SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation

By Thong Chanchaem

Contents

- o Introduction
- o Algorithms
- o Summary

Introduction

What is ...?

- o **Semantic Web**: a vision of a future web of machine understandable document and data.
- o XML, RDF and OWL: semantic web format.

Introduction

OWL [2] is a set of XML elements and attributes, with standardized meaning, that are used to define term and their relationship.

OWL extends RDF Schema:

OWL

Class, equivalentProperty,

sameIndividualAS ...

RDF Schema SubClassOf, resource,

ID ...

Introduction (OWL example)

Introduction

TAP KB: a knowledge base that contains a board range of lexical and taxonomic about popular object like: music, movie, author, place, etc.

- o Browse the <u>TAP</u> KB
- o Example of <u>Places.rdf</u> file
- o Tap Activity Based Search

Goal

- o To perform automated semantic tagging of large corpora.
- $_{\rm o}$ To introduce a new disambiguation algorithm to resolve ambiguities in a natural language corpus.
- $_{\rm 0}$ To introduce the platform which different tagging applications can share.

How they do that?

- SemTag: an application written on the platform that perform automated semantic tagging of large corpora.
- \circ Seeker : a platform for large-scale text analytics.
- $_{\rm 0}$ ${\bf TBD}$: a new algorithm for Taxonomy-Based Disambiguation.

SemTag

"The Chicago Bulls announced yesterday that Michael Jordan will ..."

The <resource ref=http://tap.stanford.edu/Basket ballTeam_Bulls">Chicago Bulls</resource>announced yesterday that <resource ref="http://tap.stanford.edu/AthleteJordan_Michael">Michael Jordan</resource>will "

SemTag

- $_{\rm 0}$ SemTag uses TAP KB to build a web scale ontology
- $_{\rm 0}$ SemTag uses the concept of label bureau from PICS to obtain semantic annotation from the third party.

SemTag Archtecture

Two fundamental categories of ambiguities

- $_{\rm 0}$ Some labels appear at multiple locations in the TAP ontology.
- Some entities have labels that occur in contexts that have no representative in the taxonomy.

Term definitions

- o O (ontology) is defined by four elements
 - o C (Class)

 - o S ⊆ C × C (subClass relation) o I ⊆ I × C (instances relation)
 - $_{o}$ T \blacksquare I \times C (type relation)
- o T (Taxonomy) is defined by three elements
 - o V (a set of nodes)
 - o r V (a root) o p : V ■V

Algorithm Sim

$$Sim(c, v)$$
Let $b = \operatorname*{argmin}_{u \in \pi(v)} \{f_u(c)\}$
if $b = r$ return 0
else return 1

Algorithm TBD

```
\mathsf{TBD}(c,u)
Let u be the nearest ancestor of v with a measure
            \begin{array}{c|c} \text{if} \mid 0.5 - m_u^a \mid > \mid 0.5 - m_u^s \mid \\ \text{if} \; m_u^a > 0.5 \\ \text{return 1} \end{array}
                                  return 0
                       \begin{array}{c} \text{if } m_u^s > 0.5 \\ \text{return } \mathrm{Sim}(c,u) \end{array}
                                  return 1 - Sim(c, u)
```

Results of SemTag

They applied SemTag to set of 267 million pages producing 270G of dump data corresponding to 550 million labels in context.

Approximately 79% are judged to be on-topic, resulting in a final set of about 434 million spots, with accuracy around 82%.

Nodes of TAP

Node	Fraction of spo
Class	100.00%
UnitedStatesCity	12.97%
ProfessionalType	10.21%
Country	9.66%
Musician	8.14%
City	7.86%
ProductType	7.31%
Fortune 1000Company	4.41%
TechnologyBrand	3.45%
PersonalComputerGame	3.45%
University	3.45%
Book	3.17%
Movie	3.03%
UnitedStatesState	2.90%
Actor	2.07%
OperatingSystem	1.93%
MusicalInstrumentBrand	1.66%
ComedyTVShow	1.38%
Author	1.38%
ConsumerElectronicsCorporation	1.10%
Athlete	1.10%
ComicStrip	0.97%
HomeAndGardenBrand	0.83%
SportingGoodsBrand	0.83%

Results of SemTag

Design goal for Seeker

- o Composibility
- o Modularity
- o Extensibility
- o Scalability
- o Robustness

Infrastructure Components

- o The Data Store
- o The Index
- o The Joiner

Architecture of the Seeker system

Advantage

- o Other application can obtain semantic annotation from web-available database.
- $_{\rm 0}$ They use both human and computer judgment to solve ambiguous data in their TBD algorithm.

Disadvantage

 $_{\rm o}$ The system requires a large amount of storage space to store data.

Future SemTag

- o They will use some techniques to bootstrap from TAP to build much larger and richer ontologies in the future.
- oCurrently, SemTag uses RDF but in the future, SemTag will use advanced language as OWL.

Critical review

- o This system writes the resulting annotations to the database which other mechanisms can obtain the data from. Can this concept work with any dynamic pages?
- o They use only 11 volunteers to exam the selections. Is it enough? And Does the background of volunteers influence of the judgment of label selecting?

Quiz

- $_{\circ}$ What is the different between SemTag and Seeker?
- $_{\rm 0}$ Why OWL is more advanced language than RDF?
- o What does TBD do?
- o Which ontology is used in the system?
- $_{\rm o}$ What makes SemTag and Seeker different form other applications?

References

- [1] http://tap.stanford.edu
- [2] http://www.xfront.com/owl-quick-intro/sld001.htm
- [3] <u>http://www.w3.org/</u>
- [4] SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation