
1

1

CS 4/55231
Internet Engineering

Kent State University
Dept. of Computer Science

LECT-13

2

Active Document &
Mobile Code Technology

LECT-13, S-3
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Principal Challenges

• Active Elements
• Universal Portability
• Security

LECT-13, S-4
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Mobile Code Technology
& Java

Mobile Code
=

Server/ Browser
+

Java Language
+

Java Virtual Machine
Safety

Cross Platform Operability

Execution Environment

Code Distribution

LECT-13, S-5
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Java Technology
• Java technology takes the concept of “sharing” via

Internet a step ahead, sharing active programs.

• Active programs known as applets. can be embedded
inside HTML pages. Applets are transparently
downloaded into Browser along with the HTML pages
in which they appear.

• Applets behave the same way regardless of where they
come from, or what kind of machine they are being
loaded into and run on.

Java is a way of distributing software via Internet.
LECT-13, S-6

IN2004S, javed@kent.edu
Javed I. Khan@2004

INTERNET
ENGINEERING

JVM

Client

Applet Store

Web
Server

• Step-1: Request the Applet.
• Step-2: Receive the Applet.
• Step-3: Load and Start the Applet.
• Step-4: Applet performs active display on Client.
• Step-5: Discard the Applet.

Active Document Model

2

LECT-13, S-7
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Java Virtual Machine
• The Java Virtual Machine is an abstract

computing machine.

– Like a real computing machine, it has an instruction set and
uses various memory areas.

– JVM does not assume any particular implementation
technology or host platform.

– JVM can be implemented directly in silicon.

• JVM does not assume that the instructions it
executes were generated from a Java source
code.

LECT-13, S-8
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Java Virtual Machine
• The Java Virtual Machine code is written in the

informal "virtual machine assembly language”.

• The instruction set for JVM has been designed after
RISC processor model.

• JVM opcodes are one byte long. known as
“bytecodes”. The 1-byte size also means:
– The compiled code being very compact.
– Instruction set must stay small.

• If a platform has JVM installed it can run a Java
application directly.

• Bytecodes when ‘dressed’ as “Applets” can be run
from a JVM equipped Web Browser.

LECT-13, S-9
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

The magic of Bytecodes
• A Java Applet is a portable unit of mobile code. Java

achieves portability by compiling applets to JVM.

• Byte codes brings the compiled instructions to the
lowest level possible without making them machine
dependant.

• Bytecodes make Java a partially compiles language. It
is about 80% compiled and 20% interpreted.

• JVM knows nothing of the Java programming
language. JVM only understands a special file called
class file, which contains the bytecodes.

Still, Applets run
about 15 time
slower than a
compiled code!

LECT-13, S-10
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Code (Class File)
ClassFile {

u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

LECT-13, S-11
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

How JVM Works?
• A new frame is created each time a Java method is invoked, and

with it is created a new operand stack and set of local variables for
use by that method.

• JVM is stack-oriented, with most operations taking one or more
operands from the operand stack of the Java Virtual Machine's
current frame, or pushing results back onto the operand stack.

• Active data space: At any one point of the computation, there are
thus likely to be many frames and equally many operand stacks
per thread of control, corresponding to many nested method
invocations. Only the operand stack in the current frame is active.

• Argument Passing: If n arguments are passed to a Java instance
method, they are received in the local variables numbered 1
through n of the newly created frame. The arguments are received
in the order they were passed. LECT-13, S-12

IN2004S, javed@kent.edu
Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Synchronization
• The Java Virtual Machine provides explicit support for

synchronization through its monitorenter and monitorexit
instructions.

• During the time the executing thread owns the monitor, no other
thread may acquire it. If an exception is thrown during invocation
of the synchronized method, and the synchronized method does
not handle the exception, the monitor for the method is
automatically released before the exception is rethrown out of the
synchronized method.

• The monitorenter and monitorexit instructions exist to support
Java's synchronized statements. A synchronized statement
acquires a monitor on behalf of the executing thread, executes the
body of the statement, then releases the monitor:

3

LECT-13, S-13
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERINGvoid spin() {

int i;
for (i = 0; i < 100; i++) {

; // Loop body is empty
}

}
void spin() {
Method void spin()
0 iconst_0 // Push int constant 0
1 istore_1 // Store into local 1 (i=0)
2 goto 8 // First time through don'tincrement
5 iinc 1 1 // Increment local 1 by 1 (i++)
8 iload_1 // Push local 1 (i)
9 bipush 100 // Push int constant (100)
11 if_icmplt 5 // Compare, loop if < (i < 100)
14 return // Return void when done

Example of Bytecode

LECT-13, S-14
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERINGint align2grain(int i, int grain) {

return ((i + grain-1) & ~(grain-1));
}

• First grain-1 is calculated using the contents of local variable
2 and an immediate int value 1.

• These operands are popped from the operand stack and their
difference pushed back onto the operand stack, where it is
immediately available for use as one operand of the ixor
instruction (recall that ~x == -1^x).

• Similarly, the result of the ixor instruction becomes an
operand for the subsequent iand instruction.

5 iload_2 // Load grain onto operand stack
6 iconst_1 // Load constant 1 onto operand stack
7 isub // Subtract; push result onto stack
8 iconst_m1 // Load constant -1 onto operand stack
9 ixor // Do XOR; push result onto stack

Example of Stack Operation

LECT-13, S-15
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Verification
• Web browser download already-compiled class files.

Before passing on to JVM, bytecodes are verified
through extensive scrutiny.

• Besides security it also improves performance. For
example, the JVM will already know the following:
– There are no operand stack overflows or underflows.
– All local variable uses and stores are valid.
– The arguments to all the Java Virtual Machine instructions are

of valid types.

• 4 passes are made during verification.

LECT-13, S-16
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Verification-1

• Pass 1: When a prospective class file is loaded,
JVM ensures that the file has the basic format of
a Java class file.

• Examples:
– The first four bytes must contain the right magic

number.
– All recognized attributes must be of the proper length.
– The class file must not be truncated or have extra

bytes at the end.
– The constant pool must not contain any superficially

unrecognizable information.

LECT-13, S-17
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Verification-2
• Pass 2: When the class file is linked, the

verifier performs all additional verification that
can be done without looking at the code array
of the Code attribute.

• Examples:
– Ensuring that final classes are not sub-classed, and that final

methods are not overridden.
– Checking that every class (except Object) has a super-class.
– Checking that all field references and method references in

the constant pool have valid names, valid classes, and a valid
type descriptor.

LECT-13, S-18
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Verification-3
• Pass 3: Still during linking, the verifier checks the code

array of the code attribute for each method of the class
file by performing data-flow analysis on each method.

• The verifier ensures that at any given point in the program, no
matter what code path is taken to reach that point:

– The operand stack is always the same size and contains the same
types of objects.

– No local variable is accessed unless it is known to contain a value of
an appropriate type.

– Methods are invoked with the appropriate arguments.
– Fields are assigned only using values of appropriate types.
– All opcodes have appropriate type arguments on the operand stack

and in the local variables.

• Most expensive pass!

4

LECT-13, S-19
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Verification-4
• Pass 4: For efficiency reasons, certain tests that could

in principle be performed in Pass 3 are delayed until
the first time the code for the method is actually
invoked. In so doing, Pass 3 of the verifier avoids
loading class files unless it has to.

LECT-13, S-20
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Java
Applet

Java compiler
Bytecode verifier

Class Loader

Java
Run-Time
Interpreter

Just-in-time
Compiler

Server Client

LECT-13, S-21
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

JVM Defense
• JAVA Language Defense:

– memory layout is not decided by compiler but by loader at
runtime.

– JAVA does not support “pointers”, instead memory is referenced
via names which are resolved at run time by interpreter.

• Verifier Defense:
• Class Loader Defense:

– The namespace is local to a class. A class can access objects that
are within its namespace.

• Access Control Defense:
– File access parameters can be separately specified for imported

codes.
• Applet Certification:

LECT-13, S-22
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Web Browser and Applets
• Java Applets vs. Java Applications: A Java applet is not

a complete Java application. It is a component which
can run by a Web Browser.

• An Web Browser: Controls the full lifecycle of an
Applet. It supplies the attributes specified in HTML
tags to applet and it also provides the execution
environment and the main function.

LECT-13, S-23
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

Applet Life Cycle Management

Java
Applet

Init()

Start()

Paint()

Stop()

Destroy()

LECT-13, S-24
IN2004S, javed@kent.edu

Javed I. Khan@2004

INTERNET
ENGINEERING

HTML Applet Tag

<APPLET
CODE=Hello.class
CODEBASE=“applet/myapps”
WIDTH=300
HEIGHT=200 ALLIGN=left>
<PARAM NAME=param1 VALUE=“Java is Cool”>
<PARAM NAME=param2 VALUE=“Good Bye”>
</APPLET>

Example of Java Applets

