, l)

"

1

64

64
+
k/1

Dc
l,k

(i)!c
l,k

(i#u)D
max[c

l,k
(i), c

l,k
(i#u)]

'¹
1
, (15)

where c
l,k

(i) is the DCT coe$cient of block l in the
frame i, k"1, 2, 64 and l depends on the size of
the frame.

If the di!erence exceeds a given threshold ¹
1
, the

block l is considered to be changed. If the number
of changed blocks is larger than another threshold
¹

2
, a transition between the two frames is declared.

The pair-wise comparison requires far less compu-
tation than the di!erence metric used by Arman.
The processing time can be further reduced by
applying Arman's method of using only a subset of
coe$cients and blocks.

It should be noted that both of the above algo-
rithms may be applied only to I frames of the
MPEG compressed video, as they are the frames
fully encoded with DCT coe$cients. As a result,
the processing time is signi"cantly reduced but the
temporal resolution is low. In addition, due to the

loss of the resolution between the I frames, false
positives are introduced and, hence, the classi"ca-
tion accuracy decreases. Also, neither of the two
algorithms can handle gradual transitions or false
positives introduced by camera operations and ob-
ject motion.

2.2.3. Temporal video segmentation based
on DC terms

For temporal video segmentation in MPEG
compressed domain the most natural solution is to
use the DC terms as they are directly related to the
pixel domain, possibly reconstructing them for
P and B frames, when only DC terms of the residual
errors are available. Then, analogous to the uncom-
pressed domain methods, the changes between suc-
cessive frames are evaluated by di!erence metrics
and the decision is taken by complex thresholding.

For example, Yeo and Liu [42] propose
a method where so called DC-images are created
and compared. DC-images are spatially reduced
versions of the original images: the (i, j) pixel of the
DC-image is the average value of the (i, j) block of
the image (Fig. 11).

As each DC term is a scaled version of the block's
average value, DC-images can be constructed from
DC terms. The DC terms of I frames are directly
available in the MPEG stream while those of B and
P frames are estimated using the MVs and DCT
coe$cients of previous I frames. It should be noted
that the reconstruction techniques is computation-
ally very expensive } in order to compute the DC
term of a reference frame (DC

3%&
) for each block,

eight 8]8 matrix multiplications and 4 matrix
summations are required. Then, the pixel di!er-
ences of DC-images are compared and a sliding
window is used to set the thresholds because the
shot transition is a local activity.

In order to "nd a suitable similarity measure, the
authors compare metrics based on pixel di!erences
and color histograms. They con"rm that when full
images are compared, the "rst group of metrics is
more sensitive to camera and object movements
but computationally less expensive than the second
one. However, when DC-images are compared,
pixel-di!erences-based metrics give satisfactory re-
sults as DC-images are already smoothed versions
of the corresponding full images. Hence, as in the
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Fig. 11. A full image (352]288 pixels) and its DC image (44]36
pixels).

Fig. 12. g
n
and D

gn
(l, l#k) in the dissolve detection algorithm of

Yeo and Liu.

pixel domain approaches (e.g. Eq. (1)), abrupt
transitions are detected using a similarity measure
based on the sum of absolute pixel di!erences of
two consecutive frames (DC-images in this case):

D(l, l#1)"+
i, j

(DP
l
(i, j)!P

l`1
(i, j)D), (16)

where l and l#1 are two consecutive DC-images
and P

l
(i, j) is the intensity value of the pixel in lth

DC-image at the coordinates (i, j).
In contrast to the previous methods for cut de-

tection that apply global thresholds on the di!er-
ence metrics, Yeo and Liu propose to use local
thresholds as scene changes are local activities in
the temporal domain. In this way false positives
due to signi"cant camera and object motions are
reduced. More speci"cally, a sliding window is used
to examine m successive frame di!erences. A cut
between frames l and l#1 is declared if the follow-
ing two conditions are satis"ed: (1) D(l, l#1) is
the maximum within a symmetric sliding window
of size 2m!1 and (2) D(l, l#1) is n times the
second largest maximum in the window. The sec-
ond condition guards against false positives due to
fast panning or zooming and camera #ashes that
typically manifest themselves as sequences of large
di!erences or two consecutive peaks, respectively.
The size of the sliding window m is set to be smaller
than the minimum duration between two
transitions, while the values of n typically range
from 2 to 3.

Gradual transitions are detected by comparing
each frame with the following kth frame where k is
larger than the number of frames in the gradual
transition. A gradual transition g

n
in the form of

linear transition from c
1

to c
2

in the time interval
(a

1
, a

2
) is modeled as

g
n
"G

c
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,

c
2
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2
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2
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2
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2
, n*a

2
.

(17)

Then if k'a
2
!a

1
, the di!erence between frames

l and l#k from the transition g
n

will be

D
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2
,
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2
.

(18)

As D
gn

(l, l#k) corresponds to a symmetric plateau
with sloping sides (see Fig. 12), the goal of the
gradual transition detection algorithm is to identify
such plateau patterns. The algorithm of Yeo and
Liu needs 11 parameters to be speci"ed.

In [33] shots are detected by color histogram
comparison of DC term images of consecutive
frames. Such images are formed by the DC terms of
the DCT coe$cients for a frame. DC terms of
I pictures are taken directly from the MPEG
stream, while those for P and B frames are recon-
structed by the following fast algorithm. First, the
DC term of the reference image (DC

3%&
) is approxi-

mated using the weighted average of the DC terms
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Fig. 13. DC term estimation in the method of Shen and Delp.
Fig. 14. Histogram di!erence diagram ((*) cut; (- - - -) dissolve).

of the blocks pointed by the MVs, Fig. 13:

DC
3%&

"

1

64
+
a|E

Na DCa , (19)

where DCa is the DC term of block a, E is the
collection of all blocks that are overlapped by the
reference block and Na is the number of pixels in
block a that is overlapped by the reference block.

Then, the approximated DC terms of the pre-
dicted pictures are added to the encoded DC terms
of the di!erence images in order to form the DC
terms of P and B pictures,

DC"DC
$*&&

#DC
3%&

(only forward or only backward prediction),

DC"DC
$*&&

#1
2
(DC

3%&1
#DC

3%&2
)

(interpolated prediction). (20)

In this way the computations are reduced to at
most 4 scalar multiplications and 3 scalar summa-
tions for each block to determine DC

3%&
.

The histogram di!erence diagram is generated
using the measure from Eq. (6) comparing DC term
images. As it can be seen from Fig. 14, a break is
represented by a single sharp pulse and a dissolve
entails a number of consecutive medium-heighted
pulses. Cuts are detected using a static threshold.
For the recognition of gradual transitions, the his-
togram di!erence of the current frame is compared
with the average of the histogram di!erences of the
previous frames within a window. If this di!erence
is n times larger than the average value, a possible
start of a gradual transition is marked. The same
value of n is used as a soft threshold for the follow-
ing frames. End of the transition is declared when
the histogram di!erence is lower than the thre-
shold. Since during a gradual transition not all of

the histogram di!erences may be higher than the
soft threshold, similarly to the twin comparison,
several frames are allowed to have lower di!erence
as long as the majority of the frames in the
transition have higher magnitude than the soft
threshold.

As only the DC terms are used, the computation
of the histograms is 64 times faster than that using
the original pixel values. The approach is not able
to distinguish rapid object movement from gradual
transition. As a partial solution, a median "lter
(of size 3) is applied to smooth the histogram di!er-
ences when detecting gradual transitions. There are
7 parameters that need to be speci"ed.

An interesting extension of the previous ap-
proach is proposed by Taskiran and Delp [37].
After the DC term image sequence and the
luminance histogram for each image are obtained,
a two-dimensional feature vector is extracted from
each pair of images. The "rst component is the
dissimilarity measure based on the histogram inter-
section of the consecutive DC term images,

x
1i
"1!Intersection(H

i
, H

i`1
)

"

+n
j/1

min(H
i
( j), H

i`1
( j))

+n
j/1

H
i`1

( j)
, (21)

where H
i
( j) is the luminance histogram value for

the bin j in frame i and n is the number of bins used.
Note that the de"nition of the histogram inter-
section is slightly di!erent from that used in [12,
Section 2.1.3.1].

The second feature is the absolute value of the
di!erence of standard deviations p for the
luminance component of the DC term images,
i.e. x

i2
"Dp

i
!p

i`1
D. The so called generalized se-

quence trace d for a video stream composed of
n frames is de"ned as d

i
"DDx

i
!x

i`1
DD, i"1,2, n.
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Fig. 15. Video shot detection scheme of Patel and Sethi.

These features are chosen not only because they
are easy to extract. Combining histogram-based
and pixel-based parameters makes sense as they
complement some of their disadvantages. As it was
discussed already, pixel-based techniques give false
alarms in case of camera and object movements.
On the other hand, histogram-based techniques are
less sensitive to these e!ects but may miss shot
transition if the luminance distribution of the
frames do not change signi"cantly. It is shown that
there are di!erent types of peaks in the generalized
trace plot: wide, narrow and middle corresponding
to a fade out followed by a fade in, cuts and dis-
solves, respectively. Then, in contrast to the other
approaches that apply global or local thresholds to
detect the shot boundaries, Taskiran and Delp pose
the problem as a one-dimensional edge detection
and apply a method based on mathematical
morphology.

Patel and Sethi [29,30] use only the DC compo-
nents of I frames. In [30] they compute the inten-
sity histogram for the DC term images and
compare them using three di!erent statistics:
Yakimovski likelihood ratio, s2 test and Kol-
mogorov}Smirnov statistics. The experiments
show that s2 test gives satisfactory results and out-
performs the other techniques. In their consequent
paper [29], Patel and Sethi compare local and
global histograms of consecutive DC term images
using s2 test, Fig. 15.

The local row and column histograms X
i

and
>
j

are de"ned as follows:

X
i
"

1

M

M
+
j/1

b
0,0

(i, j), >
j
"

1

N

N
+
j/1

b
0,0

(i, j) , (22)

where b
0,0

(i, j) is the DC term of block
(i, j), i"1,2,N, j"1,2, M. The outputs of the

s2 test are combined using majority and average
comparison in order to detect abrupt and gradual
transitions.

As only I frames are used, the DC recovering is
eliminated. However, the temporal resolution is
low as in a typical GOP every 12th frame is an
I frame and, hence, the exact shot boundaries can-
not be labeled.

2.2.4. Temporal video segmentation based
on DC terms and MB coding mode

Meng et al. [24] propose a shot boundaries de-
tection algorithm based on the DC terms and the
type of MB coding, Fig. 16. DC components only
for P frames are reconstructed. Gradual transitions
are detected by calculating the variance p2 of the
DC term sequence for I and P frames and looking
for parabolic shapes in this curve. This is based on
the fact that if gradual transitions are linear mix-
ture of two video sequences f

1
and f

2
with intensity

variances p
1

and p
2
, respectively, and are char-

acterized by f (t)"f
1
(t)[1!a(t)]#f

2
(t)a(t) where

a(t) is a linear parameter, then the shape of the vari-
ance curve is parabolic: p2(t)"(p2

1
#p2

2
)a(t)!

2p2
1
a(t)#p2

1
. Cuts are detected by the computation

of the following three ratios:

R
p
"

intra

forw
, R

b
"

back

forw
, R

f
"

forw

back
, (23)

where intra, forw and back are the number of MBs
in the current frame that are intra, forward and
backward coded, respectively.

If there is a cut on a P frame, the encoder cannot
use many MBs from the previous anchor frame for
motion compensation and as a result many MBs
will be coded intra. Hence, a suspected cut on
P frame is declared if R

p
peaks. On the other hand,
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Fig. 16. Shot detection algorithm of Meng et al.

if there is a cut on a B frame, the encoding will be
mainly backward. Therefore, a suspected cut on
B frame is declared if there is a peak in R

b
. An

I frame is a suspected cut frame if two conditions
are satis"ed: (1) there is a peak in D*p2D for this
frame and (2) the B frames before I have peaks in
R

f
. The "rst condition is based on the observation

that the intensity variance of the frames during
a shot is stable, while the second condition prevents
false positives due to motion.

This technique is relatively simple, requires min-
imum encoding and produces good accuracy. The
total number of parameters needed to implement
this algorithm is 7.

2.2.5. Temporal video segmentation based
on DCT coezcients, MB coding mode and MVs

A very interesting two-pass approach is taken by
Zhang et al. [47]. They "rst locate the regions of
potential transitions, camera operations and object
motion, applying the pair-wise DCT coe$cients
comparison of I frames (Eq. (15)) as in their pre-
vious approach (see Section 2.2.2). The goal of the
second pass is to re"ne and con"rm the break
points detected by the "rst pass. By checking the
number of MVs M for the selected areas, the exact
cut locations are detected. If M denotes the number
of MVs in P frames and the smaller of the numbers
of forward and backward nonzero MVs in
B frames, then M(¹ (where ¹ is a threshold close
to zero) is an e!ective indicator of a cut before or
after the B and P frame. Gradual transitions are
found by an adaptation of the twin comparison
algorithm utilizing the DCT di!erences of I frames.
By MV analysis (see Section 3.1 for more details),

though using thresholds, false positives due to pan
and zoom are detected and discriminated from
gradual transitions.

Thus, the algorithm only uses information dir-
ectly available in the MPEG stream. It o!ers high
processing speed due to the multipass strategy, good
accuracy and also detects false positives due to pan
and zoom. However, the metric for cut detection
yields false positives in the case of static frames. Also,
the problem of how to distinguish object move-
ments from gradual transitions is not addressed.

2.2.6. Temporal video segmentation based
on MB coding mode and MVs

In [21] cuts, fades and dissolves are detected only
using MVs from P and B frames and information
about MB coding mode. The system follows a two-
pass scheme and has a hybrid rule-based/neural
structure. During the rough scan peaks in the num-
ber of intra coded MBs in P frames are detected.
They can be sharp (Fig. 17) or gradual with speci"c
shape (Fig. 18) and are good indicators of abrupt
and gradual transitions, respectively.

The solution is then re"ned by a precise scan
over the frames of the respective neighborhoods.
The `simplera boundaries (cuts and black fade
edges) are recognized by the rule-based module,
while the decisions for the `complexa ones (dis-
solves and non-black fade edges) are taken by the
neural part. The precise scan also reveals cuts that
remain hidden for the rough scan, e.g. B

24
, I

49
, B

71
and B

96
in Fig. 17. The rules for the exact cut

location are based on the number of backward and
forward MBs while those for the fades black edges
detection use the number of interpolated and
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Fig. 17. Cuts: (a) video structure, (b) number of intra-coded
MBs for P frames.

Fig. 18. Fade out, fade in, dissolve: (a) video structure, (b)
number of intra-coded MBs for P frames.

backward coded MBs. There is only one threshold
in the rules that is easy to set and not sensitive to
the type of video. The neural network module
learns from pre-classi"ed examples in the form of
MV patterns corresponding to the following
6 classes: stationary, pan, zoom, object motion,
tracking and dissolve. It is used to distinguish dis-
solves from object and camera movements, "nd the
exact location of the `complexa boundaries of the
gradual transition and further divide shots into
sub-shots. For more details about the neural net-
work see Section 3.3.

The approach is simple, fast, robust to camera
operations and very accurate when detecting the
exact locations of cuts, fades and simple dissolves.
However, sometimes dissolves between busy se-
quences are recognized as object movement or their
boundaries are not exactly determined.

2.2.7. Temporal video segmentation based on
MB coding mode and bit-rate information

Although limited only to cut detection, a simple
and e!ective approach is proposed in [9]. It only

uses the bit-rate information at MB level and the
number of various motion predicted MBs. A large
change in bit-rate between two consecutive I or
P frames indicates a cut between them. Similarly to
[24], the number of backward predicted MBs is
used for detecting cuts on B frames. Here, the ratio
is calculated as R

b
"back/mc, where back and mc

are the number of backward and all motion com-
pensated MBs in a B frame, respectively. The algo-
rithm is able to locate the exact cut locations. It
operates hierarchically by "rst locating a suspected
cut between two I frames, then between the
P frames of the GOP and "nally (if necessary) by
checking the B frames.

2.2.8. Comparison of algorithms for temporal
video segmentation in compressed domain

In [11] the approaches of Arman et al. [5], Patel
and Sethi [29], Meng et al. [24], Yeo and Liu [42]
and Shen and Delp [33] are compared along sev-
eral parameters: classi"cation performance (recall
and precision), full data use, ease of implementa-
tion, source e!ects. Ten MPEG video sequences
containing more than 30 000 frames connected
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Fig. 19. MV patterns resulting from various camera operations.

with 172 cuts and 38 gradual transitions are used as
an evaluation database. It is found that the algo-
rithm of Yeo and Liu and those of Shen and Delp
perform best when detecting cuts. Although none of
the approaches recognizes gradual transitions par-
ticularly well, the best performance is achieved by
the last one. As the authors point out, the reason
for the poor gradual transition detection is that the
algorithms expect some sort of ideal curve (a pla-
teau or a parabola) but the actual frame di!erences
are noisy and either do not follow this ideal pattern
or do not do this smoothly for the entire transition.
Another interesting conclusion is that not process-
ing of all frame types (e.g., like in the "rst two
methods) does decrease performance signi"cantly.
The algorithm of Yeo and Liu is found to be easiest
for implementation as it speci"es the parameter
values and even some performance analysis is al-
ready carried out by the authors. The dependence
of the two best performing algorithms on bit-rate
variations is investigated and shown that they are
robust to bit-rate changes except at very low rates.
Finally, the dependence of the algorithm of Yeo
and Liu on two di!erent software encoder imple-
mentations is studied and signi"cant performance
di!erences are reported.

3. Camera operation recognition

As stated previously, at the stage of temporal
video segmentation gradual transitions have to be
distinguished from false positives due to camera
motion. In the context of content-based retrieval
systems, camera operation recognition is also im-
portant for key frame selection, index extraction,
construction of salient video stills and search nar-

rowing. Historically, motion estimation were exten-
sively studied in the "eld of computer vision and
image coding and used for tracking of moving
objects, recovering of object movement, and
motion compensation coding. Below we review ap-
proaches for camera operation recognition related
to shot partitioning and characterization.

3.1. Analysis of MVs

Camera movements exhibit speci"c patterns in
the "eld of MVs, as shown in Fig. 19. Therefore,
many approaches for camera operation recognition
are based on the analysis of MV "elds.

Zhang et al. [46] apply rules to detect pan/tilt
and zoom in/zoom out. During a pan most of the
MVs will be parallel to a modal vector that corres-
ponds to the movement of the camera. This is
expressed by the following inequality:

N
+
b/1

Dh
b
!h

m
D)¹, (24)

where h
b

is the direction of the MV for block b, h
m

is the direction of the modal vector, N is the total
number of blocks into which the frame is par-
titioned and ¹ is a threshold near zero.

In the case of zooming, the "eld of MVs has focus
of expansion (zoom in) or focus of contraction
(zoom out). Zooming is determined on the basis of
`peripherial visiona, i.e. by comparing the vertical
components v

k
of the MVs for the top and bottom

rows of a frame, since during a zoom they have
opposite signs. In addition, the horizontal compo-
nents u

k
of the MVs for the left-most and right-

most columns are analyzed in the same way. Math-
ematically these two conditions can be expressed in
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Table 2
MV patterns characterization

Camera operation MV origin MV magnitude

Still No Zero
Panning In"nity Constant
Tracking In"nity Changeable
Tilting In"nity Constant
Booming In"nity Changeable
Zooming Image center Constant
Dollying Image center Changeable

Fig. 20. Decision tree.

the following way:

Dv501
k

!v"0550.
k

D*max(Dv501
k

D, Dv"0550.
k

D),
(25)

Du-%&5
k

!u3*')5
k

D*max(Du-%&5
k

D, Du3*')5
k

D).

When both conditions are satis"ed, a zoom is
declared.

3.2. Hough transform

Akutsu et al. [3] characterize the MV patterns
corresponding to the di!erent types of camera
operations by two parameters: (1) the magnitude of
MVs and (2) the divergence/convergence point, see
Table 2.

The algorithm has three stages. During the "rst
one, a block matching algorithm is applied to deter-
mine the MVs between successive frames. Then, the
spatial and temporal characteristics of MVs are de-
termined. MVs are mapped to a polar coordinate
space by the Hough transform. A Hough transform
of a line is a point. A group of lines with point of
convergence/divergence (x

0
, y

0
) is represented by

a curve o"x
0

sin u#y
0

cos u in the Hough space.
The least-squares method is used to "t the trans-
formed MVs to the curve represented by the above
equation. There are speci"c curves that correspond
to the di!erent camera operations, e.g. zoom is char-
acterized by a sinusoidal pattern, pan by a straight
line. During the third stage these patterns are recog-
nized and the respective camera operations are iden-
ti"ed. The approach is e!ective but also noise
sensitive and with high computational complexity.

3.3. Supervised learning by examples

An alternative approach for detecting camera
operations is proposed by Patel and Sethi [29].
They apply induction of decision trees (DTs) [31]
to distinguish among the MV patterns of the fol-
lowing six classes: stationary, object motion, pan,
zoom, track and ambiguous. DTs are simple, popu-
lar and highly developed technique for supervised
learning. In each internal node a test of a single
feature leads to the path down the tree towards
a leaf containing a class label, see Fig. 20. To build
a decision tree, a recursive splitting procedure is
applied to the set of training examples so that the
classi"cation error is reduced. To classify an
example that has not been seen during the learning
phase, the system starts at the root of the tree and
propagates the example down the leaves.

After the extraction of the MVs from the MPEG
stream, Patel and Sethi generate a 10-dimensional
feature vector for each P frame. Its "rst component
is the fraction of zero MVs and the remaining
components are obtained by averaging the column
projection of MV directions. In order to develop
a decision tree classi"er, the MV patterns of 1320
frames have been manually labeled. The results
have shown high classi"cation accuracy at a low
computational price. We note that as only MVs of
P frames are used, the classi"cation resolution is
low. In addition, there are problems with the calcu-
lation of the MV direction due to the discontinuity
at 0/3603.

The above limitations are addressed in [21]
where a neural supervised algorithm is applied.
Given a set of pre-classi"ed feature vectors (train-
ing examples), Learning Vector Quantization
(LVQ) [19] creates a few prototypes for each
class, adjusts their positions by learning and then
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Fig. 21. MV patterns corresponding to di!erent classes.

classi"es the unseen examples by means of the
nearest-neighbor principle. While LVQ can form
arbitrary borders, DTs delineate the concept by
a set of axis-parallel hyperplanes which constrains
their accuracy in realistic domains. In comparison
to the approach of Patel and Sethi, one more class
(dissolve) is added (Fig. 21) and the MVs from
both P and B frames are used to generate a
22-dimensional feature vector for each frame. The
"rst component is calculated using the number of
zero MVs in forward, backward and interpolated
areas. Then, the forward MV pattern is sub-divided
in 7 vertical strips for which the following 3 para-
meters are computed: the average of the MV direc-
tion, the standard deviation of the MV direction
and the average of MV modulus. A technique that
deals with the discontinuity of angles at 0/3603 is
proposed for the calculation of the MV direction.
Although high classi"cation accuracy is reported, it
was found that the most di$cult case is to distin-
guish dissolve from object motion. In [20] MV
patterns are classi"ed by an integration between
DTs and LVQ. More speci"cally, DTs are viewed
as a feature selection mechanism and only those
parameters that appear in the tree are considered as

informative and used as inputs in LVQ. The result
is faster learning at the cost of a slightly worse
classi"cation accuracy.

3.4. Spatiotemporal analysis

Another way to detect camera operations is
to examine the so called spatiotemporal image
sequence. The latter is constructed by arranging
each frame close to the other and forming a paral-
lelepiped where the "rst two dimensions are deter-
mined by the frame size and the third one is the
time. Camera operations are recognized by texture
analysis of the di!erent faces.

In [2] video X-ray images are created from the
spatiotemporal image sequence, as shown in Fig. 22.
Sliced x}t and y}t images are "rst extracted from the
spatiotemporal sequence and are then subject to an
edge detection. The process is repeated for all x and
y values, the slices are summed in the vertical and
horizontal directions to produce gray-scale x}t and
y}t video X-ray images. There are typical X-ray
images corresponding to the following camera op-
erations: still, pan, tilt and zoom. For example, when
the camera is still, the video X-ray show lines parallel
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Fig. 22. Creating video X-ray image.

Fig. 23. Producing 2DST image using 25 horizontal and vertical
segments.

to the time line for the background and unmoving
objects. When the camera pans, the lines become
slanted; in the case of zooming, they are spread.

We should note that performing edge detection
on all frames in the video sequence is time consum-
ing and computationally expensive.

In [23] the texture of 2-dimensional spatiotem-
poral (2DST) images is analyzed and the shots are
divided into sub-shots described in terms of still
scene, zoom and pan. The 2DST images are con-
structed by stacking up the corresponding seg-
ments of the images (Fig. 23). The directivity of the
textures are calculated by computing the power
spectrum by applying the 2-dimensional discrete
Fourier transform.

4. Conclusions

Temporal video segmentation is the "rst step
towards automatic annotation of digital video for
browsing and retrieval. It is an active area of re-
search gaining attention from several research com-
munities including image processing, computer
vision, pattern recognition and arti"cial intelli-
gence.

In this paper we have classi"ed and reviewed
existing approaches for temporal video segmenta-
tion and camera operations recognition discussing
their relative advantages and disadvantages. More
than eight years of video segmentation research
have resulted in a great variety of approaches.
Early work focused on cut detection, while more
recent techniques deal with gradual transition de-
tection. The majority of algorithms process uncom-
pressed video. They can be broadly classi"ed into
"ve categories, Fig. 24(a). Since the video is likely to
be stored in compressed format, several algorithms
which operate directly on the compressed video
stream were reported. Based on the type of
information used they can be divided into six
groups, Fig. 24(b). Their limitations, that highlight
the directions for further development, can be sum-
marized as follows. Most of the algorithms (1)
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Fig. 24. Taxonomy of techniques for temporal video segmentation that process (a) uncompressed and (b) compressed video ( ) detect
cut, ( ) detect gradual transitions.

Fig. 25. Taxonomy of techniques for camera operation recognition.

require reconstruction of DC terms of P or P&B
frames, or sacri"ce temporal resolution and classi-
"cation accuracy; (2) process unrealistically short
gradual transitions and are unable to recognize the
di!erent types of gradual transitions; (3) involve
many adjustable thresholds; (4) do not handle false
positives due to camera operations. None of them is
able to distinguish gradual transitions from object
movement su$ciently well. Some of the ways to
achieve further improvement include the use of
additional information (e.g. audio features and text
captions), integration of di!erent temporal video
segmentation techniques and development of

methods that can learn from experience how to
adjust their parameters. Camera operation recogni-
tion is an important issue related to the video
segmentation. Fig. 25 presents the taxonomy of
camera operation recognition techniques.

This research also con"rms the need for bench-
mark video sequences and uni"ed evaluation cri-
teria that will allow consistent comparison and
precise evaluation of the various techniques. The
benchmark sequences should contain enough rep-
resentative data for the possible types of camera
operations and shot transitions, including complex
gradual transition (i.e. between sequences involving

498 I. Koprinska, S. Carrato / Signal Processing: Image Communication 16 (2001) 477}500



motion). The evaluation should take into consid-
eration the type of application that indeed may
require di!erent trade-o! between recall and pre-
cision. In case of gradual transition detection, an
important evaluation criteria is the algorithm's
ability to determine exactly between which frames
the transition occurs and to classify the type of the
transition (dissolve, fade, etc.). Other essential
issues are the sensitivity to the encoder's type and
the ease of implementation. Probably the best way
for comparison and testing of the di!erent tem-
poral video segmentation techniques is to build
a repository that contains Web-executable versions
of the algorithms as suggested in [11]. It could be
done by either providing an Web interface to the
algorithms or by implementing them in a plat-
form-independent language (e.g. Java).
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