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Abstract

The peer-to-peer (P2P) network model differs from the
well established client-server model in that all members of
the network are assigned an equal role. P2P networks are
recently gaining increasing popularity. Providing security
in distributed content sharing in P2P networks is an im-
portant challenge. This paper identifies security vulnerabil-
ities in the protocols for sharing servents’ reputations in the
Gnutella P2P system, proposed recently. It demonstrates at-
tacks on the protocols that allow an attacker to alter the re-
sults of the voting procedure. The paper then presents a pro-
tocol that is resilient to the attacks described. In the pro-
posed protocol, enhanced security against various attacks
is achieved using smart design and a combination of vari-
ous techniques such as the use of digital signatures for mes-
sage integrity and random numbers for message freshness.

1. Introduction

Peer-to-peer (P2P) network systems are an important and
rapidly growing paradigm for Internet communication. A
P2P system is an alternative solution to the client-server
model to establish communication between nodes in a net-
work, where all the participating computers/nodes are able
to interact directly with each other. Any node can act as a
server to others and at the same time, it can play the role
of a client (hence the name used to describe a node of a
P2P network: servent). Communication and exchange of in-
formation is performed directly between the participating
peers. P2P networks exhibit a high level of self-organization
and are able to perform very efficiently despite the lack of
any prior infrastructure or authority. The philosophy of this
model requires that “if you want to enjoy the services which
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other nodes provide, you should provide service to other
nodes”. That is to say, under P2P computing model, the rela-
tionships among the nodes in the network are equal. Exam-
ples of P2P systems include Napster [15], Gnutella [10, 11],
Freenet [4], Pastry [17], Tapstry [23], Chord [20], P2PWNC
[9], Proem [14], and CAN [16].

P2P file sharing networks are an important and rapidly
growing part of the Internet communication. Millions of
people are using P2P networks today to share text, soft-
ware, audio, and video files stored on their computers [7].
By helping users communicate directly with minimal (or in
some cases without) central coordination, P2P networks can
allow people to share data with far greater freedom and flex-
ibility than any existing internetworking technology. P2P
file sharing networks differ from other Internet applications
in that they tend to share data from a large number of end
user computers rather than from the more central comput-
ers we generally think of as Web servers. There are several
well known commercial products available that permit P2P
file-sharing.

However, the use of P2P file-sharing software can raise
serious security issues [3, 6, 13, 19], as often sensitive per-
sonal information can be at risk due to improper usage by
users. At the same time, file-sharing technology is largely
user controlled, which is sometimes beneficial but hard to
regulate. In addition, to fully realize the potential of the P2P
paradigm, such systems must be able to support an open en-
vironment where mutually distrusting parties with conflict-
ing interests are allowed to join. Even in a closed system
of a sufficiently large scale, it may be impossible to assume
that no participating nodes have been compromised by at-
tackers. In such environments, where there are many diverse
parties without a pre-existing trust relationship, the security
is particularly important and nontrivial. However, most P2P
systems do not take security into consideration by design.
A number of security attacks on P2P systems are possible
including denial-of-service attacks, replay attacks, collab-
orated or un-collaborated attacks by malicious nodes, in-
correct routing updates, black hole attacks (modifying the



routing message to say a node has the shortest path to some
nodes) and worm hole attacks (collusion by two malicious
nodes to make the packets they want flow through them). In
addition, management of trust information of nodes and ac-
cess control to resources are two important issues.

In this paper, we are interested in the security of the
Gnutella system, specially the security of its polling pro-
tocols. Because of its trust in intermediate third parties,
Gnutella is susceptible to malicious behavior of nodes [22].
However, if one considers the new paradigm of attacks
where services are targeted as opposed to hosts, there has
been little work done. In the Gnutella protocol, intermedi-
ate parties are able to see a significant share of the queries
from all servers within their local sub-graph. What damage
could be inflicted upon the network if a node misbehaves
and uses query information? Every super node has the abil-
ity to see a large proportion of the queries. It may be un-
clear how much damage can be inflicted on the network by
a node’s ability to listen to much of the query and response
traffic, but it is certainly clear that anonymity is compro-
mised. Furthermore, even in the best case, this opens the
P2P network to other attacks.
Background on the Gnutella P2P System: The Gnutella
P2P system is fully decentralized without any central server
and without any storage structure [10, 11]. The Gnutella is
basically a resource search and discovery system. It helps
a node in the system locate other nodes that have the re-
source/file that the former node is looking for. After a node
with the needed resource is located, the former node can di-
rectly get the resource from this node. The Gnutella proto-
col uses five types of messages: Ping, Pong, Query, Query-
Hit, and Push. A node sends a Ping message to discover
more nodes on the Gnutella network for future file searches.
A Pong message is sent in response to a Ping message.
A node sends a Query message to search resources in the
Gnutella network. A QueryHit message is sent by a node
that received the Query message and has the requested re-
source. The Push message is sent to download a file from a
firewalled node. Ping and Query message are broadcast in
the system. These messages have a time to live (TTL) field
that controls the number of hops they will travel.

To search for a resource/file, a node broadcasts a Query
message to its neighbors. When a neighbor receives this
message, if it does not have the resource being searched,
it decrements the TTL field and broadcasts it to its neigh-
bors provided the TTL has not reached zero. A node that
has the requested resource informs about it to the initiator
of the Query message by sending a QueryHit message. A
QueryHit message is unicast and is sent along the same path
(in the reverse direction) on which the corresponding Query
message arrived.

In the Gnutella protocol, messages are sent in plaintext,
and there is no message encryption, authentication or in-

tegrity check. Therefore, the Gnutella P2P system is vul-
nerable to many security attacks like message flooding, de-
nial of service attacks, message replay attacks, man-in-the-
middle attacks, etc. In this paper, we address several secu-
rity problems, such as those due to replay attacks and man-
in-the-middle attacks, in the polling protocol used to collect
the reputation of servents in the Gnutella P2P system.

The rest of the paper is organized as follows: Section 2
describes the basic and enhanced polling protocols for the
Gnutella system proposed in [5]. Section 3 presents an at-
tack on one of the crucial messages used in those proto-
cols (namely the PollReply message). Sections 4.1 and
4.2 describe attacks on the original Basic Polling Proto-
col and Enhanced Polling Protocol, respectively. Section 5
gives the proposed solution that counters these attacks and
then makes a correctness argument. Section 6 concludes the
paper.

2. Polling Protocols of Gnutella

As the P2P networks’ main area of application is dis-
tributed content sharing, an important issue is that of the
peers security against malicious actions of others. The main
problem is that such networks do not provide accountabil-
ity mechanisms. Often a node finds itself in a situation that
requires an interaction with a complete stranger. One of
the ways of dealing with this problem is to employ rep-
utation based techniques [1, 2, 12, 21]. In this approach,
nodes maintain information about peers’ behavior and de-
cide on their actions based on this information. Nodes can
gather reputation from their own past experiences with other
nodes, but also can rely on the reputation as reported by
other members of the network. Usually a combination of
these two mechanisms is used. To address the above issues,
authors in [5] propose two protocols (Basic Polling Proto-
col and Enhanced Polling Protocol) that allow servents to
gather information about other nodes’ behavior and use it to
make informed decisions on whom to trust. They propose a
voting procedure by which servents can learn and also ex-
press their view of peers’ reputations. The additional phases
of polling and vote evaluation are introduced to the original
P2P protocol and a verification procedure is added before
downloading. The reputations’ sharing method proposed is
designed to work with Gnutella. Note that the polling proto-
col we describe in this paper can be applied to any P2P net-
work and thus it can serve as a building block for a broader
spectrum of reputation management mechanisms.

The protocols proposed in [5] consist of four phases.

Phase 1 (Resource Searching): In this phase, the initiator
broadcasts a request to peers indicating that he wants
to download a certain file. Peers that have the requested
file and wish to allow the download respond to the ini-
tiator. This phase is unchanged from the Gnutella pro-



tocol and is also the same in both Basic and Enhanced
Polling Protocols.

Phase 2 (Polling): This is a new phase introduced by the
authors of [5]. The initiator solicits other peers’ opin-
ions (votes) about a given set of offerers (i.e., ser-
vents that sent their replies in phase 1). He broadcasts
the Poll message and receives PollReply mes-
sages. In the Basic Polling Protocol, votes are cast
anonymously and the integrity of the PollReply
messages is provided by the use of a hash function.
In the Enhanced Polling Protocol, voters do disclose
their servent id when voting and digital signatures
are used to guarantee the integrity of PollReply
messages. A formal description of the phase 2 steps
for both proposed protocols is given in Figure 1.

Phase 3 (Vote Evaluation): This is also a phase added to the
Gnutella protocol. It is used to perform integrity check
of the votes and authentication of the votes. In both
protocols, this phase is carried out via a direct secure
communication channel that is outside of the P2P net-
work. The basic protocol verifies the integrity of votes
and their authenticity. The enhanced protocol only au-
thenticates the servent (vote integrity is provided by
means of the digital signature in phase 2). A formal
description of the phase 3 steps for both proposed pro-
tocols is given in Figure 2.

Phase 4 (Resource Downloading): This phase is enhanced
from its original Gnutella version by checking if the
source of the download is really a node with a given
servent id. This is designed to thwart the man-in-the-
middle attack during the download (i.e., impersonating
the source of the download).

Refer to Figure 3 for an example message flow for the ba-
sic variant of the protocol (due to space limitation we omit
the example of the Enhanced Protocol).

The described protocols address the very important issue
of security in P2P networks and aim at providing an effec-
tive solution. As it turns out, however, the approach is vul-
nerable to malicious actions by peers. Authors in [5] pro-
pose to use a hash function to ensure message integrity. In
the next section, we demonstrate how this integrity check
can be compromised after circumventing confidentiality of
the PollReply message. Furthermore, even though the
use of direct transmissions outside of the P2P network and
the use of public key encryption for integrity and confiden-
tiality are assumed in [5], it is still possible to perform a suc-
cessful attack on the proposed voting protocol. We present
ways of affecting servents’ reputations in an unauthorized
way. We then demonstrate how the security flaws can be
overcome by proposing a modified protocol.

3. Attack on the Confidentiality of the
PollReply Message

Before concentrating on the confidentiality of the
PollReply message, let us first briefly discuss what kind
of information might be worth keeping secret during a vot-
ing procedure. Assuming that Alice is one of the peers in
the network, we may want to ensure the following proper-
ties.

1. Alice does not know what other peers’ opinions about
her are.

2. Assuming that Alice knows the others peers’ opinions,
she does not know who expressed which opinion.

3. Even though Alice forwards a PollReply message,
she does not know the opinions contained in it.

4. Even though Alice forwards a PollReply message
and knows the opinions, she does not know who ex-
presses which opinion.

The first two properties are difficult to achieve due to the
nature of the P2P network and the anonymity of the com-
munication. In particular, since Poll messages are anony-
mous, any servent can broadcast such a message inquiring
about any set of servants (including himself) and gain the
knowledge about how others vote.

The aim of the PollReply message being confidential
is to ensure the last two of the above properties. As it turns
out, hiding the contents of this message is not an easy task.
The use of the public key encryption for the PollReply
message does not ensure its confidentiality. Since the pub-
lic key to be used for encryption is simply broadcast over
the network, the following man-in-the-middle attack is pos-
sible.

1. Alice broadcasts Poll(T, PKpoll).

2. Mallory generates a (public, private) key pair
(PKfake, SKfake) and sends Poll(T, PKfake).

3. Mallory receives PollReply(EPKfake
(contents)).

He then decrypts the PollReply message with
SKfake, encrypts it again with the original poll key
PKpoll, and forwards it to Alice.

This attack involves steps 2.3 and 2.4 of the original ap-
proach. Lack of PollReply confidentiality allows an at-
tacker to selectively discard votes. An attacker can easily
make the message fail the integrity check performed by the
recipient, thus canceling all the votes contained in it. This
is successful, since the poll originator is supposed to dis-
card votes that do not pass the integrity check. Since votes
are effectively not confidential, an attacker can drop a mes-
sage that contains votes unfavorable for him or others that



Basic Polling Protocol Enhanced Polling Protocol
2.1 Select list of offerers 2.1 Select list of offerers
2.2 Generate public-secret keys (PKpoll, SKpoll) 2.2 Generate public-secret keys (PKpoll, SKpoll)
2.3 Poll peers about set of offerers T :
Poll(T, PKpoll)

2.3 Poll peers about set of offerers T :
Poll(T, PKpoll)

2.4 Receive from servent i, ∀i ∈ {peers that reply to
the poll}

2.4 Receive from servent i, ∀i ∈ {peers that reply to
the poll}

PollReply(EPKpoll
(IPi, porti, V otesi, PollReply(EPKpoll

(IPi, porti, V otesi, servent idi,

h(IPi, porti, V otesi))) SSKi
(IPi, porti, V otesi, servent idi), PKi))

Figure 1. Step 2 of the polling protocols

Basic Polling Protocol Enhanced Polling Protocol
3.1 Remove suspicious voters 3.1 Remove suspicious voters
3.2 Verify votes by sending TrueVote(V otesi) to ser-
vent i, ∀i ∈ {peers that require verification}

3.2 Check identity by sending AreYou(servent idi)
to servent i, ∀i ∈ {peers that require verification}

3.3 Receive TrueVoteReply(responsei) from ser-
vent i

3.3 Receive AreYouReply(responsei) from servent i

Figure 2. Step 3 of the polling protocols

he colludes with. Also, he can decide to tamper with mes-
sages carrying positive votes of servents that he wishes to
harm.

As with any man-in-the-middle attack, this one also re-
quires the attacker to be “close” to the target in order to be
able to intercept and inject messages (i.e., to be in the “mid-
dle”). Assuming that nodes in a P2P network are not mo-
bile, it might at first seem that such an attack is difficult
to mount, since it is not easy to get close to the target. If
the target is fixed, i.e., when a malicious node wants to at-
tack a particular peer, getting “close” to the target might in-
deed pose some challenge. Note however, that there exists
a reversed scenario, in which the attacker does not have to
get into the victim’s proximity. A malicious node can sim-
ply decide to attack only those nodes, that are sufficiently
“close” to perform the attack. So even if we assume that
the man-in-the-middle attack can be successfully mounted
only against the neighboring nodes, it can still pose a seri-
ous threat to the P2P network. As we will show in the fol-
lowing sections, a malicious peer can influence the results
of the polling procedure. Given the fact that the polling re-
sults are used by nodes to form opinions about others, and
the fact that opinions can be propagated through the net-
work, it can be seen that the consequences of a localized
man-in-the-middle attack can in fact be network-wide.

As already mentioned, assuring the confidentiality of
communication in a P2P setting is not trivial. Moreover, it is
our conjecture that in the absence of a Certificate Authority
or a Trusted Third Party, a secure and anonymous commu-

nication between two entities not sharing a previous com-
mon context is not possible. A possible way of overcom-
ing this limitation is to allow for an initialization phase, in
which cryptographic material can be preloaded into nodes.
Alas, this approach does not seem to be very well suited to
the P2P scenario.

Note that one must carefully consider the tradeoffs be-
tween the cost of public key encryption and the level of se-
curity it provides. As it was demonstrated, the confidential-
ity of the PollReply message can be broken. The attack
requires some effort though, and there may exist circum-
stances where the limited security provided by encrypting
the message is worthwhile. This however, comes at the cost
of using public key encryption and also requires a key pair
generation for every poll, both operations being computa-
tionally intensive.

4. Attacks on the Polling Protocols

In this section, we present two attacks targeted at influ-
encing the voting procedure. We start with an attack on the
basic version of the protocol, and then describe an attack on
the enhanced version.

4.1. Attack on the Basic Polling Protocol

This attack is based on the fact that the servent id is not
bound with the (IP, port) pair during the polling and vote
evaluation phases. The association between them is estab-
lished during the download phase, which allows an attacker



1. Alice broadcasts a Query message and based on received QueryHit messages, decides on a set of servents that she
wants to inquire about. Let T denote that set.

2. Alice broadcasts Poll(T, PKpoll).

3. Bob receives the Poll message and decides to express his votes. He replies with
PollReply(EPKpoll

(IPBob, portBob, V otesBob, h(IPBob, portBob, V otesBob))).
Celine also receives the Poll message and wants to express her opinions, too. She replies with
PollReply(EPKpoll

(IPCeline , portCeline, V otesCeline, h(IPCeline, portCeline , V otesCeline)))

4. Alice receives PollReply messages from Bob and Celine. She now verifies the votes received by sending
TrueVote(V otesBob) and TrueVote(V otesCeline) to Bob and Celine, respectively.

5. Upon receiving TrueVoteReply(responseBob) and TrueVoteReply(responseCeline) and verifying the validity of
the response field, Alice can use the voting results to make a decision about the source of the download.

6. Alice checks the servent id for the source of the download and proceeds appropriately.

Figure 3. Basic Polling Protocol Example

to boost his reputation without disclosing his servent id,
as long as he is not the source of a download. It requires
the attacker to disclose his IP address, but this does not re-
ally matter, since it is the servent id that the reputation and
credibility are associated with, and since the IP address is
volatile (e.g., dial-up connections or machines behind gate-
ways using the Network Address Translation (NAT) proto-
col). Below are the details of the attack (corresponding steps
of the Basic Polling Protocol are step 2.3 and step 2.4).

1. Alice broadcasts Poll(T, PKpoll).

2. Mallory forges suitable votes and using his IP and port,
sends a PollReply message to Alice
PollReply(EPKpoll

(IP, port, V otes, h(IP, port,−
V otes)).
Note that Mallory can compute the correct digest, since
the hash function is public.

3. Alice receives PollReply sent by Mallory. If in the
further steps of the protocol, she wishes to check Mal-
lory’s votes, she contacts him using the IP and port and
verifies the votes. Mallory then can disconnect and dial
up again, thus obtaining a new IP address, whereas his
servent id remains undisclosed.

Note that it is irrelevant if Mallory is a member of the
originally broadcast set of servents T .

Observe also, that it is the attacker that is being contacted
in the vote evaluation phase (Phase 3). Since the votes were
actually expressed by him, he is also able to send a valid
TrueVoteReply message; the responsei must depend
only on votes expressed in the previously sent PollReply
message and the (IP, port) information.

The attack can be countered by dropping the anonymity
of the votes (refer to Section 5 for our proposed solution).
This is in accordance with common sense, since express-
ing opinions about others should be coupled with taking the
responsibility for one’s opinions.

4.2. Attack on the Enhanced Polling Protocol

It is possible to perform a man-in-the-middle attack al-
lowing the attacker to forge the votes of a servent replying
to the Poll message. The attacker can modify the set of
voters that expressed their opinions, although he can’t al-
ter the votes themselves. Nevertheless, it allows the attacker
to gain an unfair advantage in the following ways.

1. He can remove himself from the votes expressed if a
servent voted not in his favor.

2. He can remove a vote that is unfavorable for a servant
that he is in collusion with.

3. He can remove a vote that is favorable for a servant
that he wishes to harm.

Let T denote the set of servents that the originator wishes
to inquire about. An attacker can forge the PollReply so
that it contains votes for any set N such that N ⊆ T . The
details of the attack follow.

1. Alice broadcasts Poll(T, PKpoll).

2. Mallory generates a key pair (PKfake, SKfake) and
sends Poll(N, PKfake).

3. Mallory receives
PollReply(EPKfake

(IP, port, V otes, servent idi,-
SSKi

(IP, port, V otes, servent idi), PKi)). Note
that V otes contains only votes for servents from
the set N that was selected by Mallory. Mallory de-
crypts the PollReply message with SKfake and
now he can check if the votes are to his liking. If he de-
cides that the votes suit his needs, he encrypts the
PollReply message and forwards if to Alice. If
Mallory prefers that Alice does not see the votes con-
tained in the PollReply, he simply discards the
message.



4. Alice receives PollReply sent by Mallory and
makes her decisions based on the altered (N was sub-
stituted for T by Mallory) list of votes. In particular,
Mallory can drop votes unfavorable for him.

This attack involves execution of steps 2.3 and 2.4 of the
Enhanced Polling Protocol. It also relies on the consistency
of votes between the moment when Mallory learned them
and the moment when a given voter expressed his votes
in response to Alice’s poll. However, Mallory can refrain
from activities hurting his reputation for this period or de-
cide to just remove himself from the list T . Of course, Al-
ice could monitor the network for Poll messages that have
the list of requested votes differing by one servent and as-
sume that the removed servent is the attacker, but this can
be easily foiled by Mallory broadcasting a number of Poll
messages with different servents removed from the list.

Note that a man-in-the-middle attack is also considered
in [5] and measures to counter it are presented in that pa-
per. However, the objective of that attack is to trick a ser-
vent into downloading malicious content. Our attack, on the
other hand, aims at falsely influencing servents’ reputations
and – as shown above – is not deterred by the challenge-
response mechanism used in the download phase.

Let us now return to the feasibility of the man-in-the-
middle attack. As mentioned before, it is particularly easy
to mount against neighboring peers. We still consider it a
serious threat - since peers’ reputations can be propagated
across the network, and influencing them only for a small
set of neighbors can still have network-wide consequences.

5. An Improved Security Polling Protocol

In this section, we first propose an improved protocol
that aims at overcoming the security flaws leading to the at-
tacks described in Sections 4.1 and 4.2. Then we discuss the
security of the proposed solution.

5.1. Proposed solution

We assume that the servent id is the hash of the pub-
lic key of the servent. This quite common approach solves
the important problem of binding the public key with the
servent id. This use of public key cryptography far out-
weighs any of its drawbacks, e.g., the private key compro-
mise renders the corresponding servent id unusable and
the – hopefully good – reputation associated with it is lost.
Note that in any use of public key cryptography, the pri-
vate key compromise yields non-trivial problems, e.g., in-
validating the corresponding public key. We also propose
that the hash function used is publicly known. This is nec-
essary for other servents to be able to verify that the given
public key belongs to a given servent id.

The servent id serves as a permanent identity for a
node. That is what is used by other nodes during polling.
The reputation of each node is also associated with the
servent id. We also assume that the (IP, port) information
is volatile, i.e., the mapping from servent id to (IP, port)
can change over time. The rationale behind this assumption
is the widespread use of dial-up connections and dynamic-
IP DSL connections. Let us observe that nothing prohibits
nodes from assuming multiple identities (by generating
multiple (private, public) key pairs and thus obtaining mul-
tiple servent ids). One can think of how this fact makes
the system prone to the Sybil attack [8]. Let us postpone
this discussion till after the solution is fully described.

Let us now focus on the PollReply message. In our
solution, we propose two options regarding the issue of en-
crypting its contents.

1. For reasons of performance, one may choose not to en-
crypt the contents of the PollReply message. This
saves the time spent on encryption, as well as the time
spent on generating a new key pair for each poll round.
Let us observe though, that sending this message in
cleartext makes it easier for a malicious node to in-
spect its contents and drop it, if that suits that node’s
needs. On the other hand, we have shown in Section 3
that adding encryption does not provide secrecy.

2. If the additional level of security provided by encrypt-
ing the contents of the PollReply message is de-
sired in a particular implementation, and the cost of the
asymmetric cryptography is acceptable, one can use
the encryption. In this case (also assumed in [5]) the
Poll message carries additional information about
the public key to be used for the given poll round.

The final decision on the use of encryption for the
PollReply message depends on the particular set-
ting in which the protocol is to be used. We believe that
one must carefully balance the tradeoffs involved and make
the decision based on the operating environment (hos-
tile vs. friendly) and intended application.

We decide to employ a vote verification procedure for
selected peers. Also, to prevent a possible replay attack, we
propose the use of random numbers as poll identifiers (this
ensures freshness of messages). Instead of using a publicly
known hash function, we use digital signatures for mes-
sage integrity checking. Details of the protocol are given in
Figure 4, with the boldface font used to distinguish newly
added steps.

Let us now describe how the proposed solution works.
The resource searching phase is the same as in [5]. The ini-
tiating servent sends out a Querymessage soliciting down-
loads and receives a QueryHit message from possibly
multiple offerers. The initiator then selects a set of offer-
ers about which he wants to learns others’ opinion. Then the



Data definitions:

• R: a randomly generated integer number.

• V otes: a vector of pairs of the form 〈(servent1, vote1), (servent2, vote2), . . . , (serventN , voteN 〉. N denotes
the number of servents polled in Phase 2. Note that votei can have a special value unknown.

Phase 1: Resource searching

1.1 Start a search request by broadcasting a Query message
Query(min speed, search string).

1.2 Receive a set offers from offerers O

QueryHit(numhits, port, IP, speed, Result, trailer, servent id).

Phase 2: Polling

2.1 Select top list T ⊆ O of offerers.

Option A (PollReply not encrypted)

2.2A Generate a random number R.

2.3A Poll peers about the reputations of offerers T

Poll(T, R).

2.4A Receive a set of votes from voters V (here shown a reply from servent i, i ∈ V )
PollReply(R, IPi, porti, V otesi, PKi, SSKi

(R, IPi, porti, V otesi, PKi)).

Option B (PollReply encrypted)

2.2B Generate a random number R and a key pair (PKpoll, SKpoll).

2.3B Poll peers about the reputations of offerers T

Poll(T, R, PKpoll).

2.4B Receive a set of votes from voters V (here shown a reply from servent i, i ∈ V

PollReply(EPKpoll
(R, IPi, porti, V otesi, PKi, SSKi

(R, IPi, porti, V otesi, PKi))).

Phase 3: Vote evaluation

3.1 Remove from V , voters that appear suspicious.

3.2 Select a random set V ′ ⊆ V of voters and for each i ∈ V ′, perform the vote integrity check by sending a
Verify message
Verify(R, V otesi).

3.3 Expect back confirmation messages from each selected voter
VerifyReply(R, V otesi, SSKi

(R, V otesi)).

Phase 4: Resource downloading. This phase is the same as in the original paper.

Figure 4. Proposed solution

polling phase begins. The servent generates a random num-
ber and broadcasts a Pollmessage asking its peers to share
information about reputations of servents in T . The random
number R serves as an identifier for a given polling round.
In case when encryption is used for the PollReply mes-
sage, a per-poll key pair should be generated at this point
and the public key should be included in the Poll mes-
sage.

Peers wishing to share their opinions on servents from

T send a PollReply with the same random num-
ber R, their votes, public key, and the (IP, port) informa-
tion that will be used later during the verification proce-
dure. If encryption is being used, then the contents of the
PollReply message is encrypted using the per-poll pub-
lic key sent in the Poll message. Note that the mes-
sage is sent over the Gnutella network to assure the
poll initiator anonymity and that its integrity is pro-
vided by means of a digital signature [18]. Observe also,



that votes are not anonymous since the servent id can
be obtained by hashing the public key. Votes must be
made identifiable so that servents can be held account-
able for how they vote. The vector of votes V otes con-
sists of pairs, each of which expresses the sender’s
opinion about a given peer. It is required that this vec-
tor have a pair for every peer in the T set. If the voter does
not have an opinion about a given peer, the special vari-
able unknown is to be used in the corresponding entry in the
V otes vector. For example, if T = 〈Bob, Celine, Tom〉
and voter i wants to express the opinion only about
Bob and Tom, then his V otes should have the form of
〈(Bob, voteBob

i ), (Celine, unknown), (Tom, voteTom
i )〉.

The vote verification phase begins after poll results are
received. First, PollReply messages that do not pass the
integrity check are discarded. The integrity check consists
of verifying the digital signature and checking if the V otes

vector has an entry for every peer in T for the correspond-
ing poll. Then a set of voters is selected and they are di-
rectly contacted to confirm their votes. Direct communica-
tion is achieved by means of a secure channel outside of the
P2P network (e.g., SSL) and the provided (IP, port) pair -
as suggested in the original paper. Vote verification consists
of digitally signing (i) the votes, and (ii) the random num-
ber identifying a given poll. The digital signing is performed
by a directly contacted voter. Since the voter’s private key
is required to sign the contents of the VerifyReply mes-
sage, the confirmed vote can be associated with a given ser-
vent. The remaining steps of the protocol remain as in the
original approach.

5.2. Security of the Proposed Solution

The proposed solution is resilient to both the attacks de-
scribed in Sections 4.1 and 4.2.

The essence of the attack on the Basic Polling Protocol
is the possibility for an attacker to cast votes without any
accountability. The solution requires that the PollReply
message contain the (IP, port) pair as well as the public
key PKi. Since the servent idi is a hash of the public key
PKi, the identity of a particular voter is known to the ini-
tiator. This way, a rouge node can not get away with mali-
cious voting and maintain its reputation unaffected. In par-
ticular, voting for oneself can be easily detected by simply
checking the V otes vector.

The attack on the Enhanced Polling Protocol is based on
the ambiguity of the contents of the PollReply message.
Let us focus on the scenario in which a node wants to cast
votes only for a subset of the servents contained in the Poll
message. Assume that we have two polls. Assume also, that
the set of offerers in one poll (i.e., servents whose reputa-
tions are being polled) is denoted by A and the set of offer-
ers of the other poll is denoted by B, where B ⊂ A. Now

there is a servent that wants to express his opinions, but only
about offerers in some set C, such that C ⊂ B ⊂ A. It is
easy to see, that a PollReply message that he sends can
not be unambiguously attributed to any of the two polls.
This, coupled with the lack of a mechanism ensuring mes-
sage freshness, leads to the possibility of a man-in-middle
attack that allows the manipulation of the voting procedure
results. However, the attack can be thwarted. The solution
employs a random number as a poll identifier and also re-
quires that the PollReply field V otes contain an entry
for every servent in the set T in the Poll message. The ini-
tiator needs to keep track of poll identifiers and the corre-
sponding set of servents, and using that information, he can
rule out poll replies that have been tampered with.

To sum up: the security of our solution in achieved
thanks to three factors.

• The use of a random number to identify the poll. This
makes the protocol resilient to replay attacks. It also
helps the initiator correctly correlate votes and vote
verification messages, and helps to thwart the attack
on the Enhanced Polling Protocol.

• Integrity of the PollReply message is achieved by
digitally signing its contents. It prevents attackers from
tampering with the votes expressed by others and fixes
the vulnerabilities that lead to the attack on the Basic
Polling Protocol.

• The use of a direct secure channel that is outside of the
P2P network is crucial for the verification phase. This
allows for impersonation attempts to be detected.

Let us now return to the issue of the Sybil attack men-
tioned in Section 5.1. The possibility of this kind of attack
can be reduced by following some precautions by the poll
initiator. Namely, if there exists an one-to-one mapping be-
tween the (IP, port) pairs and servent ids for a given poll,
we can assume with high probability that no node has as-
sumed multiple identities during the voting. If such a map-
ping does not exist, then there are at least two PollReply
messages received by the initiator that contain the same
(IP, port) pair, but different servent ids. This can be in-
terpreted as an attempt to mount a Sybil attack, and the
votes carried by such messages can be, for example, dis-
carded. We believe however, that the Sybil attack can not
be prevented entirely. We attempt to thwart it by check-
ing if two votes do not purport to come from two differ-
ent servent ids associated with the same (IP, port) pair.
However, if the attacker has control of two different ma-
chines (possibly on different continents) with two different
IP addresses, then there is not much that can be done to pre-
vent him from circumventing the polling scheme.



6. Discussion

This paper addressed various issues in providing en-
hanced security for the P2P protocol Gnutella [10, 11]. We
described security flaws in the Basic and Enhanced Polling
Protocols proposed to maintain servents’ reputations in P2P
Gnutella networks [5]. First, we demonstrated how the con-
fidentiality of a crucial message of the protocol can be cir-
cumvented, which in turn renders the integrity mechanism
of the Basic Protocol ineffective. Then we showed how both
the Basic Protocol and the Enhanced Protocol can be at-
tacked, allowing an attacker to affect the votes expressed by
others. We fixed the security problems in the original de-
sign described in Section 4 and proposed a correct protocol.
We employed digital signatures, random numbers for mes-
sage freshness and - optionally - public key cryptography.
The security of both our and the original protocols depends
on the existence of a secure communications channel (used
for vote verification) operating outside of the P2P network.
This assumption is a bit restrictive and exploring ways to
overcome it seems like an interesting and promising future
research direction. Although the focus of the paper was on
Gnutella, the generalized results can more broadly be ap-
plied to other P2P protocols.
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