
1

Paper Code : MM-2
Presenter: Yongbin Ma
Date: 10/23/2003

Multimedia Meets Computer Graphics in SMIL2.0:

A Time Model for the Web
Author: Patrick Schmitz

Objective

This paper present the model of SMIL 2.0.
SMIL, (pronounced "smile“, Synchronized Multimedia

Integration Language) has the following two design goals:
• Define an XML-based language that allows authors to write interactive

multimedia presentations. Using SMIL 2.0, an author can describe the
temporal behavior of a multimedia presentation, associate hyperlinks with
media objects and describe the layout of the presentation on a screen.

• Allow reusing of SMIL 2.0 syntax and semantics in other XML-based
languages, in particular those who need to represent timing and
synchronization. For example, SMIL 2.0 components are used for integrating
timing into XHTML and into SVG

Introduction

Time Model: timing and synchronization
1. Video-centric model (Pure Static Scheduling)
2. Graphics/animation-centric model (Pure Event-based)

Video-centric model

Focus on scheduling the delivery and presentation of
continuous (time based) media.

Advantage:
1. A linear timeline describes the presentation.
2. It is simple to implement and has little runtime

overhead.
3. The presentation model is generally either sampled over

time, or pushes out frames at some fixed rate.

Video-centric model

Disadvantage:
1. Do not do a good job of managing hardware sync issues

(like audio clocks) and unreliable delivery of media (as
on the internet).

2. This model cannot generally handle media of unknown
duration.

3. This model generally has limited or no support for
interactive content.

Examples: early CD-ROM authoring tools, and many video
and audio editing runtimes.

Graphics/animation-centric model
models time as an abstract notion used for purely rendered

animations that have no intrinsic rate or duration
Advantage and Disadvantage:

• A graph of event bindings describes the presentation.
• There is broad support for dynamic, interactive content,

but a lack of scheduling facilities.
• The presentation model is often just a collection of

independent timelines, with little or no notion of
synchronization between or among elements.

2

Cont.
4. The model can be rendered at arbitrary “frame”
rates.
5. It can handle media of unknown duration, as
well as media with unreliable delivery.
6. It does not generally support synchronization
issues associated with hardware (like audio clock
issues).
Examples: VRML2 and authoring tools for
educational software

Requirements

Integrate traditional synchronization support with time
transformations (how times are translated from an
abstract representation to simple presentation time)

1. Timelines: when aspects of a presentation should
happen

2. Hierarchic or Structured time: break down a large
presentation into constituent parts

3. Relative timing
4. Transformable time

control over the pace of time for an element (including
time containers) in the model

Cont.

• Declarative syntax
1: important to content authors
2: important for authoring tool

• Document processing
XML-based syntax is a prerequisite for many document

processing models which are being deployed by a growing

number of content publishers.
• Language integration

XML is (again) a requirement.

SMIL2.0

SMIL 2.0 is defined as a set of markup modules, which define
the semantics and an XML syntax for certain areas of
SMIL functionality.

• It combines the traditional timing and synchronization
tools of hierarchic timing, relative and interactive timing,
with time transformation for support of animation.

• As an XML-based language, SMIL 2.0 can be easily used
in Internet document processing models.

• The modular structure and language integration semantics
facilitate re-use of the SMIL 2.0 timing and animation
support in other languages.

Module

•Timing and Synchronization
•Time Manipulations
•Animation
•Media Elements
•Transitions
•Layout
•Linking
•Content Control

Cont.

1. Hierarchic timing is provided by time containers, with local time
defined as an extension of the simple cascade.

2. Relative and interactive timing are integrated directly, along with a
number of other more advanced tools.

3. The framework defines how time transforms are incorporated into
the local time cascade, and a simple set of time transforms is defined
for authoring convenience .

3

Time Containers and the Local Time Cascade

Support for hierarchic time is provided by three time containment
primitives: parallel, sequence and exclusive grouping

par: often used simply as a grouping construct for temporal
elements.

seq: provides sequential activation of child elements (with delays).

excl: Provides exclusive activation of child elements.

Cont.

• Time layer : simple time, segment time, active time.

• Local time cascade: a recursive function that derives a
child’s active time from the parent time container’s simple
time. From the local active time, the segment and simple
times are derived

Relative and Interactive Timing Support

• Relative timing is supported both in the implicit sense of
hierarchic timing, as well as support for sync-arcs, wall-
clock timing, and timing relative to a particular repeat
iteration of another element.

• Interactive timing is supported via event-based timing,

DOM activation and hyperlink activation

Time Transform Support

Four simple abstractions for time transformation to control
the pace of element simple time. ������������	

,
 ����
�
���� ��� ��� �
� ������
���� ��� ��� �
4. A � � ����������� ���

Cont.
� �"!$#%#%&�"!$#%#%&�"!$#%#%&�"!$#%#%&

Modifies the pace of local time relative to
parent simple time. The value is a multiple
of the rate of parent time, with negative
values used to reverse the normal pace of
time.

Cont.
�('%)�)�#+* #+,-'$.-#'%)�)�#+* #+,-'$.-#'%)�)�#+* #+,-'$.-#'%)�)�#+* #+,-'$.-# and &%#%)�#+* #+,-'$./#&%#%)�#+* #+,-'$./#&%#%)�#+* #+,-'$./#&%#%)�#+* #+,-'$./#

Define a simple acceleration and deceleration of
element time, within the simple duration. The
values are expressed as a proportion of the simple
duration (i.e., between 0 and 1), and are defined
such that the length of the simple duration is not
changed by the use of these attributes. An
illustration of the progress of time with different
accelerate and decelerate values is provided in
Figure below.

4

Cont.

Figure: Effect of acceleration and deceleration upon progress, as a function of time.
The x-axis is input time (as a proportion of the simple duration),
and the y-axis is the progress/transformed time.

Cont.
�('+0�./1324#5#+, �6#'+0�./1324#5#+, �6#'+0�./1324#5#+, �6#'+0�./1324#5#+, �6#

This causes the simple duration to be
played once forward, and then once
backward. It causes the segment duration
to be twice the simple duration, but this
side effect is sensible and easy for authors
to understand.

Example
<html>
<head>
<style>

<!-- Bind the IE timing behavior to the needed elements -->
t\:*, p, span { behavior:url(#default#time2); }
.highlight { background-color:yellow; font-weight:bold }

</style>
<XML:NAMESPACE PREFIX="t"/>
</head>
<body>
<!-- We wrap everything in a "par" so that it all starts together 1 second

after the page is loaded. -->
<t:par begin="1s">

<t:audio src="media/talk.wma" syncBehavior="locked" />
<!-- We set a timeAction to apply a highlight to the spans.

The p becomes a sequence time container for the highlights,
and the spans just need durations -->

<p timeContainer="seq" timeAction="none" >

SMIL Timing syntax consists of a set of

attributes for controlling the behavior of media,

and several types of time containers

that group media together for coordinated presentation.
</p>

</t:par>
</body>
</html>

CONCLUSION
SMIL 2.0 defines powerful, flexible syntax and
semantics for timing and synchronization of media. It
combines support for traditional media scheduling
and interactive timing to provide a state of the art
timing model. The model scales well from basic
presentations with simple syntax, to complex and
finely tuned multimedia experiences that integrate a
range of media, animation, and user interaction.
Unlike other models, SMIL 2.0 is designed
specifically for web delivery, and allows authors to
manage the unreliable nature of the Internet, without
sacrificing a structured scheduling model.

Critical on the paper

• SMIL will provide authors with the tools they need to author web
pages with rich media, animation and interaction. However, it is more
subjective.
• SMIL has much more complex Tags than HTML
• SMIL does not concentrate on describing the actual media.

Reference

•http://www.w3.org/TR/smil20/smil-timing.html#Timing-ParSyntax
•ftp://ftp.research.microsoft.com/pub/tr/tr-2001-01.doc
•http://www.ludicrum.org/plsWork/papers/UnifyingNote.html

5

Quiz Question

1. What is SMIL ?
2. What’s the requirements for integrated time model?
3. How is hierarchic timing supported in SMIL 2.0?
4. Explain 4 simple abstractions for time transform in SMIL 2.0.
5. What’s fallback semantic?

